Responsive image
博碩士論文 etd-0723112-165505 詳細資訊
Title page for etd-0723112-165505
論文名稱
Title
三元超導體Bi2Rh3Se2之壓力及摻雜效應下異常相變研究
Pressure and doping effects on the anomalous phase transition in ternary superconductor Bi2Rh3Se2
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
73
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-06-10
繳交日期
Date of Submission
2012-07-23
關鍵字
Keywords
選區電子繞射、摻雜效應、壓力效應、鉍銠硒、結構相變、電荷密度波、超導
superconductivity, charge-density-wave, structural transition, Bi2Rh3Se2, pressure effect, doping effect, selected area electron diffraction
統計
Statistics
本論文已被瀏覽 5838 次,被下載 1257
The thesis/dissertation has been browsed 5838 times, has been downloaded 1257 times.
中文摘要
在2007 年於PRB(Physical Review B)上有發表關於Bi2Rh3Se2此樣品的研究,其超導轉變溫度Tc 約為0.7 K,伴隨其CDW相變轉換溫度TCDW 約為250 K,但由於此超導體並沒有明確證據250 K 是CDW相變轉換溫度。因此我們希望可以藉由高壓電阻的實驗,確認此轉換溫度是否為CDW 相變造成。我們以固態合成並燒結的方法合出Bi2Rh3Se2樣品,之後做了XRD、磁性以及比熱量測,其結果比對之前實驗得到我們樣品的品質良好。之後將樣品加壓(最高壓力~22.23 kbar),利用物理性質量測系統(PPMS)來量測電阻率。我們的壓力實驗結果顯示,250 K 的轉換溫度會隨著壓力增加而往高溫區移動。這個行為不符合傳統CDW 超導體在壓力下的物理特性。在壓力下,CDW 轉換溫度會隨著壓力增大而被壓抑並往低溫區移動,因此我們懷疑PRB 的研究結論有問題,Bi2Rh3Se2 在250 K 的轉換溫度可能來自於結構相變Ts 而非 CDW 相變TCDW。我們進一步做選區電子繞射及變溫TEM 分析,得到明顯的證據250 K 是來自於結構相變從空間群的“C1 2/m 1”(250 K 之上)轉變成“P1 2/m 1”(250 K 之下)。最後我們做Co 的摻雜效應來確定原子無序對此相變的影響,結果與施加物理壓力相反,此相變隨著摻雜愈多而愈向低溫區移動。
Abstract
Bi2Rh3Se2 have been known as a charge-density-wave (CDW) superconductor, where the superconducting critical temperature Tc and the CDW phase transition are about 0.7 K and 250 K, respectively. Since there has no definite proof that the anomaly at around 250 K comes from charge-density-wave, we wished to provide another evidence to study whether the superconductor had the properties of CDW by electric resistivity measurements applied different pressures. Bi2Rh3Se2 was prepared by using the solid state reaction method and heating in the quartz tube. After the sample was synthesized, the quality was identified by XRD, MPMS, and specific heat probe. With the confirmation of the above-mentioned measurements, we can determine the sample’s quality is good. Furthermore, temperature-dependent resistivity (2-340 K) under pressure (up to 22.23 kbar) on the ternary superconductor Bi2Rh3Se2 are
performed to study the possible coexistence of CDW and superconductivity. Interestingly, the resistive anomaly occurred at Ts~250 K, is shifted to higher temperature with increasing pressure. This experimental finding is not consistent with a traditional CDW transition. Moreover, the temperature-dependent Transmission Electron Microscopy (TEM) electron
diffraction is evident a structural phase transition from space group “C1 2/m 1” (Ts > 250 K) to “P1 2/m 1” (Ts < 250 K). Finally, We do the Co doping to make sure the effects of chemical pressure on this phase transition. The results are opposite to imposed by physical pressure that the transition is shift to lower temperature with more Co inside the sample.
目次 Table of Contents
致謝................................................................................................................I
Abstract ....................................................................................................... II
論文摘要..................................................................................................... III
目錄.............................................................................................................IV
圖目錄.........................................................................................................VI
第一章簡介...............................................................................................1
1.1 前言................................................................................................1
1.2 超導發展緣由與特性....................................................................4
1.2.1 發展緣由.............................................................................4
1.2.2 超導體特性.........................................................................4
1.3 電荷密度波特性............................................................................8
1.4 Bi2Rh3Se2 結構與特性..................................................................12
1.5 研究動機......................................................................................14
第二章實驗方法與儀器介紹 ................................................................15
2.1 樣品製作......................................................................................15
2.2 X-ray 繞射儀................................................................................15
2.3 超導量子干涉儀(SQUID)...........................................................17
2.4 電阻量測......................................................................................24
2.4.1 Closed Cycle 量測常壓之電阻.........................................24
2.4.2 以PPMS 量測之高壓電阻套件......................................25
2.5 穿透式電子顯微鏡(TEM)...........................................................29
第三章 實驗結果與分析.........................................................................31
3.1 實驗流程......................................................................................31
3.2 檢驗樣品的純度..........................................................................33
3.3 電阻的壓力效應分析..................................................................41
3.4 TEM 繞射圖分析.........................................................................47
3.5 摻雜效應分析..............................................................................52
3.5.1 XRD 量測..........................................................................52
3.5.2 磁性量測...........................................................................53
3.5.3 電阻量測...........................................................................55
第四章 討論與結論.................................................................................56
參考文獻.....................................................................................................57
參考文獻 References
[1] M. E. Fleet, “The crystal structure of parkerite (Ni3Bi2S2)”, Am. Mineral. 58, 435 (1973).
[2] W. S. Brower, H. S. Parker, and R. S. Roth, “Reexamination of synthetic parkerite and shandite”, Am. Mineral. 59, 296 (1974).
[3] T. He, Q. Huang, A. P. Ramirez, Y. Wang, K. A. Regan, N. Rogado, M. A. Hayward, M. K. Haas, J. S. Slusky, K. Inumara, H. W. Zandbergen, N. P. Ong, and R. J. Cava, “Superconductivity in the non-oxide perovskite MgCNi3”, Nature 411, 54 (2001).
[4] R. Weihrich, S.F. Matar, V. Eyert, F. Rau, M. Zabel, M. Andratschke, I. Anusca, and T. Bernert, “Structure, ordering, and bonding of half antiperovskites: PbNi3/2S and BiPd3/2S”, Prog. Solid State Chem. 35, 309 (2007).
[5] R. Weihrich, I. Anusca, and M. Zabel, “Half-Antiperovskites: Structure and type-antitype relations of shandites M3/2AS (M= Co, Ni; A= In, Sn)”, Z. Anorg. Allg. Chem. 631, 1463 (2005).
[6] R. Weihrich and I. Anusca, “Half-Antiperovskites II: On the crystal structure of Pb3Bi2S2”, Z. Anorg. Allg. Chem. 632, 335 (2006).
[7] R. Weihrich and I. Anusca, “Half-Antiperovskites III: Crystallographic and electronic structure effects in Sn2-xInxCo3S2”, Z. Anorg. Allg. Chem. 632, 1531 (2006).
[8] I. Anusca, A. Schmid, P. Peter, J. Rothballer, F. Pielnhofer, and R. Weihrich, “Half-Antiperovskites IV: Crystallographic and electronic structure investigations on A2Rh3S2 (A= In, Sn, Tl, Pb, Bi)”, Z. Anorg. Allg. Chem. 635, 2410 (2009).
[9] S. Seidlmayer, F. Bachhuber, I. Anusca, J. Rothballer, M. Brau, P. Peter, and R. Weihrich, “Half-Antiperovskites V: Systematics in ordering and group-subgroup relations for Pb2Pd3Se2, Bi2Pb3Se2, and Bi2Pd3S2”, Zeitschrift f&uuml;r Kristallographie 225, 371 (2010).
[10] T. Sakamoto, M.Wakeshima and Y. Hinatsu, “Superconductivity in ternary chalcogenides Bi2Ni3X2 (X= S, Se)”, J. Phys.: Condens. Matt. 18, 4417 (2006).
[11] T. Sakamoto, M. Wakeshima, Y. Hinatsu, and K. Matsuhira, “Transport properties in normal-metal Bi2Pd3S2 and superconducting Bi2Pd3Se2”, Phys. Rev. B 78, 024509 (2008).
[12] T. Sakamoto, M. Wakeshima, Y. Hinatsu, and K. Matsuhira, “Charge-density-wave superconductor Bi2Rh3Se2”, Phys. Rev. B 75, 060503(R) (2007).
[13] C. L. Huang, C. C. Chou, K. F. Tseng, Y. L. Huang, F. C. Hsu, K. W. Yeh, M. K. Wu, and H. D. Yang, “Pressure effects on Superconductivity and Magnetism in FeSe1-xTex”, J. Phys. Soc. Jpn. 78, 084710 (2009).
[14] V. A. Sidorov, A. V. Tsvyashchenko, and R. A. Sadykov, “Interplay between magnetism and superconductivity and the appearance of a second superconducting transition in α–FeSe at high pressure”, J. Phys.: Condens. Matt. 21, 415701 (2009).
[15] K. Karpin′ska, M. Z. Cieplak, S. Guha, A. Malinowski, T. Skos′kiewicz, W. Plesiewicz, M. Berkowski, B. Boyce, T. R. Lemberger, and P. Lindenfeld, “Metallic nonsuperconducting phase and d-Wave superconductivity in Zn-substituted La1.85Sr0.15CuO4”, Phys. Rev. Lett. 84, 155 (2000).
[16] J. Y. Lin, S. J. Chen, S. Y. Chen, C. F. Chang, S. K. Tolpygo, M. Gurvitch, Y. Y. Hsu, H. C. Hu, and H. D. Yang, “Anisotropic impurity scattering effects on Tc and Hc2 in YBa2Cu3Ox”, Phys. Rev. B 59, 6047 (1999).
[17] D. J. C. Walker, A. P. Mackenzie, and J. R. Cooper, “Transport properties of zinc-doped YBa2Cu3O7-δ thin films”, Phys. Rev. B 51, 15653 (1995).
[18] K. Mizuhashi, K. Takenaka, Y. Fukuzumi, and S. Uchida, “Effect of Zn doping on charge transport in Yba2Cu3O7-y”, Phys. Rev. B 52, R3884 (1995).
[19] G. Haran′ and A. D. S. Nagi, “Combined potential and spin impurity scattering in cuprates”, Phys. Rev. B 63, 012503 (2000).
[20] A. P. Mackenzie, R. K. W. Haselwimmer, A. W. Tyler, G. G. Lonzarich, Y. Mori, S. Nishizaki, and Y. Maeno, “Extremely strong dependence of superconductivity on disorder in Sr2RuO4”, Phys. Rev.
Lett. 80, 161 (1998).
[21] Y. J. Chen, C. J. Liu, J. S. Wang, J. Y. Lin, C. P. Sun, S. W. Huang, J. M. Lee, J. M. Chen, J. F. Lee, D. G. Liu, and H. D. Yang, “Effect of Mn impurities on the superconductivity in NaxCoO2•yH2O”, Phys. Rev. B
76, 092501 (2007).
[22] Y. K. Kou, Y. Y. chen, L. M. Wang, and H. D. Yang, “Hall coefficient studies in R5Ir4Si10 (R=Dy-Lu) near the charge-density-wave transitions”, J. Mag. Mag. Mater. 282, 338 (2004).
[23] R. N. Shelton, L. S. Hausermann-Berg, P. Klavins, H. D. Yang, M. S. Anderson, and C. A. Swenson, “Electronic phase transition and partially gapped Fermi surface in superconducting Lu5Ir4Si10”, Phys.
Rev. B 34, 4590 (1986).
[24] H. D. Yang, P. Klavins, and R. N. Shelton, “Phase transitions in the superconducting compound Lu5Rh4Si10 at ambient and high pressure”, Phys. Rev. B 43, 7676 (1991).
[25] S. Yasuzuka, K. Murata, T. Fujimoto, M. Shimotori, and K. Yamaha, “Coexistence of the upper charge-density-wave and the superconductivity in NbSe3”, J. Phys. Soc. Jpn. 74, 1782 (2005).
[26] J. J. Hamlin, D. A. Zocco, T. A. Sayles, and M. B. Maple, “Pressure-induced superconducting phase in the charge-density-wave compound terbium tritelluride”, Phys. Rev. Lett. 102, 177002 (2009).
[27] H. Taniguti, M. Kuga, H. Okamoto, H. Kaneko, and Y. Ishihara, “Pressure effect on the superconductivity and the charge-density-wave in Nb3X4 with X=S, Se, and Te”, Physica B 291, 135 (2000).
[28] C. W. Chu, V. Diatschenko, C. Y. Huang, and F. J. DiSalvo, “Pressure effect on the charge-density-wave formation in 2H-NbSe2 and correlation between structural instabilities and superconductivity in unstable solids”, Phys. Rev. B 15, 1340 (1977).
[29] H. D. Yang, P. Klavins, and R. N. Shelton, “Competition between superconductivity and charge-density waves in the pseudoternary system (Lu1-xScx)5Ir4Si10”, Phys. Rev. B 43, 7681 (1991).
[30] A. M. Gabovich and A. I. Voitenko, “Superconductors with charge- and spin-density waves: theory and experiment (Review)”, Low Temp. Phys. 26, 305 (2000).
[31] A. M. Gabovich, A. I. Voitenko, J. F. Annett, and M. Ausloos, “Charge- and spin-density-wave superconductors”, Supercond. Sci. Technol. 14, R1 (2001).
[32] A. I. Voitenko and A. M. Gabovich, “Charge density waves in d-wave superconductors”, Low Temp. Phys. 36, 1049 (2010).
[33] 楊鴻昌, “最敏感的感測元件SQUID及其前瞻性應用”, 物理雙月刊 24, 652 (2002).
[34] P. Monceau, N. P. Ong, A. M. Portis, A. Meerschaut, and J. Rouxel, “Electric field breakdown of charge-density-wave-induced anomalies in NbSe3”, Phys. Rev. Lett. 37, 602 (1976).
[35] R. Weihrich, S. F. Matar, I. Anusca, F. Pielnhofer, P. Peter, F. Bachhuber and V. Eyert, “Palladium site ordering and the occurrence of superconductivity in Bi2Pd3Se2-xSx”, J. Solid State Chem. 184, 797 (2011).
[36] T. M. McQueen, A. J. Williams, P. W. Stephens, J. Tao, Y. Zhu, V. Ksenofontov, F. Casper, C. Felser, and R. J. Cava, “Tetragonal-to-Orthorombic structural phase transition at 90 K in the superconductor Fe1.01Se”, Phys. Rev. Lett. 103, 057002 (2009).
[37] C. Ma, H. X. Yang, H. F. Tian, H. L. Shi, J. B. Lu, Z. W. Wang, L. J. Zeng, G. F. Chen, N. L. Wang, and J. Q. Li, “Microstructure and tetragonal-to-orthorhombic phase transition of AFe2As2 (A=Sr, Ca)”, Phys. Rev. B 79, 060506(R) (2009).
[38] C. M. Tseng, C. H. Chen, and H. D. Yang, “Direct observation of charge-density waves in Ho5Ir4Si10”, Phys. Rev. B 77, 155131 (2008).
[39] M. Johnsson, K. W. T&#337;rnroos, F. Mila, and P. Millet, “Tetrahedral clusters of copper (II): crystal structures and magnetic properties of Cu2Te2O5X2 (X=Cl, Br)”, Chem. Mater. 12, 2853 (2000).
[40] P. Lemmens, K. Y. Choi, E. E. Kaul, C. Geibel, K. Becker, W. Brenig, R. Valenti, C. Gros, M. Johnsson, P. Millet, and F. Mila, “Evidence for an unconventional magnetic instability in the spin-tetrahedra system Cu2Te2O5Br2”, Phys. Rev. Lett. 87, 227201 (2001).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code