Responsive image
博碩士論文 etd-0723112-125759 詳細資訊
Title page for etd-0723112-125759
論文名稱
Title
1,2-二氯乙烷污染場址復育之微生物監測
Microbial monitoring of bioremediation of a 1,2-dichloroethane-contaminated site
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
103
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-07-05
繳交日期
Date of Submission
2012-07-23
關鍵字
Keywords
已知分解菌、即時定量PCR、變性梯度膠體電泳、加強式生物整治、1,2-二氯乙烷
Desulfitobacterium spp., 1,2-dichloroethane, bioremediation, realtime-PCR, Dehalococcoides spp., DGGE
統計
Statistics
本論文已被瀏覽 5723 次,被下載 0
The thesis/dissertation has been browsed 5723 times, has been downloaded 0 times.
中文摘要
本研究目的為探討1,2-二氯乙烷(1,2-dichloroethane, 1,2-DCA)污染現地場址加強式生物整治法之成效與可行性,於台灣南部某一受1,2-DCA污染的場址中注入易溶於水的基質做為微生物之碳源與營養鹽,並於過程中監測地下水環境參數以及現地微生物相之變化。實驗中針對地下水質進行總有機碳(TOC)、氧化還原電位(ORP)、硫酸鹽濃度等偵測,以即時定量PCR (realtime-PCR)偵測地下水環境中已知1,2-DCA分解菌屬Dehalococcoides spp. 及Desulfitobacterium spp. 之數量變化,同時以聚合酶連鎖反應(PCR)方式放大現地微生物之16S rRNA基因片段後,利用變性膠體電泳(DGGE)及定序技術進行現場菌相分析,以了解現場微生物相之組成。實驗結果顯示,在注入C-mix基質4.5個月後,TOC含量上升,現場ORP及硫酸鹽濃度反應地下水環境已呈現厭氧還原狀態,因此較不耐氧的Dehalococcoides spp. 之數量開始增加,其數量介於104-106 cells/L,較耐氧的Desulfitobacterium spp. 數量則無明顯增加趨勢,其數量介於106-107之間,且現場之污染物濃度則隨分解菌數上升而下降。現地菌相分析實驗發現,基質注入後,因TOC含量上升,地下水井中微生物相豐富度也隨之上升,於整治末期達到豐富度之最大值,並且各井優勢菌種數量均有增加。菌相鑑定結果發現,場址中1,2-DCA降解相關菌種數量豐富,並且於基質注入後,其數量開始增加,並逐漸成為較優勢的菌種。鑑定出的脫氯、氯化物分解菌有:Acidovorax sp.,Dechlorosoma sp. ,Dehalobacter sp.,Dehalococcoides sp.,Hydrogenophaga sp.,Nitrosospira sp.,Pseudomonas sp.,Rhodoferax sp. 等菌種。脫硝、鐵還原、硫還原等菌則有:Comamonas sp.,Denitratisoma sp.,Desulfobulbus sp.,Ferrovum sp.,Gallionella sp.,Nitrobacter sp. 等菌種。另外值得注意的是,在整治末期從場址中鑑定出了Methylibium sp. ,Methylobacillus sp. ,Methylobacter sp. ,Methylomicrobium sp. ,Methylomonas sp. ,Methylophilus sp. ,Methylosarcina sp. ,Methylosoma sp. ,Methyloversatilis sp. ,Methylovorus sp. ,Methylovulum sp.等11種甲烷利用菌,它們可減少整治過程中甲烷因生物復育累積於場址中造成施工危險,或者逸散造成溫室效應。經由本研究可以得知所注入基質的確有改變現場地下水環境之效果,並且可促進1,2-DCA分解菌生長、微生物相豐富度相及降解相關功能菌種增加,對整治達到一定效果,因此加強式生物整治在污染場址實行現地生物復育是可行的,在未來之大規模生物復育上具有重要參考價值。
Abstract
The aim of this study was to access the efficacy of an enhanced in situ bioremediation technology at a 1,2-dichloroethane (1,2-DCA) polluted site in southern Taiwan. A water-soluble substrate was injected into the groundwater to provide carbon sources for microbial growth. After substrate injection, increased total organic carbon (TOC) concentrations and microbial populations including Dehalococcoides spp. and Desulfitobacterium spp. were observed in the groundwater. Microbial diversity was analyzed using denaturing gradient gel electrophoresis (DGGE) and 16S rDNA sequencing to identify the bacterial strains. The results showed that after 4.5 months of substrate injection, the reduction-oxidation potential (ORP) changed from aerobic to anaerobic conditions. The less oxygen-tolerable 1,2-DCA degrading bacteria Dehalococcoides spp. started to accumulate in groundwater. However, the more oxygen-tolerable Desulfitobacterium spp. didn’t show a prominent change, although the ORP was suitable for Desulfitobacterium spp. to carry out reductive dechlorination. The DGGE results indicate that with the injected carbon sources and mineral nutrients, both the groundwater microbial diversity and the amount of dominant bacteria were increased. The 16S rDNA sequencing demonstrated that the amount and diversity of 1,2-DCA degradation-related bacteria also increased with the injection of substrate. Six groups of 1,2-DCA degradation related reactions were found: dechlorination, chlorinated-compound degradation, denitrification, iron-reduction, sulfate-reduction and methane-utilizing. Four species that can directly degrade 1,2-DCA were found: Dehalobacter sp., Dehalococcoides sp., Nitrosospira sp. and Pseudomonas sp. Moreover, 11 methane-utilizing bacterial species were also discovered. The presence of these methane-utilizing bacteria not only might assist the process of denitrification and sulfate-reduction, but also could diminish the emission of the greenhouse gas. The results of this study confirmed that the addition of substrates could affect the groundwater oxidation-reduction state and enhance the bioremediation at the 1,2-DCA-contaminated site. Thus, enhanced in situ bioremediation is a feasible technology for site remediation.
目次 Table of Contents
論文審定書 i
誌謝 ii
摘要 iii
ABSTRACT V
壹、前言 1
1.1 研究背景 1
1.1.1 1,2-二氯乙烷背景 1
1.1.2 含氯有機化合物在環境中特性 2
1.1.3 1,2-DCA在環境中特性 2
1.1.4 1,2-二氯乙烷毒性及物化特性 3
1.2 含氯脂肪族碳氫化合物分解 5
1.2 1,2-二氯乙烷生物分解 7
1.2.1 好氧生物分解 7
1.2.2 厭氧生物分解 8
1.2.3 已知1,2-DCA厭氧分解菌 10
1.3 受污染地下水之現地整治技術 11
1.3.1 地下水循環井 12
1.3.2 生物復育法 14
1.4 分子生物學監測技術 15
1.4.1 16s rDNA 15
1.4.2 變性梯度膠體電泳 15
1.4.3 即時定量PCR (realtime-PCR) 16
1.5 研究目的 17
貳、材料與方法 18
2.1 污染場址基質注入 18
2.2 地下水樣品微生物DNA萃取 19
2.3 聚合酶連鎖反應 21
2.4 變性梯度膠體電泳 22
2.5 MIXED DNA CLONING 及定序 23
2.6 NCBI比對序列 24
2.7 REALTIME-PCR 25
2.8 環境中樣品已知降解菌數量 27
參、結果 28
3.1 地下水水質參數與菌數監測 28
3.1.1 場址中TOC含量變化 28
3.1.2 場址中ORP及硫酸鹽濃度變化 29
3.1.3 場址中已知厭氧分解菌種數量變化 30
3.1.4 場址中污染物及降解產物濃度變化 33
3.2 微生物菌相鑑定與分析 34
3.2.1 場址中微生物相變化趨勢 34
3.2.2 場址中微生物組成及其代謝特性 35
肆、結論 41
伍、建議 44
引用文獻 45
圖表 65
參考文獻 References
行政院環保署 (2008) 土壤及地下水受比水重非水相液體污染場址之調查、驗證作業及整治工作等技術參考手冊建置計畫 期末報告定稿本。
陳冠豪 (2003) 以溶膠凝膠法製備MnOX/Al2O3觸媒焚化處理三氯乙烯之研究,國立成功大學 環境工程學系碩士論文。
經濟部工業局 (2008) 含氯碳氫化合物土壤及地下水汙染預防與整治技術手冊
劉婷 (2006) 六氯苯微型生物群落積累、毒性影響及微生物降解研究,華中科技大學 環境工程博士論文。
劉振宇 (2002) 氧化/還原下之現地生物整治,台灣土壤及地下水環境保護協會簡訊,第五期,頁3-5。
簡華逸 (2010) 應用現地生物整治技術處理受三氯乙烯污染之地下水,國立中山大學 環境工程研究所博士論文。
環保署 (2009),台灣塑膠工業股份有限公司仁武廠查證結果報告書。
環保署 (2010) 行政院環保署公告網,http://atftp.epa.gov.tw/announce/
Abe, Y., Aravena, R., Zopfi, J., Parker, B. and Hunkeler, D. (2009) Evaluating the fate of chlorinated ethenes in streambed sediments by combining stable isotope, geochemical and microbial methods. J. Contam. Hydrol. 107, 10-21.
Abildgaard, L., Ramsing, N.B. and Finster, K. (2004) Characterization of the marine propionate-degrading, sulfate-reducing bacterium Desulfofaba fastidiosa sp. nov. and reclassification of Desulfomusa hansenii as Desulfofaba hansenii comb. nov. Int. J. Syst. Evol. Micr. 54, 393-399.
Achenbach, L.A., Michaelidou, U., Bruce, R.A., Fryman, J. and Coates, J.D. (2001) Dechloromonas agitata gen. nov., sp. nov. and Dechlorosoma suillum gen. nov., sp. nov., two novel environmentally dominant (per)chloratereducing bacteria and their phylogenetic position. Int. J. Syst. Evol. Micr. 51, 527-533.
Allmon, W.E., Everett, L.G., Lightner, A.T., Alleman, B., Boyd, T.J. and Spargo, B.J. (1999) Groundwater circulation well technology assessment. Naval Research Laboratory. http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA418947
Amos, B.K., Ritalahti, K.M. Cruz-Garcia, C., Padilla-Crespo, E. and Loffler, F.E. (2008) Oxygen effect on Dehalococcoides viability and biomarker quantification. Environ. Sci. Technol. 42, 5718-5726.
Banerjee, S., van Duuran, B.L. and Oruambo, F.I. (1980) Microsome-mediated covalent binding of 1,2-dichloroethane to lung microsomal protein and salmon sperm DNA. Cancer Res. 40, 2170-2173.
Bardiya, N. and Bae, J. (2008) Isolation and characterization of Dechlorospirillum anomalous strain JB116 from a sewage treatment plant. Microbiol. Res. 163, 182-191.
Biegert, T., Fuchs, G. and Heider, J. (1996) Evidence that anaerobic oxidation of toluene in the denitrifying bacterium Thauera aromatic is initiated by formation of benzylsuccinate from toluene and fumarate. Eur. J. Biochem. 238, 661-668.
Blothe, M. and Roden, E.E. (2009) Composition and activity of an autotrophic Fe(II)-oxidizing, nitrate-reducing enrichment culture. Appl. Environ. Microbiol. 75, 6937-6940.
Butler, C.S., Clauwaert, P., Green, S.J. Verstraete, W. and Nerenberg, R. (2010) Bioelectrochemical perchlorate reduction in a microbial fuel cell. Environ. Sci. Technol. 44, 4685-4691.
Brugna, M., Nischke, W., Toci, R., Bruschi, M. and Giudici-Orticoni, M. (1999) First evidence for the presence of a hydrogenase in the sulfur-reducing bacterium Desulfuromonas acetoxidans. J. Bacteriol. 181, 5505-5508.
Chistoserdova, L., Lapidus, A., Han, C., Goodwin, L., Saunders, L., Brettin, T., Tapia, R., Gilna, P., Lucas, S., Richardson, P.M. and Lidstrom, M.E. Genome of Methylobacillus flagellates, molecular basis of obligate methylotrophy, and polyphyletic origin of methylotrophy. J. Bacteriol. 189, 4020-4027.
Coleman, N.V., Mattes, T.E., Gossett, J.M. and Spain, J.C. (2002) Biodegradation of cis-dichloroethene as the sole carbon source by a β-proteobacterium. Appl. Environ. Microbiol. 68, 2726-2730.
Connon, S.A., Tovanabootr, A., Dolan, M., Vergin, K., Giovannoni, S.J. and Semprini, L. (2005) Bacterial community composition determined by culture-independent and –dependent methods during propane-stimulated bioremediation in trichloroethene-contaminated groundwater. Environ. Microbiol. 7, 165-178.
Dann, A.L., Cooper, R.S. and Bowman, J.P. (2009) Investigation and optimization of a passively operated compost-based system for remediation of acidic, highly iron- and sulfate-rich industrial waste water. Water. Res. 43, 2302-2316.
de Wildeman, S., Diekert, G., van Langenhove, H. and Verstraete, W. (2003) Stereoselective microbial dehalorespiration with vicinal dichlorinated alkanes. Appl. Environ. Microbiol. 69, 5643-5647
de Wildeman, S., Linthout, G., van Langenhove, H. and Verstraeter, W. (2004) Complete lab-scale detoxification of groundwater containing 1,2-dichloroethane. Appl. Microbiol. Biotechnol. 63, 609-612.
Dinglasan-Panlilio, M.J., Dworatzek, S., Mabury, S.A., and Edwards, E.A. (2006) Microbial oxidation of 1,2-dichlorethane under anoxic conditions with nitrate as electron acceptor in mixed and pure cultures. FEMS Microbiol. Ecol. 56, 355–364.
DiSpirito, A.A., Lipscomb, J.D. and Lidstrom, M.E. (1990) Soluble cytochromes from the marine methanotroph Methylomonas sp. strain A4. J. Bacteriol. 172, 5360-5367.
Egli, C., Scholtz, R., Cook, A.M., Leisinger, T., (1987) Anaerobic dechlorination of tetrachloromethane and 1,2-dichloroethane to degradable products by pure cultures of Desulfobacterium sp. and Methanobacterium sp. FEMS Microbiol. Lett. 43, 257–261.
Elmore, A.C. and Graff, T. (2002) Best available treatment technologies applied to groundwater circulation wells. Remediation. 12, 63-80.
Eom, C.Y., Kim, E., Ro, Y.T., Kim, S.W. and Kim, Y.M. (2005) Cloning and molecular characterization of groESL heat-shock operon in methylotrophic bacterium Methylovorus sp. strain SS1 DSM 11726. J. Biochem. Mol. Biol. 38, 695-702.
Freeborn, R.A., West, K.A., Bhupathiraju, V.K., Chauhan, S., Rahm, B.G., Richardson, R.E. and Alvarez-Cohen, L. (2005) Phylogenetic analysis of TCE-dechlorinating consortia enriched on a variety of electron donors. Environ. Sci. Technol. 39, 8358-8368.
Fries, M.R., Forney, L.J. and Tiedje, J.M. (1997) Phenol- and toluene-degrading microbial populations from an aquifer in which successful trichloroethene cometabolism occurred. Appl. Environ. Microbiol. 63, 1523-1530.
Futamata, H., Harayama, S., Hiraishi, A., Watanabe, K. (2003) Functional and structural analyses of trichloroethene-degrading bacterial communities under different phenol-feeding conditions: laboratory experiments. Appl. Environ. Microbiol. 60, 594-600.
Gogleva, A.A., Kaparullina, E.N., Doronina, N.V. and Trotsenko, Y.A. (2011) Methylobacillus arboreus sp. nov., and Methylobacillus gramineus sp. nov., novel non-pigmented obligately methylotrophic bacteria associated with plants. Syst. Appl. Microbiol. 34, 477-481.
Gomes, N.C.M., Borges, L.R., Paranhos, R., Pinto, F.N., Mendoca-Hagler L.C.S. and Smalla, K. (2008) Exploring the diversity of bacterial communities in sediments of urban mangrove forests. FEMS Microbiol. Ecol. 66, 96-109.
Grostern, A. and Edwards, E.A. (2006) Growth of Dehalobacter and Dehalococcoides spp. during degradation of chlorinated ethanes. Appl. Environ. Microbiol. 72, 428-436.
Hage, J.C. and Hartmans, S. (1999) Monooxygenase-mediated 1,2-dichlroethane degradation by Pseudomonas sp. strain DCA1. Appl. Environ. Microbiol. 65, 2466-2470.
Hanson, R.S. and Hanson, T.E. (1996) Methanotrophic bacteria. Microbiol. Rev. 60, 439-471.
He, R., Wooller, M.J., Pohlman, J.W., Catranis, C., Quensen, J., Tiedje, J.M. and Leigh, M.B. (2012) Identification of functionally active aerobic methanotrophs in sediments from an arctic lake using stable isotope probing. Environ. Microbiol. 14, 1403-1419.
Hirschorn, S.K., Dinglasan-Panlilio, M.J., Edwards, E.A., Lacrampe-Couloume, G. and Lollar, B.S. (2007) Isotope analysis as a natural reaction probe to determine mechanisms of biodegradation of 1,2-dichloroethane. Environ. Microbiol. 9, 1651-1657.
Hollender, J., Dott, W. and Hopp, J. (1994) Regulation of chloro- and methylphenol degradation in Comamonas testosteroni JH5. Appl. Environ. Microbiol. 60, 2330-2338.
Holliger, C., Schraa G., Stupperich E., Stams, A. J. M., and Zehnder, A. J. B. (1992) Evidence for the involvement of corrinoids and factor-F430 in the reductive dechlorination of 1,2-dichloroethane by Methanosarcina barkeri. J. Bacteriol. 174, 4427–4434.
Hunkeler, D., and Aravena, R. (2000) Evidence of substantial carbon isotope fractionation among substrate, inorganic carbon, and biomass during aerobic mineralization of 1,2- dichloroethane by Xanthobacter autotrophicus. Appl. Environ. Microbiol. 66, 4870–4876.
Imfeld, G., Aragones, C.E., Fetzer, I., Meszaros, E., Zeiger, S., Nijenhuis, I., Nikolausz, M., Delerce, S. and Richnow, H.H. (2010) Characterization of microbial communities in the aqueous phase of a constructed model wetland treating 1,2-dichloroethene contaminated groundwater. FEMS Microbiol. Ecol. 72, 74-88.
Interstate Technology & Regulatory Council (ITRC), (2008) “In Situ Bioremediation of Chlorinated Ethene DNAPL Source Zones: Regulatory Guidance”.
http://www.itrcweb.org/Documents/bioDNPL_Docs/BioDNAPL-2.pdf
Iversen, N., Oremland, R. S., and Klug, M. (1987) Big Soda Lake (Nevada) pelagic methanogenesis and anaerobic methane oxidation. Limnol. Oceanogr. 32,804–814.
Janssen, D.B., Scheper, A. and Witholt, B. (1984) Biodegradation of 2-chloroethanol and 1,2-dichloroethane by pure bacterial cultures. Invertebr. Biotechnol. 169–178.
Janssen, P.H., and Schink, B. (1995) Catabolic and anabolic enzyme activities and energetic of acetone metabolism of the sulfate-reducing bacterium Desulfococcus biacutus. J. Bacteriol. 177, 277-282
Janssen, P.H., Schuhmann, A., Bak, F. and Liesack, W. (1996) Disproportionation of inorganic sulfur compounds by the sulfate-reducing bacterium Desulfocapsa thiozymogenes gen. nov., sp. nov. Arch. Microbiol. 166, 184-192.
Kalyuzhnaya, M.G., de Marco, P., Bowerman, S., Pacheco, C.C., Lara, J.C., Lidstrom, M.E. and Chistoserdova, L. (2006) Methyloversatilis universalis gen. nov., sp. nov., a novel taxon within the betaproteobacteria represented by three methylotrophic isolates. Int. J. Syst. Evol. Micr. 56, 2517-2522.
Kazumi, J., Haggblom, M.M. and Young, L.Y. (1995) Degradation of monochlorinated and nonchlorinated aromatic compounds under iron-reducing conditions. Appl. Environ. Microbiol. 61, 4069-4073.
Khan, F.I., Husain, T. and Hejazi, R. (2004) An overview and analysis of site remediation technologies. J. Environ. Manage. 71, 95-122.
Kim, A., Parry, E.M. and Parry, J.M. (2002) Effects of chlorinated aliphatic hydrocarbons on the fidelity of cell division in human CYP2E1 expressing cells. Exp. Mol. Med. 34, 83-89.
Klecka, G.M., Carpenter, C.L., and Gonsior, S.J. (1998) Biological transformations of 1,2-dichloroethane in subsurface soils and groundwater. J. Contam. Hydrol. 34, 139–154.
Knief, C., Kolb, S., Bodelier, P.L., Lipski, A. and Dunfield, P.F. (2006) The active methanotrophic community in hydromorphic soils changes in response to changing methane concentration. Environ. Microbiol. 8, 321-333.
Kocamemi, B.A. and Cecen, F. (2009) Biodegradation of 1,2-dichloroethane (1,2-DCA) by cometabolism in a nitrifying biofilm reactor. Int. Biodeter. Biodegr. 63, 717-726.
Kojima, H. and Fukui, M. (2010) Sulfuricella denitrificans gen. nov., sp. nov., a sulfur-oxidizing autotroph isolated from a freshwater lake. Int. J. Syst. Evol. Micr. 60, 2862-2866.
Kostyal, E., Borsanyi, M., Rigottier-Gois, L. and Salkinoja-Salonen, M.S. (1998) Organic halogen removal from chlorinated humic ground water and lake water by nitrifying fluidized-bed biomass characterized by electron microscopy and molecular methods. Appl. Environ. Microbiol. 50, 612-622.
Loy, A., Schulz, C., Lucker, S., Schopfer-Wendels, A., Stoecker, K., Baranyi, C., Lehner, A. and Wagner, M. (2005) 16s rRNA gene-based oligonucleotide microarray for environmental monitoring of the betaproteobacterial order “Rhodocyclales”. Appl. Environ. Microbiol. 71, 1373-1386.
Magli, A., Messmer, M. and Leisinger, T. (1998) Metabolism of dichloromethane by the strict anaerobe Dehalobacterium formicoaceticum. Appl. Environ. Microbiol. 64, 646-650.
Malmqvist, A., Welander, T., Moore, E., Ternstrom, A., Molin, G. and Stenstrom, L.M. (1994) Ideonella dechlorotans gen. nov., sp. nov., a new bacterium capable of growing anaerobically with chlorate as an electron acceptor. Syst. Appl. Microbiol. 17, 58-64.
Mancini, S., Abicht, H.K., Karnachuk, O.V. and Solioz, M. (2011) Genome sequence of Desulfvibrio sp. A2, a highly copper resistant, sulfate-reducing bacterium isolated from effluents of a zinc smelter at the Urals. J. Bacteriol. 193, 6793-6794.
Manson, J.M., Rauch, M. and Gilmore, M.S. (2008) The commensal microbiology of the gastrointestinal tract. Gi Microbiota and Regulation of the Immune System. Berlin: Springer-Verlag Berlin, p. 15-28.
Maym’o-Gatell, X., Anguish, T., Zinder, S.H. (1999) Reductive dechlorination of chlorinated ethenes and 1,2-dichloroethane by “Dehalococcoides ethenogenes” 195. Appl. Environ. Microbiol. 65, 3108–3113
McCarty, P.L., and Semprini, L., (1994) Groundwater treatment for chlorinated solvent. Lewis Publishers, Boca Raton.
Miyata, R., Adachi, K., Tani, H., Kurata, S., Nakamura, K., Tsuneda, S., Sekiguchi, Y. and Noda, N. (2010) Quantitative detection of chloroethene-reductive bacteria Dehalococcoides spp. using slternately binding probe competitive polymerase chain reaction. Mole. Cell. Probe. 24, 131-137.
Monferran, M.V., Echenique, J.R. and Wunderlin, D.A. (2005) Degradation of chlorobenzenes by a strain of Acidovorax avenae isoloated from a pollutied aquifer. Chemosphere. 61, 98-106.
Olaniran, A.O., Bhola, V. and Pillay, B. (2008) Aerobic biodegradation of a mixture of chlorinated organics in contaminated water. Afr. J. Biotechnol. 7, 2217-2220.
Oldenhuis, R., Vink, R.L.J.M., Janssen, D.B. and Withholt, B. (1989) Degradation of chlorinated aliphatic hydrocarbons by Methylosinus trichosporium OB3b expressing soluble methane monooxygenase. Appl. Environ. Microbiol. 55, 2819-2826.
Organisation for Economic Co-operation and Development (OECD). “1,2-dichloroethane, Screening Information Data Set (SIDS) initial assessment report for 14th SIDS initial assessment meeting”. United Nations Environment Programme (UNEP) publication.
Quan, Z.X., Im, W.T. and Lee, S.T. (2006) Azonexus caeni sp. nov., a denitrifying bacterium isolated from sludge of a wastewater treatment plant. Int. J. Syst. Evol. Micr. 56, 1043-1046.
Reeburgh, W.S., Ward, B.B., Whalen, S.C., Sandbeck, K.A., Kilpatrick, K.A. and Kerhof, L.J. (1991) Black sea methane geochemistry. Deep Sea Res. 38, 1189-1210.
Rees, G.N. and Patel, B.K. (2001) Desulforegula conservatrix gen. nov., sp. nov., a long-chain fatty acid-oxidizng, sulfate-reducing bacterium isolated from sediments of a freshwater lake. Int. J. Syst. Evol. Micr. 51, 1911-1916.
Ritalahti, K.M., Amos B.K., Sung Y., Wu Q.Z., Koenigsberg S.S. (2006) Quantitative PCR targeting 16S rRNA and reductive dehalogenase genes simultaneouslymonitors multiple Dehalococcoides strains. Appl. Environ. Microbiol. 72, 2765-2774.
Robertson, W.J., Bowman, J.P., Franzmann, P.D. and Mee, B.J. (2001) Desulfosporosinus meridiei sp. nov., a spore-forming sulfate-reducing bacterium isolated from gasolene-contaminated groundwater. Int. J. Syst. Evol. Micr. 51, 133-140.
Salinas, M.B., Fardeau, M.L., Cayol, J.L. Casalot, L., Patel, B.K.C., Thomas, P., Garcia, J.L. and Ollivier, B. (2004) Petrobacter succinatimandens gen. nov., sp. nov., a moderately thermophilic, nitrate-reducing bacterium isolated from an Australian oil well. Int. J. Syst. Evol. Micr. 54, 645-649.
Stucki, G., Krebser, U. and Leisinger, T. (1983) Bacterial growth on 1,2-dichloroethane. Experentia 39, 1271–1273.
Song, B., Palleroni, N.J., Kerkhof, L.J. and Haggblom, M.M. (2001) Characterization of halobenzoate-degrading, denitrifying Azoarcus and Thauera isolates and description of Thauera chlorobenzoica sp. nov. Int. J. Syst. Evol. Micr. 51, 589-602.
Sorokin, D.Y., Tourova, T.P., Braker, G. and Muyzer, G. (2007) Thiohalomonas denitrificans gen. nov., sp. nov., and Thiohalomonas nitratireducens sp. nov., novel obligately chemolithoautotrophic, moderately halophilic, thiodenitrifying gammaproteobacteria from hypersaline habitats. Int. J. Syst. Evol. Micr. 57, 1582-1589.
Suthersan, S.S. (1997) Remediation engineering design concepts. CRC Press, Inc.
Talera, S. and Denner, E.B.M. (2003) Sterolibacterium denitrificans gen. nov., sp. nov., a novel cholesterol-oxidizing, denitrifying member of the β-proteobacteria. Int. J. Syst. Evol. Micr. 53, 1085-1091.
Tan, Y. and Ji, G. (2010) Bacterial community structure and dominant bacteria in activated sludge from a 70℃ ultrasound-enhanced anaerobic reactor for treating carbazole-containing wastewater. Bioresource. Technol. 101, 174-180.
Thrash, J.C., Ahmadi, S., Torok, T. and Coates, J.D. (2010)Magnetospirillum bellicus sp. nov., a novel dissimilatory perchlorate-reducing alphaproteobacterium isolated from a bioelectrical reactor. Appl. Environ. Microbiol. 76, 4730-4737.
Torsvik, V., Sorheim, R. and Goksoyr, J. (1996) Total bacterial diversity in soil and sediment communities – a review. J. Ind. Microbiol. Biot. 17, 170-178.
Urynowicz, M. A. and Siegrist, R. L. (2000) “Chemical Degradation of TCE DNAPL by Permanganate”. Proceedings of the Second International Conference on Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA. 75-82.
U.S. Agency for Toxic Substances and Disease Registry (ATSDR). (2001a) “Public health statement 1,2-dichloroethane”. http://www.atsdr.cdc.gov/phs/phs.asp?id=590&tid=110
U.S. Agency for Toxic Substance and Disease Registry (ATSDR). (2001b) “Toxicological profile for 1,2-dicloroethane”. http://www.atsdr.cdc.gov/toxprofiles/tp38.html
U.S. Environmental Protection Agency (EPA) (1998) Field applications of In situ remediation technologies : Ground-water circulation wells.
http://www.epa.gov/tio/download/remed/gwcirc.pdf
U.S. Environmental Protection Agency (EPA) (2007) “Treatment technologies for site cleanup: annual status report (twelfth edition)”.
http://www.epa.gov/tio/download/remed/asr/12/asr12_full_document.pdf
U.S. National Institutes of Health (NIH). (1991) “Toxicity studies of 1,2-dichloroethane in F344/N rats, Sprague Dawley rats, Osborne-mendel rats, and B6C3F1 mice”. http://ntp.niehs.nih.gov/ntp/htdocs/ST_rpts/tox004.pdf
van den Wijngaard, A.J., van der Kamp, K.W.H.J., van der Ploeg, J., Pries, F., Kazemier, B. and Janssen, D.B. (1992) Degradation of 1,2-dichloroethane by Ancylobacter aquaticus and other facultative methylotrophs. Appl. Environ. Microbiol. 58, 976–983.
van der Zaan, B., de Weert, J., Rijnaarts, H., de Vos, W.M., Smidt, H. and Gerritse, J. (2009) Degradation of 1,2-dicloroethane by microbial communities from river sediment at various redox conditions. Water. Res. 43, 3207-3216.
van Raemdonck, H., Maes, A., Ossieur, W., Verthe, K., Vercauteren, T., Verstraete, W. and Boon, N. (2006) Real time PCR quantification in groundwater of the dehalorespiring Desulfitobacterium dichloroeliminans strain DCA1. J. Microbiol. Meth. 67, 294-303.
Wang, F., Grundmann, S., Schmid, M., Dorfler, U., Roherer, S., Munch, J.C., Hartmann, A., Jiang, X. and Schroll, R. (2007) Isolation and characterization of 1,2,4-trichlorobenzene mineralizing Bordetella sp. and its bioremediation potential in soil. Chemosphere. 67, 896-902.
Ward, D.M., Weller, R. and Bateson, M.M. (1990) 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community. Nature. 345, 63-65.
Wei, Z. and Seo, Y. Trichloroethylene (TCE) adsorption using sustainable organic mulch. J. Hazard. Mater., Article in Press (2010).
Weiss, J.V., Rentz, J.A., Plaia, T., Neubauer, S.C., Merrill-Floyd, M., Lilburn, T., Bradburne, C., Megonigal, J.P. and Emerson, D. (2007) Characterization of neutrophilic Fe(II)-oxidizing bacteria isolated from the rhizosphere of wetland plants and description of Ferritrophicum radicicola gen. nov. sp. nov., and Sideroxydans paludicola sp. nov. Geomicrobiol. J. 24, 559-570.
Weller, R. and Ward, D.M. (1989) Selective recovery of 16S rRNA sequences from natural microbial communities in the form of cDNA. Appl. Environ. Microbiol. 55, 1818-1822.
Wilson, J.T. and Wilson, B.H. (1988) Biotransformation of trichloroethene in soil. Appl. Environ. Microbiol. 49, 242-243
Wu, W., Carley, J., Green, S.J., Luo, J., Kelly, S.D., van Nostrand, J., Lowe, K., Mehlhorn, T., Carroll, S., Boonchayanant, B., Lofller, F.E., Watson, D., Kemner, K.M., Zhou, J., Kitanidis, P.K., Kostka, J.E., Jardine, P.M. and Criddle, C.S. (2010) Effects of nitrate on the stability of uranium in a bioreduced region of the subsurface. Environ. Sci. Technol. 44, 5104-5111.
Yokota, T., Fuse H., Omori T., and Minoda Y. (1986) Microbial dehalogenation of haloalkanes mediated by oxygenase or halidohydrolase. Agric. Biol. Chem. 50, 453–460.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.17.154.171
論文開放下載的時間是 校外不公開

Your IP address is 3.17.154.171
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code