Responsive image
博碩士論文 etd-0723112-144536 詳細資訊
Title page for etd-0723112-144536
論文名稱
Title
BiMnO3與Co3TeO6之多重磁性相變與多鐵性
Multiple Magnetic Transitions and Multiferroics in BiMnO3 and Co3TeO6
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
121
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-06-10
繳交日期
Date of Submission
2012-07-23
關鍵字
Keywords
複雜電子、結構扭曲與變化、高壓效應、多鐵
spin configuration, lattice change, lattice distortion, multiferroic material, pressure effect
統計
Statistics
本論文已被瀏覽 5696 次,被下載 1041
The thesis/dissertation has been browsed 5696 times, has been downloaded 1041 times.
中文摘要
我們選取了兩個多鐵材料BiMnO3 與Co3TeO6研究其物理特性在磁場與壓力下的變化。這兩種材料分別屬於type-I ,而從我們的研究得知Co3TeO6 的多鐵特性屬於type-II。BMnO3有三個相轉變 (kink I, kink II, and kink III)分別在不同的壓力下被觀察到。Kink I 隨著外加壓力被壓抑,當壓力值超過11.74 kbar之後完全地消失。當壓力大於8.63 kbar,kink II則與 kink III 一起出現。而三者共存態也在8.63至10.83 kbar的壓力範圍內被觀察到。Kink I與kink II相同都是弱鐵磁性相變,然而kink III則是反鐵磁性相變並帶有類電子自旋玻璃的特性。
Co3TeO6有兩個磁性相變存在於18與26 K,無論在磁矩測量、比熱實驗以及中子繞射上皆可以被觀察到。而在介電係數的實驗中,一個劇烈上升的轉變出現在18 K,同時磁介電效應也在同一個溫度區間被觀察到。這些現象直指著Co3TeO6極有可能是屬於多鐵材料。在變溫的結構數據中,18 K附近出現了不連續的變化,這可能是造成磁與介電係數相轉變的原因,也顯示了這個樣品屬於type-II 的多鐵材料。然而在高壓效應的實驗中,這個不連續的變化極有可能被壓力壓抑。當壓力超過9.82 kbar磁性的相轉變完全消失。
在我們的研究成果中,此二多鐵材料呈現了複雜多樣的磁性相變,為研究多鐵材料的方向與經驗上提供了不同的資料。在壓力下結構的扭曲或是改變會造成複雜的電子排列,直接或間接的影響磁與介電係數的相轉變。
Abstract
We studied the pressure effect of polycrystal BiMnO3 (type-I multiferroic) and single crystal Co3TeO6 (type-II multiferroic) with different magnetic fields and pressures. With the primary objective of understanding the pressure effect on BiMnO3, complex multiple magnetic transitions (kink I, II and III) are observed under the maximum applied pressure of 15.94 kbar (~1.6 GPa). Kink I, a long-range soft ferromagnetic transition at TcI ~ 100 K under ambient pressure, is suppressed completely at 11.74 kbar. Kink II emerges at 8.66 kbar along with TcII ~ 93 K. Kink II is a long-range soft ferromagnetic the same as kink I but canted in nature. Kink III, a canted antiferromagnetic transition at TcIII ~ 72.5 K appears along with kink II also at 8.66 kbar. These results indicate the complicated correlation between the lattice distortion and the spin configuration under pressures and magnetic fields in multiferroic system. Whereas, two distinct anomalies (T1 ~ 26 K and T2 ~ 18 K) are observed on single crystal Co3TeO6 in magnetic susceptibility, specific heat, and neutron diffraction measurements. Interestingly, the strong anisotropic magnetic variations are also noticed in high-magnetic-field hysteresis measurements with applied magnetic field parallel to a- and c- axes. Dielectric studies were also carried out in different magnetic fields at the temperature range 5 – 300 K. Concomitantly, frequency-independent step-like dielectric anomaly is observed around 18 K, coinciding with the transition of magnetic susceptibility, specific heat, and neutron diffraction. The dielectric constant is also modified by external magnetic fields. These experimental results strongly suggest the multiferroicity of Co3TeO6. From temperature-dependent X-ray diffraction studies, it is evident that a structural distortion appears around 18 K, responsible of dielectric and/or magnetic ordering. The transition at 18 K is disappeared under pressure above 9.82 kbar, indicative of suppressing structural distortion. Similarly, the lattice distortion and the spin configuration under pressures are important factors for multiferroic property. Through the specific heat and pressure-dependent susceptibility, the structural distortion probably results from the magnetic ordering, indication the dielectric anomaly at 18 K.
目次 Table of Contents
論文審定書 I
致謝 i
摘要 ii
Abstract iii
Contents v
The list of figures vii
Chapter 1: Introduction 1
1.1: Multiferroic 1
1.1.1: What is the multiferroic? 1
1.1.2: Why are multiferroic materials rare? 5
1.1.3: Why is multiferroic material interesting? 8
1.1.4: The brief history of multiferroics 11
1.2: Motivation 17
Chapter 2: Experimental instrumentations and methods 19
2.1: Sample synthesis 19
2.1.1 BiMnO3 19
2.1.2 Co3TeO6 20
2.2: Magnetic properties measurement system (MPMS XL-7, Quantum Design) 21
2.3: High pressure ac susceptibility and dc magnetization 25
2.3.1: High pressure ac susceptibility system 25
2.3.1: Homemade pressure apparatus at MPMS XL-7 30
Chapter 3: Results and discussions 33
3.1: BiMnO3 33
3.1.1: Introduction of BiMnO3 33
3.1.2: The magnetic property under ambient pressure in different magnetic fields 36
3.1.3: The magnetic property under high pressure 38
3.1.4: The magnetic property under high pressure in different magnetic fields 46
3.1.5: The proposed temperature-dependent magnetic states in different magnetic fields under ambient pressure, 9.44 and 11.92 kbar. 49
3.1.6: The ac susceptibility with different frequencies under ambient and 11.92 kbar 54
3.1.7: Summary regarding BiMnO3 56
3.2: Co3TeO6 57
3.2.1: Introduction of Co3TeO6 57
3.2.2: The magnetic property 60
3.2.3: The anisotropic magnetic property in Co3TeO6 62
3.2.4: The specific heat and neutron diffraction 67
3.2.5: The dielectric property and temperature-dependent X-ray diffraction 76
3.2.6: The ac susceptibility under high pressure6 81
3.2.7: Summary regarding Co3TeO6 83
Chapter 4: Conclusion 84
References 87
Publication list 101

參考文獻 References
1 H. Schmid, “Multi-ferroic magnetoelectrics”, Ferroelectrics 162, 317 (1994).
2 N. A. Spaldin and M, Fiebig, “The renaissance of magnetoelectric multiferroics”, Science 309, 391 (2005).
3 Y. Tokura, “Multiferroics—toward strong coupling between magnetization and polarization in a solid”, J. Magn. Magn. Mater. 310, 1145 (2007).
4 L. D. Landau and E. M. Lifshitz, “Electrodynamics of continuous media, course of theoretical physics”, Pergamon Press, Oxford (1960 ) (Russian version in 1958).
5 G. T. Rado and V. J. Folen, “Magnetoelectric effects in antiferromagnetics”, J. Appl. Phys. 33, 1126 (1962).
6 G. T. Rado, “Statistical theory of magnetoelectric effects in antiferromagnetics”, Phys. Rev. 128, 2546 (1962).
7 R. P. Santoro and R. E. Newnham, “Survey of magnetoelectric materials”, Technical Report AFML TR-66-327, Air Force Materials Lab., Ohio, (1966).
8 J. F. Scott, “Data storage: “multiferroic memories”, Nat. Mater. 6, 256 (2007).
9 M. Gajek, M. Bibes, S. Fusil, K. Bouzehouane, J. Fontcuberta, A. Barthélémy, and A.Fert, “Tunnel junctions with multiferroic barriers”, Nat. Mater. 6, 296 (2007).
10 K. F. Wang, J.-M. Liuab, and Z. F. Ren, “Multiferroicity: the coupling between magnetic and polarizationorders”, Adv. Phys. 58, 321 (2009).
11 N. A. Spaldin, S.-W. Cheong, and R. Ramesh, “Multiferroics: past, present, and future”, Phys. Today 63, 38 (2010).
12 C. A. F. Vaz, J. Hoffman, C. H. Ahn, and R. Ramesh, “Magnetoelectric coupling effects in multiferroic complex oxide composite structures”, Adv. Mater. 22, 2900 (2009).
13 W. Eerenstein, N. D. Mathur, and J. F. Scott, “Multiferroic and magnetoelectric materials”, Nature (London) 442, 17 (2006).
14 C. -W. Nan, M. I. Bichurin, S. Dong, D. Viehland, and G. Srinivasan, “Multiferroic magnetoelectric composites: historical perspective, status, and future directions” J. Appl. Phys. 103, 031101 (2008).
15 S.-W. Cheong, and M. Mostovoy, “Multiferroics: a magnetic twist for ferroelectricity”, Nat. Mater. 6, 13 (2007).
16 J. F. Scott, and R. Blinc, “Multiferroic magnetoelectric fluorides: why are there so many magnetic ferroelectrics?”, J. Phys. : Condens. Matter 23, 113202 (2011).
17 N. Hill, “Why are there so few magnetic ferroelectrics?”, J. Phys. Chem. B 104, 6694 (2000).
18 J. Ma, J. Hu, Z. Li, and C.-W. Nan, “Recent progress in multiferroic magnetoelectric composites: from bulk to thin films”, Adv. Mater. 23, 1062 (2011).
19 Y. Kitagawa, Y. Hiraoka, T. Honda, T. Ishikura, H. Nakamura, and T. Kimura, “Low-field magnetoelectric effect at room temperature”, Nat. Mater. 9, 797 (2010).
20 T. Kimura, Y. Sekio, H. Nakamura, T. Siegrist, and A. P. Ramirez, “Cupric oxide as an induced-multiferroic with high-TC”, Nat. Mater. 7, 291 (2008).
21 M. Bibes and A. Barthélémy, “Towards a magnetoelectric memory”, Nat. Mater. 7, 425 (2008).
22 W. C. Röntgen, “Über die durch bewegung eines im homogenen electrischen felde befindlichen dielectricums hervorgerufen eelectrodynamische kraft”, Ann. Phys. 271, 264 (1888).
23 H. A. Wilson, “On the electric effect of rotating a dielectric in a magnetic field”, Phil. Trans. R. Soc. A 204, 129 (1905).
24 P. Curie, “Sur la symétrie dans les phénomènes physiques, symétrie d'un champ électrique et d'un champ magnétique”, J. Physique 3, 393 (1894).
25 P. Debye, “Bemerkung zu einigen neuen versuchen über einen magneto-elektrischen Richteffekt”, Z. Phys. 36, 300 (1926).
26 I. E. Dzyaloshinskii, “On the magneto-electrical effect in antiferromagnets”, Sov. Phys. JETP 10, 628 (1960).
27 D. N. Astrov, “The magnetoelectric effect in antiferromagnetics”, Sov. Phys. JETP 11, 708 (1960).
28 D. N. Astrov, “Magnetoelectric effect in chromium oxide”, Sov. Phys. JETP 13, 729 (1961).
29 V. J. Folen, G. T. Rado, and E. W. Stalder, “Anisotropy of the magnetoelectric effect in Cr2O3”, Phys. Rev. Lett. 6, 607 (1961).
30 G. T. Rado and V. J. Folen, “Observation of the magnetically induced magneto- electric effect and evidence for antiferromagnetic domains”, Phys. Rev. Lett. 6, 607 (1961).
31 G. A. Smolenskii and I. E. Chupis, “Ferroelectromagnets”, Sov. Phys. Usp. 25, 475 (1982).
32 Y. N. Venevtsev and V. V. Gagulin, “Search, design and investigation of seignettomagnetic oxides” Ferroelectrics 162, 23 (1994).
33 M. Fiebig, “Revival of the magnetoelectric effect”, J. Phys. D: Appl. Phys. 38, 123 (2005).
34 E. Ascherx, H. Rieder, H. Schmid, and H. Stössel “Some properties of ferromagnetoelectric Nickel-Iodine Boracite, Ni3B7013I”, J. Appl. Phys. 37, 1404 (1966).
35 T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y. Tokura, “Magnetic control of ferroelectric polarization”, Nature (London) 429,55 (2003).
36 B. B. Van Aken, T. T. M. Palstra, A. Filippetti, and N. A. Spaldin, “The origin of ferroelectricity in magnetoelectric YMnO3”, Nat. Mater. 3, 164 (2004).
37 N. Hur, S. Park, P. A. Sharma, J. S. Ahn, S. Guha, and S-W. Cheong, “Electric polarization reversal and memory in a multiferroic material induced by magnetic fields”, Nature (London) 429, 392 (2004).
38 G. Lawes, A. B. Harris, T. Kimura, N. Rogado, R. J. Cava, A. Aharony, O. Entin-Wohlman, T. Yildirim, M. Kenzelmann, C. Broholm, and A. P. Ramirez, “Magnetically driven ferroelectric order in Ni3V2O8”, Phys. Rev. Lett. 95, 087205 (2005).
39 T. Kimura, G. Lawes, T. Goto, Y. Tokura, and A. P. Ramirez, “Magnetoelectric phase diagrams of orthorhombic RMnO3 (R = Gd, Tb, and Dy)”, Phys. Rev. B 71, 224425 (2005).
40 M. Mochizuki, and N. Furukawa, “Microscopic model and phase diagrams of the multiferroic perovskite manganites”, Phys. Rev. B 80, 134416 (2009).
41 K. Noda, M. Akaki, T. Kikuchi, D. Akahoshi, and H. Kuwahara, “Magnetic- field-induced switching between ferroelectric phases in orthorhombic- distortion-controlled RMnO3”, J. Appl. Phys. 99, 08S905 (2006).
42 T. Lottermoser, T.Lonkai, U. Amann, D. Hohlwein, J. Ihringer, and M. Fiebig, “Magnetic phase control by an electric field”, Nature (London) 430, 541 (2004).
43 S. Lee, A. Pirogov, M. Kang, K.-H. Jang, M. Yonemura, T. Kamiyama, S.-W. Cheong, F. Gozzo, N. Shin, H. Kimura, Y. Noda, and J.-G. Park, “Giant magneto-elastic coupling in multiferroic hexagonal manganites”, Nature (London) 451, 805 (2008).
44 B. Lorenz, A. P. Litvinchuk, M. M. Gospodinov, and C. W. Chu, “Field-induced reentrant novel phase and a ferroelectric-magnetic order coupling in HoMnO3”, Phys. Rev. Lett. 92, 087204 (2004).
45 A. M. Kadomtseva, S. S.Krotov, Yu. F. Popov, and G. P. Vorob’ev, “Features of the magnetoelectric behavior of the family of multiferroics RMn2O5 at high magnetic fields (Review)”, Low Temp. Phys. 32, 709 (2006).
46 C. R. dela Cruz, F. Yen, B. Lorenz, M. M. Gospodinov, C. W. S.Park, and S.-W. Cheong, “Structural anomalies at the magnetic and ferroelectric transitionsin RMn2O5 (R = Tb, Dy, Ho)”, Phys. Rev. B 73, 100406 (2006).
47 H. Kimura, S. Kobayashi, Y. Fukuda, T. Osawa, Y. Kamada, Y. Noda, I. Kagomiya, and K. Kohn, “Spiral spin structure in the commensurate magnetic phase of multiferroic RMn2O5”, J. Phys. Soc. Jpn.76, 074706 (2007).
48 A. Filippetti and N. A. Hill, “Coexistence of magnetism and ferroelectricity in perovskites”, Phys. Rev. B 65, 195120 (2002).
49 N. A. Hill and K. M. Rabe, “First-principles investigation of ferromagnetism and ferroelectricity in bismuth manganite”, Phys. Rev. B 59, 8759 (1999).
50 C. G. Zhong, J. H. Fang, and Q. Jiang, “Magnetodielectric effects in the ferroelectric ferromagnet BiMnO3”, J. Phys.: Condens. Matter 16, 9059 (2004).
51 J. van den Brink and D. I. Khomskii, “Multiferroicity due to charge ordering”, J. Phys.: Condens. Matter 20, 434217 (2008).
52 D. I. Khomskii, “Multiferroics: different ways to combine magnetism and ferro-electricity”, J. Magn. Magn. Mater. 306, 1 (2006).
53 H. Béa, M. Gajek, M. Bibes, and A. Barthélémy, “Spintronics with multiferroics”, J. Phys.: Condens. Matter 20, 434221 (2008).
54 J. J. Betouras, G. Giovannetti, and J. Brink, “Multiferroicity induced by dislocated spin-density waves”, Phys. Rev. Lett. 98, 257602 (2007).
55 A. B. Harris, A. Aharony, and O. Entin-Wohlman, “Order parameters and phase diagrams of multiferroics”, J. Phys.: Condens. Matter 20, 434202 (2008).
56 Y. Tokura and S. Seki, “Multiferroics with spiral spin orders”, Adv. Mater. 22, 1554 (2010).
57 D. Khomskii, “Classifying multiferroics: mechanisms and effects”, Phys. 2, 20 (2009).
58 G. A. Samara, T. Sakudo, and K. Yoshimitsu, “Important generalization concerning the role of competing forces in displacive phase transitions”, Phys. Rev. Lett. 35, 1767 (1975).
59 F. Cerdeira, W. B. Holzapfel, and D. Bauerle, “Effect of pressure on the zone-center phonons of PbTiO3 and on the ferroelectric-paraelectric phase transition”, Phys. Rev. B 11, 1188 (1975).
60 U. Venkateswaran, V. Naik, and R. Naik, “High-pressure Raman studies of polycrystalline BaTiO3”, Phys. Rev. B 58, 14256 (1998).
61 Z. Wu and R. E. Cohen, “Pressure-Induced anomalous phase transitions and colossal enhancement of piezoelectricity in PbTiO3”, Phys. Rev. Lett. 95, 037601 (2005).
62 I. A. Kornev, L. Bellaiche, P. Bouvier, P.-E. Janolin, B. Dkhil, and J. Kreisel, “Ferroelectricity of Perovskites under Pressure”, Phys. Rev. Lett. 95, 196804 (2005).
63 I. A. Kornev and L. Bellaiche, “The nature of ferroelectricity under pressure”, Phase Transitions 80, 385 (2007).
64 P. Pruzan, D. Gourdain, and J. C. Chervin, “Vibrational dynamics and phase diagram of KNbO3 up to 30 GPa and from 20 to ~500 K”, Phase Transitions 80, 1103 (2007).
65 P.-E. Janolin, P. Bouvier, J. Kreisel, P. A. Thomas, I. A. Kornev, L. Bellaiche, W. Crichton, M. Hanfland, and B. Dkhil, “High-Pressure effect on PbTiO3: an investigation by Raman and X-ray scattering up to 63 GPa”, Phys. Rev. Lett. 101, 237601 (2008).
66 G. A. Samara, “The relaxational properties of compositionally disordered ABO3 perovskites”, J. Phys.: Condens. Matter 15, 367 (2003).
67 G. A. Samara and E. L. Venturini, “Ferroelectric/relaxor crossover in com- positionally disordered perovskites”, Phase Transitions 79, 21 (2006).
68 B. Chaabane, J. Kreisel, B. Dkhil, P. Bouvier, and M. Mezouar, “Pressure-induced suppression of the diffuse scattering in the model relaxor ferroelectric PbMg1/3Nb2/3O3”, Phys. Rev. Lett. 90, 257601 (2003).
69 J. Kreisel, P. Bouvier, B. Dkhil, P. A. Thomas, A. M. Glazer, T. R. Welberry, B. Chaabane, and M. Mezouar, “High-pressure x-ray scattering of oxides with a nanoscale local structure: Application to Na1/2Bi1/2TiO3”, Phys. Rev. B 68, 014113 (2003).
70 B. P. Burton, E. Cockayne, S. Tinte, and U. V. Waghmare, “First-principles-based simulations of relaxor ferroelectrics”, Phase Transitions 79, 91 (2006).
71 A. Sani, B. Noheda, I. A. Kornev, L. Bellaiche, P. Bouvier, and J. Kreisel, “High-pressure phases in highly piezoelectric PbZr0.52Ti0.48O3”, Phys. Rev. B 69, 020105 (2004).
72 J. Rouquette, J. Haines, V. Bornand, M. Pintard, P. Papet, W Marshall, and S. Hull, “Pressure-induced rotation of spontaneous polarization in monoclinic and triclinic PbZr0.52Ti0.48O3”, Phys. Rev. B 71, 024112 (2005).
73 G. K. Rozenberg and M. P. Pasternak, “Crystallographic transitions related to magnetic and electronic phenomena in TM compounds under high pressure”. Phase Transitions 80, 1131 (2007).
74 M. Azuma, S. Carlsson, J. Rodgers, M. G. Tucker, M. Tsujimoto, S. Ishiwata, S. Isoda, Y. Shimakawa, and “Pressure-induced intermetallic valence transition in BiNiO3”, M. Takano, J. P. Attfield, J. Am. Chem. Soc. 129, 14433 (2007).
75 N. V. Golubko, V. Yu. Proidakova, G. M. Kaleva, S. A. Ivanov, A. V. Mosunov, S. Yu. Stefanovich, N. V. Sadovskaya, E. D. Politova, and P. Nordbla, “Synthesizing and investigating the structure and phase transitions in A3TeO6 (A—Mn, Co, Ni) Oxides”, Bull. Russ. Acade. Sci.: Phys. 74, 724 (2010).
76 S. A. Ivanov, P. Nordblad, R. Mathieub, R. Tellgren, C. Ritter, N.V. Golubko, E.D. Politova, and M. Weil, “New type of incommensurate magnetic ordering in Mn3TeO6”, Mater. Res. Bull. 46, 1870 (2011).
77 F. Wu, E. Kan, C. Tian, and M.-H. Whangbo, “Theoretical analysis of the spin exchange and magnetic dipole-dipole interactions leading to the magnetic structure of Ni3TeO6”, Inorg. Chem. 49, 7545 (2010).
78 I. Živković, K. Prša, O. Zaharko, and H. Berger, “Ni3TeO6—a collinear antiferromagnet with ferromagnetic honeycomb planes”, J. Phys. Condens. Matter 22, 056002 (2010).
79 A. A. Belik and E. Takayama-Muromachi, “Magnetic properties of BiMnO3 studied with dc and ac magnetization and specific heat”, Inorg. Chem. 45, 10224 (2006).
80 R. Becker, M. Johnsson, and H. Berger, “A new synthetic cobalt tellurate: Co3TeO6”, Acta Crystallogr. 62, 67 (2006).
81 M. Mcelfresh, “Fundamentals of magnetism and magnetic measurements featuring Quantum Design’s magnetic property measurement susutem”, Quantum Design (1994).
82 A. Eiling and J. S. Schilling, “Pressure and temperature dependence of electrical resistivity of Pb and Sn from 1-300K and 0-10 GPa-use as continuous resistive pressure monitor accurate over wide temperature range; superconductivity under pressure in Pb, Sn and In”, J. Phys. F: Metal Phys. 11, 623 (1981).
83 Y. Uwaroko, T. Fujiwara, M. Hedo, F. Tomioka, and I. Umehara, “The development of a high pressure micro-cell for magnetization and specific heat measurements: the effect of pressure on the magnetism in CeAg”, J. Phys.: Condens. Matter 17, 1011 (2005).
84 C. L. Hung, Ph. D thesis, “Study of two-gap superconductivity on YNi2B2C, NbSe2, and CeRu2 superconductors”, National Sun Yat-Sen University, Taiwan (2009).
85 K. F. Tseng, Master thesis, “Magnetic field and pressure effects on the magnetism of quasi-1D double chain NaV2O4 and ferrimagnet Cu2OSeO3”, National Sun Yat-Sen University, Taiwan (2010).
86 F. Sugawara, S. Iiida, Y. Syono, and S. Akimoto, “Magnetic properties and crystal distortions of BiMnO3 and BiCrO3”, J. Phys. Soc. Jpn. 25, 1533 (1968).
87 T. Atou, H. Chiba,K. Ohoyama, Y. Yamaguchi, and Y. Syono, “Structure determination of ferromagnetic perovskite BiMnO3”, J. Solid State Chem. 145, 639 (1999).
88 R. Seshadri and N. A. Hill, “Visualizing the role of Bi 6s “lone pairs” in the off-center distortion in ferromagnetic BiMnO3”, Chem.Mater. 13, 2892 (2001).
89 A. Moreira dos Santos, A. K. Cheetham, T. Atou, Y. Syono, Y. Yamaguchi, K. Ohoyama, and H. Chiba, “Orbital ordering as the determinant for ferromagnetism in biferroic BiMnO3”, Phys. Rev. B 66, 064425 (2002).
90 A. Moreira dos Santos, S. Parashar,A. R. Raju, Y. S. Zhao, A. K. Cheetham, and C. N. R. Rao, “Evidence for the likely occurrence of magnetoferroelectricity in the simple perovskite, BiMnO3”, Solid State Commun. 122, 49 (2002).
91 T. Kimura, S. Kawamoto, I. Yamada, M. Azuma, M. Takano, and Y. Tokura, “Magnetocapacitance effect in multiferroic BiMnO3” Phys. Rev. B 67, 180401 (2003).
92 T. Shishidou, N. Mikamo, Y.Uratani, F. Ishii, and T. Oguchi, “First-principles study on the electronic structure of bismuth transition-metal oxides”, J. Phys.: Condens. Matter 16, 5677 (2004).
93 A. Sharan, I. An, C. Chen, R. W. Collins, J. Lettieri, Y. F. Jia, D. G. Schlom, and V. Gopalan, “Large optical nonlinearities in BiMnO3 thin films”, Appl. Phys. Lett. 83, 5169 (2003).
94 A. Sharan, J. Lettieri, Y. Jia, W. Tian, X. Pan, D. G. Schlom, and V. Gopalan, “Bismuth manganite: a multiferroic with a large nonlinear optical response”, Phys. Rev. B 69, 214109 (2004).
95 A. Moreira. dos Santos, A. K. Cheetham, W. Tian, X. Pan, Y. Jia, N. J. Murphy, J. Lettieri, and D. G. Schlom, “Epitaxial growth and properties of metastable BiMnO3 thin films”, Appl. Phys. Lett. 84, 91 (2004).
96 J. Y. Son, B. G. Kim, C. H. Kim, and J. H. Cho, “Writing polarization bits on the multiferroic BiMnO3 thin film using Kelvin probe force microscope”, Appl. Phys. Lett. 84, 4971 (2004).
97 M. Gajek, M. Bibes, A. Barthélémy, K. Bouzehouane, S. Fusil, M. Varela, J. Fontcuberta, A. Fert, “Spin filtering through ferromagnetic BiMnO3 tunnel barriers”, Phys. Rev. B 72, 020406 (2005).
98 W. Eerenstein, F. D. Morrison, J. F. Scott, and N. D. Mathur,. “Growth of highly resistive BiMnO3 films”, Appl. Phys. Lett. 87, 101906 (2005).
99 Z. H. Chi, C. J. Xiao, S. M. Feng, F. Y. Li, C. Q. Jin, X. H. Wang, R. Z. Chen, and L. T. Li, “Manifestation of ferroelectromagnetism in multiferroic BiMnO3”, J. Appl. Phys. 98, 103519 (2005).
100 E. Montanari, L. Righi, G. Calestani, A. Migliori, E. Gilioli, and F. Bolzoni, “Room temperature polymorphismin metastable BiMnO3 prepared by high-pressure synthesis”, Chem. Mater. 17, 1765 (2005).
101 E. Montanari, G. Calestani, A. Migliori, M. Dapiaggi, F. Bolzoni, R. Cabassi, and E. Gilioli, “High-temperature polymorphism in metastable BiMnO3”, Chem. Mater. 17, 6457 (2005).
102 H. Yang, Z. H. Chi, F. Y. Li, C. Q. Jin, and R. C. Yu, “Ordered oxygen-deficient superlattice from electron irradiation of biferroic BiMnO3”, Phys. ReV. B 73, 024114 (2006).
103 Z. Chi, H. Yang, F. Li, R. Yu, C. Jin, X. Wang, X. Deng, and L. Li, “Superlattice induced by electron-beam irradiation in magnetic ferroelectric BiMnO3”, J. Phys.: Condens. Matter 18, 4371 (2006).
104 -H. Yang, T. Y. Koo, S.-H. Lee, C. Song, K.-B. Lee, Y. H. Jeong, “Orbital ordering and enhanced magnetic frustration of strained BiMnO3 thin films”, Europhys. Lett. 74, 348 (2006).
105 C. H. Yang, J. Koo, C. Song, T. Y. Koo, K. B. Lee, and Y. H. Jeong, “Resonant x-ray scattering study on multiferroic BiMnO3”, Phys. Rev. B 73, 224112 (2006).
106 C. P. Sun, C. C. Lin, J. L. Her, C. J. Ho, S. Taran, H. Berger, B. K. Chaudhuri, and H. D. Yang, “Field-dependent dielectric and magnetic properties in multiferroic CdCr2S4”, Phys. Rev. B 79, 214116 (2009).
107 E. Montanari,G. Calestani,L. Righi, E. Gilioli, F. Bolzoni, K. S. Knight, and P. G. Radaelli, “Structural anomalies at the magnetic transition in centrosymmetric BiMnO3”, Phys. Rev. B 75, 220101 (2007).
108 A. A. Belik, S. Iikubo, T. Yokosawa, K. Kodama, N. Igawa, S. Shamoto, M. Azuma, M. Takano, K. Kimoto, Y. Matsui, and E. Takayama-Muromachi, “Origin of the monoclinic-to-monoclinic phase transition and evidence for the centrosymmetric crystal structure of BiMnO3”, J. Am. Chem. Soc. 129, 971 (2007).
109 A. Sundaresan, R. V. K. Mangalam, A. Iyo, Y. Tanaka, and C. N. R. Rao, “Crucial role of oxygen stoichiometry in determining the structure and properties of BiMnO3”, J. Mater. Chem. 18, 2191 (2008).
110 A. A. Belik, T. Kolodiazhnyi, K. Kosuda, and E. Takayama-Muromachi, “Synthesis and properties of oxygen non-stoichiometric BiMnO3”, J. Mater. Chem. 19, 1593 (2009).
111 O. E. González-Vázquez and J. Íñiguez, “Pressure-induced structural, electronic, and magnetic effects in BiFeO3”, Phys. Rev. B 79, 064102 (2009).
112 C. F. Chang, P. H. Chou, H. L. Tsay, S. S. Weng, S. Chatterjee, H. D. Yang, R. S. Liu, C. H. Shen, and W.-H. Li, “Pressure effects on the transport and magnetic properties of La1.4Sr1.6Mn2O7”, Phys. Rev. B 58, 12224 (1998).
113 J. B. Goodenough, “Theory of the Role of Covalence in the perovskite-type manganites in [La, M(II)]MnO3”, Phys. Rev. 100, 564 (1955).
114 G. J. Hassink, Master thesis, “The properties and growth of multiferroic BiMnO3”, University of Twente, Netherlands (2004).
115 Z. H. Chi, H. Yang, S. Feng, F. Li, R. Yu, and C. Jin, “Room-temperature ferroelectric polarization in multiferroic BiMnO3”, J. Magn. Magn. Mater. 310, 358 (2007).
116 Z. H. Chi, S. J. You, L. X. Yang, L. C. Chen, C. Q. Jin, X. H. Wang, R. Z. Chen, L. T. Li, Y. C. Li, X. D. Li, and J. Liu , “Structural stability of multiferroics BiMnO3 under high pressure”, J. Electroceram., doi:10.1007/s10832-007-9306-0 (2007).
117 A. A. Belik, H. Yusa, N. Hirao, Y. Ohishi, and E. Takayama-Muromachi, “Peculiar high-pressure behavior of BiMnO3”, Inorg. Chem. 48, 1000 (2009).
118 A. A. Belik and E. Takayama-Muromachi, “Ac susceptibility studies of multiferroic BiMnO3 and solid solutions between BiMnO3 and BiScO3”, J. Phys.: Condens. Matter 20, 025211 (2008).
119 J. A. Mydosh, “Spin glasses: an experimental introduction” (Tay-lor & Francis, London, 1993).
120 A. K. Tyagi, R. Pottgen, and J. Kohler, “Preparation, crystal structure, and magnetic properties of β-Li3TiF6, = Li2[4]Li7[6](TiF6)(TiF6)2 - a double fluoride?”, Z. anorg. allg. Chem. 622, 1329 (1996).
121 A. Tyagi and J. KoNhler, “Preparation, magnetic properties and structure of β-Li3CrF6”, Mater. Res. Bull. 35,135 (2000).
122 Y. Ikedo, J. Sugiyama, H. Nozaki, H. Itahara, J. H. Brewer, E. J. Ansaldo, G. D. Morris, D. Andreica, and A. Amato, “Spatial inhomogeneity of magnetic moments in the cobalt oxide spinel Co3O4”, Phys. Rev. B 75, 054424 (2007).
123 P. Cossee and A. E. V. Arkel, “Magnetic properties of Co2+ ions in tetrahedral interstices of an oxide lattice”, J. Phys. Chem. Solids 15, 1 (1960).
124 V. N. Glazkov, G. Dhalenne, A. Revcolevschi, and A, Zheludev, “Multiple spin-flop phase diagram of BaCu2Si2O7”, J. Phys.: Condens. Matter 23, 086003 (2011).
125 J. W. Lynn, Y. Chen, S. Chang, Y. Zhao, S. Chi, W. Ratcliff, B. G. Ueland, and R. W. Erwin, “Double focusing thermal triple axis spectrometer at the NCNR”, J. Res. NIST 117, 61 (2012).
126 P. K. Jana,S. Sarkar, and B. K. Chaudhuri, “Low loss giant dielectric and electrical transport behavior of KxTiyNi1−x−yO system”, Appl. Phys. Lett. 88, 182901 (2006).
127 S. Mukherjee, P. Dasgupta, and P. K. Jana, “Size-dependent dielectric behaviour of magnetic Gd2O3 nanocrystals dispersed in a silica matrix”, J. Phys. D: Appl. Phys. 41, 215004 (2008).
128 D. P. Kozlenko, A. A. Belik, S. E. Kichanov, I. Mirebeau, D. V. Sheptyakov, Th. Strässle, O. L. Makarova, A. V. Belushkin, B. N. Savenko, and E. Takayama-Muromachi, “Competition between ferromagnetic and antiferromagnetic ground states in multiferroic BiMnO3 at high pressures”, Phys. Rev. B 82, 014401 (2010).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code