Responsive image
博碩士論文 etd-0723115-031201 詳細資訊
Title page for etd-0723115-031201
論文名稱
Title
質子交換膜燃料電池變形對其效率之影響
The Effect of Deformation on the Efficiency of PEMFC
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
115
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-27
繳交日期
Date of Submission
2015-08-24
關鍵字
Keywords
流道侵入率、氣體擴散層壓縮率、電池效率、有限元素法、質子交換膜燃料電池、流道截面、螺栓鎖緊壓力
flow channel intrusion rate, gas diffusion layer compression ratio, fuel cell efficiency, finite element method, proton exchange membrane fuel cell, flow channel cross-sectional area, bolt pre-loading
統計
Statistics
本論文已被瀏覽 5673 次,被下載 901
The thesis/dissertation has been browsed 5673 times, has been downloaded 901 times.
中文摘要
現今全球皆在關注能源危機的議題,並積極的尋找、開發新興能源,其中燃料電池為眾多新興能源中,被認為極具潛力的一種。在所有燃料電池種類中,又以質子交換膜燃料電池最具商業價值,然而許多研究皆著重在以化學方式改善效率上,鮮少探討結構變形對效率的影響。
本研究主要目的是以有限元素法建立三維之完整質子交換膜燃料電池模型,探討質子交換膜燃料電池在實際操作條件下,因內部生成熱及螺栓鎖緊壓力造成之變形,進一步分析螺栓鎖緊壓力變化、流道截面設計以及流道轉角處導圓角不同設計等,對質子交換膜燃料電池結構變形以及氣體擴散層壓縮率變化和流道侵入率之影響。
研究結果顯示,質子交換膜燃料電池因螺栓鎖緊壓力產生之變形不可忽略,且流道板與氣體擴散層所受之平均等效應力會隨著鎖緊壓力上升跟著線性上升,並在流道出口或入口處產生最大等效應力;隨著螺栓鎖緊壓力上升,氣體擴散層之壓縮率也跟著非線性上升,使得質子交換膜燃料電池之效率也跟著上升,但當螺栓鎖緊壓力達7 MPa時,氣體擴散層之壓縮率超過15%,會使電池效率下降;流道侵入量會隨著螺栓鎖緊壓力上升成線性上升,當螺栓鎖緊壓力為6 MPa時,流道截面積僅剩原本之92.54%,降低電池效率。在流道截面設計部分,當螺栓鎖緊壓力為6 MPa,若將流道截面積提升27%,可使反應物質之流量提升17.42%,增加效率。
Abstract
Energy crisis is a global issue, and many countries are eager to search or develop new energy resources. Fuel cell is one potential energy resource of new energy resources. In all kinds of fuel cells, proton exchange membrane fuel cell (PEMFC) is the most profitable one. However, many researches were focus on improving efficiency through chemical reactions, and rarely discussed the effect of structural deformations on efficiency.
The purpose of this research was to build up a three dimensional and full PEMFC model through finite element method (FEM), and to investigate deformations caused by internal heat and bolt pre-loading under real operating condition. Furthermore, effects of variations of bolt pre-loadings, flow channel cross-sectional area designs and flow channel fillets on deformations of PEMFC, compression ratio of gas diffusion layers and intrusion rate of flow channels were studied.
The results showed that deformation of PEMFC caused by bolt pre-loading could not be ignored, and average equivalent stress of graphite plates and gas diffusion layers increased linearly with increasing bolt pre-loadings which generated maximum equivalent stress at inlet or outlet of flow channels. With increasing bolt pre-loadings, compression ratio of gas diffusion layer increased linearly, and thus increased the efficiency of PEMFC. However, when bolt pre-loading reached 7 MPa, compression ratio of gas diffusion layer exceeded 15% and degraded the efficiency. The intrusion rate of flow channels increased non-linearly with increasing bolt pre-loading. When bolt pre-loading was 6 MPa, the cross-sectional area of flow channels was 92.54% of its original state and decreased the efficiency. In part of flow channel cross-sectional area designs, when bolt pre-loading was 6 MPa and if cross-sectional area increased 27%, the flow rate of reactants could be promoted 17.42%, and the fuel cell efficiency can be improved also.
目次 Table of Contents
誌 謝 i
摘 要 ii
Abstract iii
目 錄 iv
表目錄 vii
圖目錄 ix
第一章 緒論 1
1.1 前言 1
1.2 燃料電池簡介 2
1.3 文獻回顧 4
1.3.1 質子交換膜燃料電池操作溫度之模擬 4
1.3.2 組裝壓力對質子交換膜燃料電池效率之影響 5
1.3.3 質子交換膜燃料電池濕-熱應力之模擬 7
1.3.4 流道板設計對質子交換膜燃料電池之影響 7
1.4 研究動機與目的 8
1.5 全文架構 9
第二章 基礎理論簡介 21
2.1 有限元素法簡介 21
2.2 套裝軟體ANSYS 15.0/Workbench簡介 22
2.2.1 大/小變形理論 24
2.2.2 螺栓預緊力(Bolt Pretension) 24
2.3 基礎熱傳原理 24
2.3.1 熱傳導 25
2.3.2 熱對流 25
2.3.3 熱輻射 26
2.4 基礎熱變形原理 27
第三章 研究方法 35
3.1 研究流程 35
3.2 基本假設 36
3.3模型之建立與設定 36
3.3.1 模型材料與元素選用 36
3.3.2 模型結構與尺寸 37
3.3.3 材料參數 37
3.3.4 網格劃分方式 38
3.3.5 邊界條件、負載設定及接觸形式 38
3.3.6 收斂性分析 39
3.3.6.1 網格收斂性分析 39
3.3.6.2 溫度求解步階收斂性分析 40
3.3.6.3 螺栓鎖緊壓力求解步階數與時間收斂性分析 40
3.4 忽略反應物質輸入溫度對電池溫度分布影響之驗證 41
3.4.1簡化模型建立與反應物質在高流量時之溫度分布模擬驗證 41
3.4.2 利用Fluent 15.0比較低流量與無流量時之溫度分布差異 42
3.4.3 比較ANSYS模擬電池溫度分布與Fluent 15.0之差異 43
第四章 結果與討論 54
4.1 螺栓鎖緊壓力對燃料電池效率之影響 54
4.1.1 螺栓鎖緊壓力對氣體擴散層壓縮率之影響 56
4.1.2 螺栓鎖緊壓力對流道侵入率之影響 56
4.2 流道截面設計對燃料電池效率之影響 58
4.2.1 流道截面設計對氣體擴散層壓縮率之影響 59
4.2.2 流道截面設計對流道侵入率之影響 59
4.3 流道轉角處導圓角對燃料電池效率之影響 61
4.3.1 流道轉角處導圓角對氣體擴散層壓縮率之影響 62
4.3.2 流道轉角處導圓角對流道侵入率之影響 63
第五章 結論與未來展望 97
5.1 結論 97
5.2 未來展望 98
參考文獻 99
參考文獻 References
[1] 衣寶廉,燃料電池-原理與應用,五南圖書股份有限公司,台北,台灣,2005。
[2] 楊志忠、林頌恩、韋文誠,“燃料電池的發展現況”,科學發展月刊,第367期,第30-33頁,2003。
[3] 黃鎮江,燃料電池,全華圖書股份有限公司,台北,台灣,2007。
[4] L. Akyalcm and S. Kaytakoglu, “Optimization of structural combinations on the performance of a PEMFC's MEA”, Journal of Power Sources, Vol. 180, pp. 767-771, 2008.
[5] A. Perna, S.P. Cicconardi and R. Cozzolino, “Performance evaluation of a fuel processing system based on membrane reactors technology integrated with a PEMFC stack”, International Journal of Hydrogen Energy, Vol. 36, pp. 9906-9915, 2011.
[6] R. Rego, M.C. Oliveira, F. Alcaide and G. Alvarez, “Development of a carbon paper-supported Pd catalyst for PEMFC application”, International Journal of Hydrogen Energy, Vol. 37, pp. 7192-7199, 2011.
[7] S.J. Wang, Y.F. Zhang, D. Shu, S.H. Tian, D.H. Mei, M. Xiao and Y.Z. Meng, “Portable PEMFC stack using sulfonated poly (fluorenyl ether ketone) ionomer as membrane”, International Journal of Hydrogen Energy, Vol. 37, pp. 4539-4544, 2011.
[8] S. Sharma and B.G. Pollet, “Support materials for PEMFC and DMFC electrocatalysts—A review”, Journal of Power Sources, Vol. 208, pp. 96-119, 2012.
[9] J.J. Hwang, “Thermal control and performance assessment of a proton exchanger membrane fuel cell generator”, Applied Energy, Vol. 108, pp. 184-193, 2013.
[10] V.S. Velan, G. Velayutham, N. Rajalakshmi and K.S. Dhathathreyan, “Influence of compressive stress on the pore structure of carbon cloth based gas diffusion layer investigated by capillary flow porometry”, International Journal of Hydrogen Energy, Vol. 39, pp. 1752-1759, 2013.
[11] A. Amirfazli, S. Asghari and M. Koosha, “Mathematical modeling and simulation of thermal management in polymer electrolyte membrane fuel cell stacks”, Journal of Power Sources, Vol. 268, pp. 533-545, 2014.
[12] C.H. Tsai, C.C. Wang, C.Y. Chang, C.H. Lin and Y.W. Chen-Yang, “Enhancing performance of Nafion®-based PEMFC by 1-D channel metal-organic frameworks as PEM filler”, International Journal of Hydrogen Energy, Vol. 39, pp.15696-15705, 2014.
[13] S.S. Park, Y. Jeon, T. Kim, J.I. Park and T.G. Shul, “Enhancement of electrochemical properties through high-temperature treatment of CNF grown on ACF support for PEMFC”, Electrochimica Acta, Vol.134, pp.49-54,2014.
[14] FuelCellStore, http://fuelcellstore.com, 2014/12/06.
[15] M. Matian, A. Marquis, D. Brett and N. Brandon, “An experimentally validated heat transfer model for thermal management design in polymer electrolyte membrane fuel cells”, Journal of Power and Energy, Vol. 224, pp. 1069-1081, 2010.
[16] M. Matian, A. Marquis and N.P. Brandon, “Application of thermal imaging to validate a heat transfer model for polymer electrolyte fuel cells”, International Journal of Hydrogen Energy, Vol. 35, pp. 12308-12316, 2010.
[17] J. Ge, A. Higier and H. Liu, “Effect of gas diffusion layer compression on PEM fuel cell performance”, Journal of Power Sources, Vol. 159, pp. 922-927, 2005.
[18] P. Zhou, C.W. Wu and G.J. Ma, “Influence of clamping force on the performance of PEMFCs”, Journal of Power Sources, Vol. 163, pp.874-881, 2006.
[19] J.H. Lin, W.H. Chen, C.J. Su and T.H. Ko, “Effect of gas diffusion layer compression on the performance in a proton exchange membrane fuel cell”, Fuel, Vol. 87, pp. 2420-2424, 2007.
[20] P. Zhou and C.W. Wu, “Numerical study on the compression effect of gas diffusion layer on PEMFC performance”, Journal of Power Sources, Vol. 170, pp. 93-100, 2007.
[21] S. Al-Baghdadi, “A CFD study of hygro–thermal stresses distribution in PEM fuel cell during regular cell operation”, Renewable Energy, Vol. 34, pp. 674-682, 2007.
[22] S.G. Kandlikar, Z. Lu, T.Y. Lin, D. Cooke and M. Diano, “Uneven gas diffusion layer intrusion in gas channel arrays of proton exchange membrane fuel cell and its effects on flow distribution”, Journal of Power Sources, Vol. 194, pp. 328-337, 2009.
[23] H. Mehboob, P.M. Kyun, K. An-Soo, B.A. Zai and R. Ali, “Analysis of the Clamping Pressure Effect in PEM Fuel Cell Structure by FEM and Experiment”, Third European fuel cell technology & application Piero Lunghi Conference, Rome, Italy, pp. 95, 2009.
[24] A. Bates, S. Mukherjee, S. Hwang, S.C. Lee, O. Kwan, G.H. Choi and S. Park, “Simulation and experimental analysis of the clamping pressure distribution in a PEM fuel cell stack”, International Journal of Hydrogen Energy, Vol. 38, pp. 6481-6493, 2013.
[25] Y. Tang, M. H. Santare, A. M. Karlsson, S. Cleghorn and W. B. Johnson, “Stresses in Proton Exchange Membranes Due to Hygro-Thermal Loading”, Journal of Fuel Cell Science and Technology, Vol. 3, pp. 119-124, 2006.
[26] S. Al-Baghdadi and S. Al-Janabi, “Effect of operating parameters on the hygro–thermal stresses in proton exchange membranes of fuel cells”, International Journal of Hydrogen Energy, Vol. 32, pp. 4510-4522, 2006.
[27] P. T. Nguyen, T. Berning and N. Djilali, “Computational model of a PEM fuel cell with serpentine gas flow channels”, Journal of Power Sources, Vol. 130, pp. 149-157, 2003.
[28] A.P. Manso, F.F. Marzo, M. G. Mujika, J. Barranco and A. Lorenzo, “Numerical analysis of the influence of the channel cross-section aspect ratio on the performance of a PEM fuel cell with serpentine flow field design”, International Journal of Hydrogen Energy, Vol. 36, pp. 6795-6808, 2011.
[29] S. Shimpalee, V. Lilavivat, J.W. V. Zee, H. McCrabb and A. Lozano-Morales, “Understanding the effect of channel tolerances on performance of PEMFCs”, International Journal of Hydrogen Energy, Vol. 36, pp. 12512-12523, 2011.
[30] S. Ravishankar and K. A. Prakash, “Numerical studies on thermal performance of novel cooling plate designs in polymer electrolyte membrane fuel cell stacks”, Applied Thermal Engineering, Vol. 66, pp. 239-251, 2014.
[31] T. R. Chandrupatla and A. D. Belegundu, Introduction to Finite Elements in Engineering, Pearson, England, 2012.
[32] ANSYS 15.0 Help, 2013.
[33] F. Kreith, R. M. Manglik and M. S. Bohn, Principles of Heat Transfer, Cengage Learning, USA, 2011.
[34] R.C. Hibbeler, Mechanics of materials, Pearson, USA, 2008.
[35] R.G. Budynas and J.K. Nisbett, Shigley's mechanical engineering design, McGraw-Hill, USA, 2011.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code