Responsive image
博碩士論文 etd-0723116-103737 詳細資訊
Title page for etd-0723116-103737
論文名稱
Title
台灣海峽及南海交界區域長程傳輸之細懸浮微粒時空分佈、指紋特徵及污染源解析
Spatiotemporal Variation, Chemical Fingerprint, and Source Identification of Atmospheric Fine Particles Long-range Transported toward the Intersectional Region of Taiwan Strait and South China Sea
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
166
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-06-16
繳交日期
Date of Submission
2016-08-23
關鍵字
Keywords
台灣海峽及南海交界區域、海洋細懸浮微粒、化學指紋特徵、境外傳輸、污染源解析、相關性分析
correlation analysis, Intersectional region of Taiwan Strait and South China Sea, marine fine particles, cross-boundary transport, chemical fingerprint, source identification
統計
Statistics
本論文已被瀏覽 5701 次,被下載 28
The thesis/dissertation has been browsed 5701 times, has been downloaded 28 times.
中文摘要
台灣海峽兩岸空氣品質的惡化(如:中國大陸灰霾、亞洲沙塵暴及中南半島生質燃燒),與工業污染排放、自然揚沙及農廢燃燒具有高度的相關性。在特定氣象條件下,從上述污染源所排放的空氣污染物被吹向下風處的國家或地區,造成空氣品質劣化。過去文獻指出,東北季風會將中國華北地區發生的灰霾吹向華中、華南地區及台灣,甚至遠至南海北部的東沙群島。因此,位於下風處的台灣海峽南部及南海北部交界區域,是我國研究境外傳輸現象重要的空氣品質監測區域。
本研究於2015年夏季至2016年春季期間,於台灣海峽南部及南海北部交界區域,設置二處PM2.5採樣站,分別架設於澎湖群島(PH)及東沙群島(DS),PM2.5的採樣均為同步採樣,每個季節採樣時間為連續14天,每天進行24小時的連續採樣。細懸浮微粒採樣器為BGI-PQ200型之PM2.5採樣器,樣品採集後經由密閉封存後,攜回實驗室進行物化特徵分析,包括質量濃度、水溶性離子成份、金屬元素成份、碳成份及脫水醣成份,並以主成份分析法(PCA)及化學質量平衡受體模式(CMB),針對污染源種類及貢獻率加以解析及探討。
本研究採樣結果顯示,台灣海峽南部及南海北部交界區域PM2.5濃度空間分佈大致呈現北高南低的趨勢,夏季採樣期間澎湖群島及東沙群島PM2.5濃度均為四個季節中最低,自秋季起PM2.5濃度逐漸上升,推測主要受到東北季風影響,北方的人為污染物南下經由台灣海峽而到達澎湖群島,甚至影響到東沙群島。夏季期間來自南方的海上氣團明顯較秋、冬、春季來自的北方的氣團更為乾淨。
由化學指紋特徵結果顯示,PM2.5的水溶性離子成份除Cl-及Na+海鹽成份外,以SO42-、NO3-及NH4+所組成的二次無機性氣膠(SIAs)為主要物種,約佔水溶性離子成份的50~70%之間。金屬元素成份以Mg、K、Ca、Fe、Al為主要物種,自秋季起來自工業污染源的人為金屬元素(如:V、Cr、Mn、Ni、As、Cd、Pb)有顯著的上升趨勢。碳成份中於不同季節均以有機碳(OC)為主要物種,OC/EC比值自東北季風盛行期間起亦呈現上升趨勢。脫水醣濃度趨勢呈現冬、春季大於夏、秋季的現象,顯示冬、春季節受到生質燃燒的影響較為嚴重。
由成對T檢定相關性結果顯示,澎湖群島及東沙群島全年PM2.5濃度及化學成份p value分別為0.001及0.004,顯示採樣期間整年度有良好的相關性,而採樣期間各季節的PM2.5濃度及化學成份相關性結果,除春季採樣期間不具相關性外,夏、秋及冬季的PM2.5濃度及化學成份均有高度的相關性,原因為春季採樣期間兩站污染傳輸路徑較不相似。而兩站不同傳輸路徑PM2.5濃度相關性為南方傳輸型>北方傳輸型,化學成份相關性為北方傳輸型>南方傳輸型,且南方傳輸型不具相關性,顯示兩站南方傳輸型的路徑較不一致。
由污染源種類及貢獻率解析結果顯示,澎湖群島及東沙群島均以海鹽飛沫、逸散揚塵、燃油鍋爐、交通運輸及二次衍生性氣膠為主要污染源。自秋季起,污染源種類逐漸增多及貢獻量亦逐漸上升,且以人為污染源較多,包括石化業、鋼鐵業及生質燃燒等,其中秋季工業型污染源(如:焚化燃燒、石化業、鋼鐵業及水泥業)較夏季工業型污染源多了一倍。而冬、春季採樣期間,澎湖群島及東沙群島受生質燃燒污染的影響,則有不同的季節趨勢,澎湖群島為春季>冬季,東沙群島則為冬季>春季,推測兩處的生質燃燒來源不盡相同。整體而言,澎湖群島四季境外傳輸比例介於28.4~61.0%之間,而東沙群島四季境外傳輸比例介於36.4%~76.8%之間,顯示兩處均明顯受到境外傳輸污染的影響,其中東沙群島的境外傳輸污染比澎湖群島更高。
Abstract
The deterioration of ambient air quality across the Taiwan strait, including Chinese haze, Asian duststorms and Indochina biomass burning, is highly correlated with industrial emissions, natural soil weathering and swidden agriculture. Under certain meteorological conditions, air pollutants could be blown to the downwind countries/regions and cause poor ambient air quality. Previous literature reported that the northern prevailing winds commonly blow the haze originated from northern China to central and southern China, Taiwan, and even Dongsha Islands. Therefore, the intersectional region of Taiwan Strait and South China Sea is an important air quality monitoring site for long-range transportation.
This study selected two PM2.5 sampling sites (i.e. Penghu Islands and Dongsha Islands) located at the intersectional region of Taiwan Strait and South China Sea. Twenty-four hour sampling of PM2.5 was simultaneously collected at Penghu Islands and Dongsha Islands for continuous 14 days in four seasons from summer 2015 to spring 2016. PM2.5 samples were simultaneously collected with BGI-PQ200. After sampling, PM2.5 samples were carried back to the laboratory for conditioning, weighing, and chemical analysis. The chemical composition of PM2.5 including water-soluble ionic species, metallic elements, carbonaceous contents, and anhydrosugar. Moreover, the potential sources of PM2.5 and their contribution were further identified by principal component analysis (PCA) and chemical mass balance (CMB) receptor model.
Field sampling results indicated that the spatial distribution of PM2.5 concentration increased from south to north. The lowest seasonal averaged PM2.5 concentrations were observed in summer at both Penghu Islands and Dongsha Islands. PM2.5 concentrations increased gradually since fall, which might be influenced by the northeastern monsoons since air masses could be transported from the north toward Penghu Islands and Dongsha Islands. Air masses blown from South China Sea in summer were much cleaner than those blown from the north in fall, winter, and spring.
Chemical analysis results showed that the most abundant water-soluble ionic species of PM2.5 were secondary inorganic aerosols (SIAs) including SO42-, NO3-, and NH4+ which accounted for 50~70% of water-soluble ions (WSIs). The most abundant metallic elements of PM2.5 were crustal elements (Mg, K, Ca, Fe, and Al), while anthropogenic elements (V, Cr, Mn, Ni, As, Cd, and Pb) concentration increased since fall. Organic carbon (OC) was the main species in all seasons, and OC/EC ratios increased during the northeastern monsoon periods. The levoglucosan concentrations in summer and fall were commonly lower than those in winter and spring, showing that PM2.5 concentrations were highly influenced by biomass burning in winter and spring.
Correlation analysis results obtained from paired t test showed that the p values of PM2.5 concentration and chemical composition were 0.001 and 0.004, respectively, between two subtropic islands, showing that they had high correlation. In addition to spring, both PM2.5 concentration and chemical composition had high correlation in summer, fall, and winter, because the transportation routes toward these two Islands were not similar in spring. The correlation of PM2.5 concentration for different routes showed that the southern routes were generally lower than the northern routes. Oppositely, the correlation of chemical composition for different routes showed that the northern routes were higher than the southern routes and the southern routes was not correlated, showing that the transportation routes were different toward the two Islands for the southern routes.
Results from PCA and CMB receptor modeling showed that major sources of PM2.5 concentrations were at Penghu Islands and Dongsha Islands were sea salts, soil dusts, fuel burning, mobile sources, and secondary aerosols. Since fall, both pollutant sources and their contributions increased, especially for anthropogenic sources including petrochemical plants, steel plants, biomass burning and etc. The contributions of industrial sources (e.g. incinerators, petrochemical, steel, and cement industries) increased almost twice from summer to fall. In winter and spring, biomass burning caused different seasonal trends between Penghu Islands and Dongsha Islands. Levoglucosan concentrations in spring were higher than those in winter at Penghu Islands, while levoglucosan concentrations in winter were higher than those in spring at Dongsha islands, showing that the sources of biomass burning might be different at Penghu Islands and Dongsha Islands. Overall, cross-boundary transport accounted for 28.4~61.0% at Penghu Islands and 36.4~76.8% at Dongsha Islands, respectively, showing that both islands were highly influenced by the cross-boundary transport, especially at Dongsha Islands.
目次 Table of Contents
目 錄
學位論文審定書…………………………………………………………………i
誌謝………………………………………………………………………………ii
中文摘要…………………………………………………………………………iii
英文摘要…………………………………………………………………………v
目錄……………………………………………………………………..………. ix
表目錄…………………………………………………………………..………..xii
圖目錄………………………………………………………………..…..………xiv
第一章 前言…......……………………………………………………………...1
1-1 研究緣起………………………………………………………………... 1
1-2 研究目的………………………………………………………………... 1
1-3 研究範圍與架構………………………………………………………... 2
第二章 文獻回顧…..…………………………………………………………… 4
2-1台灣海峽南部與南海交界區域環境概況……………………………… 4
2-1-1 澎湖群島………………………………………….……………….. 4
2-1-2 東沙群島…………………………………………………………... 8
2-2 懸浮微粒特性…………………………………………………………... 10
2-2-1 懸浮微粒形成機制………………………………………………... 13
2-2-2 懸浮微粒濃度之季節變化趨勢……………….………………….. 14
2-3 懸浮微粒化學特性…………………………………..…………………. 16
2-3-1 水溶性離子成份…………………………...…………...…………. 16
2-3-2 金屬元素成份……………………………………………………... 18
2-3-3 碳成份…………………………………………………..…………. 20
2-3-4 脫水醣成份………………………………………………………... 22
2-4 鄰海地區懸浮微粒相關研究………………………………...………… 24
2-5 污染源解析模式之應用………………………………………………... 26
2-5-1 富集因子…………………………………...…………...…………. 26
2-5-2 主成份分析………………………………………………………... 27
2-5-3 化學質量平衡受體模式………………………………..…………. 28
2-5-4 逆軌跡模式………………………………………………………... 29
第三章 研究方法…………………………………………………………..…… 31
3-1 採樣規劃……………………...………………………………………… 31
3-1-1 採樣地點規劃…………………………………….……………….. 31
3-1-2 採樣時間規劃…………………………………….……………….. 32
3-2 細懸浮微粒採樣方法與原理…………………………………………... 33
3-2-1細懸浮微粒採樣器……………………...…………………………. 33
3-2-2 細懸浮微粒採樣方法及步驟……………………………………... 34
3-3 細懸浮微粒質量濃度量測及化學成份分析方法……………………... 35
3-3-1 質量濃度量測方法………………………………………………..... 35
3-3-2 水溶性離子成份分析方法………………………………………... 36
3-3-3 金屬元素成份分析方法…………………………………………... 37
3-3-4 碳成份分析方法…………………………………………………... 39
3-3-5 脫水醣成份分析方法……………………………………………... 40
3-4 品保與品管……………………………………………………………... 42
3-4-1 採樣方法之品保與品管……………………………………….…... 42
3-4-2 分析方法之品保與品管……………………………………….…... 43
3-5 大氣懸浮微粒之污染源解析….……………………………………….. 44
3-5-1 富集因子分析法..…………………………………………………. 44
3-5-2 主成份分析法………..………………………………………….…. 45
3-5-3 化學質量平衡受體模式………………………………………….... 46
3-5-4 逆軌跡模式……………………………………………………….... 47
第四章 結果與討論………………………………………………................48
4-1台灣海峽南部與南海北部區域氣象條件分析….……………………... 48
4-1-1大氣溫度……………………………………………………………. 48
4-1-2相對濕度……………………………………………………………. 48
4-1-3降雨量………………………………………………………………. 49
4-2細懸浮微粒濃度時空變化趨勢分析…………………………………… 50
4-2-1細懸浮微粒濃度季節變化趨勢……....…………………………… ........50
4-2-2不同傳輸路徑細懸浮微粒濃度之差異分析………………………. 53
4-3 細懸浮微粒化學成份分析…………………………………………….. 62
4-3-1 水溶性離子成份季節變化趨勢分析…………...….……………... 62
4-3-2 金屬元素成份季節變化趨勢分析………………………………... 72
4-3-3 碳成份季節變化趨勢分析……………………………………….... 78
4-3-4 脫水醣成份季節變化趨勢分析………………………………….... 82
4-3-5 不同傳輸路徑化學成份之差異分析……………………………... 87
4-4 澎湖群島及東沙群島細懸浮微粒相關性分析………………………... 89
4-4-1 不同季節PM2.5質量濃度及化學成份之相關性分析……………. 89
4-4-2 不同傳輸路徑PM2.5質量濃度及化學成份之相關性分析………. 94
4-5 細懸浮微粒污染源解析…………………………………………….….. 95
4-5-1 富集因子解析結果……………………………………………….... 95
4-5-2 主成份分析結果…………………………………………………... 96
4-5-3 化學質量平衡受體模式解析結果………………………………... 99
第五章 結論與建議…………………………………………………………….. 110
5-1 結論……………………………………………………………………. 110
5-2 建議……………………………………………………………………. 113
參考文獻…………………………………………………………………………114
附錄A 分析物種之檢量線………………………………………………….… 123
附錄B 分析方法之品保品管數據…………………………………….……… 133
附錄C 相關性分析之四季矩陣數據………………………………………... 141

表目錄
表2-1 澎湖地區人口統計表(2015年)…….…………………………………... 5
表2-2 澎湖地區氣候資料彙整表(2015年)…………….……….......................6
表2-3 澎湖地區歷年空氣品質彙整表(2011-2015年).......…………………….7
表2-4 東沙地區氣候資料彙整表……………………………………………… 9
表2-5 國際各國及組織PM2.5法規標準………………………..………………12
表2-6 大氣懸浮微粒粒徑分類表……………………………………………… 12
表2-7 不同生質燃燒源的levoglucosan、mannson及galactosan濃度彙整表24
表3-1 採樣站位置、經緯度及高程彙整圖…………………………………….31
表3-2 細懸浮微粒採樣時間規劃表…………………………………………… 32
表3-3 元素分析儀操作參數一覽表…………………………………………… 40
表3-4 ICS-5000+型高效能離子層析儀操作參數一覽表……….................41
表4-1 採樣期間季節平均溫度彙整表………………………………………….48
表4-2 採樣期間季節平均相對溼度彙整表…………………………………….49
表4-3 採樣期間季節平均降雨量彙整表……………………………………….50
表4-4 採樣期間不同採樣點PM2.5濃度彙整表…………………………..…..53
表4-5 澎湖群島不同傳輸路徑PM2.5濃度彙整表……………....……………..59
表4-5 不同傳輸路徑PM2.5濃度彙整表………………………………………..59
表4-6 東沙群島不同傳輸路徑PM2.5濃度彙整表……………..………………61
表4-7 夏季採樣期間PM2.5中水溶性離子濃度彙整表………………………..64
表4-8 秋季採樣期間PM2.5中水溶性離子濃度彙整表………………………..64
表4-9 冬季採樣期間PM2.5中水溶性離子濃度彙整表………………………..65
表4-10春季採樣期間PM2.5中水溶性離子濃度彙整表……………………… 65
表4-11 不同季節之二次無機性氣膠(SIAs)彙整表………………...………… 67
表4-12 不同季節細懸浮微粒之氯損失彙整表…………………….…………. 68
表4-13 不同季節之硫氧化率及氮氧化率彙整表……………………………. 71
表4-14 不同季節PM2.5中地殼元素濃度彙整表……………………...……….74
表4-15 夏季採樣期間PM2.5中金屬元素濃度彙整表…………………………75
表4-16 秋季採樣期間PM2.5中金屬元素濃度彙整表………………….……..75
表4-17 冬季採樣期間PM2.5中金屬元素濃度彙整表…………………….…..76
表4-18 春季採樣期間PM2.5中金屬元素濃度彙整表…………………..……..76
表4-19 採樣期間PM2.5中碳成份濃度彙整表………………………..………..81
表4-20 採樣期間PM2.5中脫水醣成份濃度彙整表…………………..………..84
表4-21 不同海島地區左旋葡萄糖濃度比較表……………………………….. 86
表4-22 不同季節及傳輸路徑的PM2.5濃度及化學成份p value彙整表………95
表4-23 夏季採樣期間主成份分析彙整表…………………………………….. 102
表4-24 秋季採樣期間主成份分析彙整表…………………………………….. 102
表4-25 冬季採樣期間主成份分析彙整表…………………………………….. 103
表4-26 春季採樣期間主成份分析彙整表…………………………………….. 103
表4-27 受體模式解析之PM2.5指紋資料庫彙整表…………………..……….105
表4-28 澎湖群島及東沙群島夏季採樣期間污染源解析結果……………….. 106
表4-29 澎湖群島及東沙群島秋季採樣期間污染源解析結果……………….. 106
表4-30 澎湖群島及東沙群島冬季採樣期間污染源解析結果……………….. 107
表4-31 澎湖群島及東沙群島春季採樣期間污染源解析結果……………….. 107

圖目錄
圖 1-1 研究架構流程圖………………………………………………………... 3
圖 2-1 澎湖群島地理位置圖…………………………………………………... 4
圖 2-2 澎湖地區四季風玫圖(2015年)………………………………………… 7
圖 2-3 澎湖地區歷年PM2.5濃度逐月變化趨勢圖…………………………….8
圖 2-4 東沙地區四季風玫圖(2015年)………………………………………… 10
圖 2-5 東沙地區PM2.5濃度逐月變化趨勢圖…………………....................11
圖 2-6 大氣懸浮微粒粒徑分佈圖…………………………...………………… 12
圖 2-7 Chuncheon市及Yeongwol郡的PM2.5季節濃度變化趨勢圖…..….…16
圖 2-8 上海市2011-2013年PM2.5濃度逐月變化趨勢圖……………………..16
圖 2-9 西安市冬季PM1及SO42-質量濃度逐日變化趨勢圖………………….17
圖 2-10 PM2.5及水溶性離子年平均濃度分佈圖…………...…..…….……..18
圖 2-11 新德里地區夏季及冬季碳成份12小時濃度圖……………………… 22
圖 2-12 橡木及黃松木在燃燒及悶燒下脫水醣類濃度比值圖…………..…...23
圖 3-1 南海及台灣海峽交界海域細懸浮微粒採樣站位置圖…….………….. 32
圖 3-2 PM2.5採樣器及微粒分徑器組合圖………………………………….. 33
圖 3-3 微粒分徑器氣流流路示意圖………………………………………….. 34
圖 3-4 微量分析天平………………………………………………………….. 36
圖 3-5 DX-120型離子層析儀(IC)………………………..………………….. 37
圖 3-6 ICS-1100型高效能離子層析儀(HPIC)………………………….…… 37
圖 3-7 感應耦合電漿原子發射光譜儀(ICP-AES)……..……………………...38
圖 3-8 元素分析儀(EA)………………………………………………………... 39
圖 3-9 ICS-5000+型高效能離子層析儀(HPIC)……………..……………….41
圖 4-1 澎湖群島採樣期間PM2.5濃度分佈圖…………….………………….. 52
圖 4-2 東沙群島採樣期間PM2.5濃度分佈圖………………………………….52
圖 4-3 不同季節PM2.5質量濃度之時間序列圖……………………………… 53
圖 4-4 澎湖群島四季採樣期間正向軌跡路徑圖…………...………………… 54
圖 4-5 澎湖群島夏、秋季採樣期間逆軌跡圖……………………………….. 55
圖 4-6 澎湖群島冬、春季採樣期間逆軌跡圖…………………………………56
圖 4-7 東沙群島夏、秋季採樣期間逆軌跡圖…………………………………57
圖 4-8 東沙群島冬、春季採樣期間逆軌跡圖…………………………………58
圖 4-9 澎湖群島不同類型之傳輸路徑圖……………………………………... 59
圖 4-10澎湖群島不同傳輸路徑之PM2.5濃度圖……………………………. 59
圖 4-11 東沙群島不同類型之傳輸路徑圖………………………………….... 60
圖 4-12 東沙群島不同傳輸路徑之PM2.5濃度圖……………………………..61
圖 4-13 不同季節PM2.5中水溶性離子濃度分佈圖……..………...…………66
圖 4-14 不同季節細懸浮微粒氯損失及氯鈉比比較圖……..………………...68
圖 4-15 PM2.5中[NH4+]及[nss-SO42-]+[NO3-]之關係圖………….………69
圖 4-16 採樣期間澎湖群島不同季節之硫氧化率(SOR)變化趨勢圖..……… 71
圖 4-17 採樣期間澎湖群島不同季節之氮氧化率(NOR)變化趨勢圖…..…... 72
圖 4-18不同採樣季節PM2.5之金屬元素濃度分佈圖……….………………..77
圖 4-19 採樣期間澎湖群島碳成份濃度季節變化圖…………………..…….. 80
圖 4-20 採樣期間東沙群島碳成份濃度季節變化圖……………………..….. 80
圖 4-21 OC與EC之相關趨勢及最小OC/EC值………………..…………….. 82
圖 4-22 OC與O3之相關趨勢圖……………..………………………………… 82
圖 4-23 採樣期間脫水醣成份濃度季節變化趨勢圖….…………..…………..83
圖 4-24 澎湖群島鉀離子與左旋葡萄糖之時間序列圖………………………. 85
圖 4-25 東沙群島鉀離子與左旋葡萄糖之時間序列圖………………………. 86
圖 4-26 澎湖群島及東沙群島鉀離子與左旋葡萄糖之相關性………………. 86
圖 4-27 澎湖群島不同污染氣團傳輸路徑圖…………………………………. 87
圖 4-28 東沙群島不同污染氣團傳輸路徑圖…………………………………. 87
圖 4-29 澎湖群島不同傳輸路徑之水溶性離子濃度分佈圖……………….… 90
圖 4-30 東沙群島不同傳輸路徑之水溶性離子濃度分佈圖……………….… 90
圖 4-31 澎湖群島不同傳輸路徑之金屬元素濃度分佈圖……………………. 91
圖 4-32 東沙群島不同傳輸路徑之金屬元素濃度分佈圖……………………. 91
圖 4-33 澎湖群島不同傳輸路徑之碳成份濃度分佈圖………………………. 92
圖 4-34 東沙群島不同傳輸路徑之碳成份濃度分佈圖………………………. 92
圖 4-35 澎湖群島不同傳輸路徑之左旋葡萄糖濃度分佈圖………………… 92
圖 4-36 東沙群島不同傳輸路徑之左旋葡萄糖濃度分佈圖………………… 93
圖 4-37 不同季節以Fe為參考元素之富集因子圖…………………..………. 101
圖 4-38 東沙群島不同季節PM2.5污染源種類及貢獻率圖…………..………108
圖 4-39 澎湖群島不同季節PM2.5污染源種類及貢獻率圖……………..……108
圖 4-40 東沙群島不同季節PM2.5境外傳輸比例圖…………..………………109
圖 4-41 澎湖群島不同季節PM2.5境外傳輸比例圖………………..…………109
參考文獻 References
Ackermann-librich, U., Leuwenberger, P., Schwartz, J., Schindler, C., and SAPALDIA-team, “Lung function and long term exposure to air pollutants in Switzerland,” Journal of Respiratory and Critical Care Medicine, 155, 122-129, 1997.
Ali, K., Trivedi, D.K., and Sahu, S., “Physico-chemical characterization of total suspended particulate,” Atmospheric Environment, 122, 531-540, 2015.
matter over two coastal stations of Antarctica and adjoining ocean
Appel, B.R., Hoffer, E.M., Kothny, E.L., Wall, S.M., Haik, M., and Knights, R.L., “Analysis of carbonaceous material in southern California atmospheric aerosols,” Environmental Science and Technology, 13, 98-104, 1979.
Balasubramanian, R., Victor, T., and Begum. R., “Impact of biomass burning on rainwater acidity and composition in Singapore,” Journal of Geophysical Research, 104(D21), 26881, 1999.
Cao, G.L., Zhang, X.Y., Gong, S.L., and Zheng, F.C., “Investigation on emission factors of particulate matter and gaseous pollutants from crop residue burning.” Journal of Environmental Sciences, 20(1), 50-55, 2008.
Cao, J.J, Shen, Z., Chow, J C., Qi, G., and Watson, J G., “Seasonal variations and sources of mass and chemical composition for PM10 aerosol in Hangzhou, China,” Particuology, 7(3), 161-68, 2009.
Chang, S.G., Brodzinsky, R., Gundel, L.A., and Novakov, T., “Chemical and Catalytic Properties of Elemental Carbon,“ Wolff, G.T., Klimisch, R.L. (Eds.), ”Particulate Carbon: Atmospheric life cycle, ” Plenum Press, New York, 158-181, 1982.
Cheng, Y.H. and Tsai, C.J., “Evaporation loss of ammonium nitrate particles during filter sampling,” Journal of Aerosol Science, 28(8), 1553-67, 1997.
Cheng, Y., Engling, G., He, K.B., Duan, F.K., Du, Z.Y. ,“The characteristics of Beijing aerosol during two distinct episodes: Impacts of biomass burning and fireworks,” Environmental Pollution, 185, 149-157, 2014.
Cheng, Z.L., “Chemical characteristics of aerosols at coastal station in Hong Kong. I. Seasonal variation of major ions, halogens and mineral dusts between 1995 and 1996,” Atmospheric Environment, 34(17), 2771-83, 2000.
Chow, J.C. “Temporal and spatial variations of PM2.5 and PM10 aerosol in the Southern California Air Quality Study,” Atmospheric Environment, 28(12), 2061-80, 1994.
Coe, H., Allan, J.D., Alfarra, M.R., Bower, K.N., Flynn, M.J., McFiggans, G.B., Topping, D.O., Williams, P.I., O’Dowd, C.D., Dall’Osto, M., Beddows, D.C.S., and Harrison, R.M., “Chemical and physical characteristics of aerosol particles at a remote coastal location, Mace Head, Ireland, during NAMBLEX,” Atmospheric Chemistry and Physics, 6, 3289-3301, 2006.
Colbeck, I. and Harrison, R.M., ”Ozone-secondary aerosol-visibility relationships in northwest England,” Science of the Total Environment, 34, 87-100, 1984.
Crutzen, P.J. and Andreae, M.O., “Biomass burning in the tropics: Impact on atmospheric chemistry and biogeochemical cycles,” Science, 250, 1669-1678, 1990.
Dai, W., Gao, J.Q., Cao, G., and Feng., O.Y., “Chemical composition and source identification of PM2.5 in the suburb of Shenzhen, China,” Atmospheric Research, 122, 391-400, 2013.
Duncan, B N., Martin, R V., Staudt, A C. Yevich, R., and Logan, J A., “Interannual and seasonal variability of biomass burning emissionsconstrained by satellite observations,” Journal of Geophysical Research, 108, D2, 4100, 2003.
Engling, G., “Anhydrosugar characteristics in biomass smoke aerosol-Case study of environmental influence on particle-size of rice straw burning aerosol.” Journal of Aerosol Science, 56, 2-14, 2013.
Engling, G., He, J., Betha, R. and Balasubramanian, R., “Assessing the regional impact of indonesian biomass burning emissions based on organic molecular tracers and chemical mass balance modeling,” Atmospheric Chemistry and Physics, 14(15), 8043-54, 2014.
Engling, G., “Determination of levoglucosan in biomass combustion aerosol by high-performance anion-exchange chromatography with pulsed amperometric detection,” Atmospheric Environment, 40(SUPPL. 2), 299-311, 2006.
Fan, T.S., “Chemical characteristics of smoke particles emitted during combustion of siberian biomass in a large chamber,” Master Thesis, Department of Biomedical Engineering and Environmental Sciences, National Tsing-Hua University, 2014.
Fang, C.C., Chang, C.N., Chu, C.C., Wu, Y.S., Cheng, P.P., Yang, I.L., and Chen, M.H., “Characterization of particulate, metallic elements of TSP, PM2.5 and PM2.5-10 aerosols at a farm sampling site in Taiwan, Taichung,” Science of the Total Environment, 308, 157-166, 2003.
Fraser, M.P. and Lakshmanan, K., “Using levoglucosan as a molecular marker for the long-range transport of biomass combustion,” Master Thesis, Department of Environmental Science and Engineering, Rice University, MS 317, 2000.
Gadde, B., Bonnet, S., Menke, C., and Garivait, S., “Air pollutant emissions from rice straw open field burning in India, Thailand and the Philippines,” Environmental Pollution, 157, 1554-1558, 2009.
Gao, J., “Seasonal and spatial variation of trace elements in multi-size airborne particulate matters of Beijing, China: mass concentration, enrichment characteristics, source apportionment, chemical speciation and bioavailability,” Atmospheric Environment, 99, 257-265, 2014.
Han, Y.J., Kim, H.W., Cho, S.H., Kim, P.R., and Kim, W.J., “Metallic elements in PM2.5 in different functional areas of Korea: Concentrations and source identification,” Atmospheric Research, 153, 416-428, 2015.
Hopke, P.K. and Casuccio, G.S., “Scanning Electron Microscopy”, Hopke, P.K., editor, “Receptor Modeling for Air Quality Management,” Elsevier Science Publishing Company Inc., New York, 149-212, 1991.
Khan, M,F., Shirasuna, Y., Hirano, K., and Masunaga, S., “ Characterization of PM2.5, PM2.5-10 and PM>10 in Ambient Air, Yokohama Japan,” Atmospheric Environment, 96, 159-172, 2010.
Kerminen, V. M., Kimmo Teinilä, R. H., and Tuomo. P., “Substitution of chloride in sea-salt particles by inorganic and organic anions,” Journal of Aerosol Science, 29(8), 929-42, 1998.
Larson, S. M., Cass, G. R., Hussey, K. J. and Luce, F., “Verification of image processing based visibility models,” Science of the Total Environment, 22,629-637, 1988.
Lee, C. G. Yuan, C. S., Chang, J. C., and Yuan, C., “Effects of aerosol species on atmospheric visibility in Kaohsiung City, Taiwan,” Journal of the Air & Waste Management Association, 55(7), 1031-1041, 2005.
Li, T.C., Yuan, C.S., Lo, K.C., Hung, C.H., Wu, S.P., and Tong, C., “Seasonal variations and chemical characteristics of atmospheric particles at three islands in the Taiwan Strait,” Aerosol Air Quality Research, 15, 2277-2290, 2015.
Li, T.C., Yuan, C.S., Huang, H.C., Lee. C.L., Wu, S.P., and Tong, C., “Inter-comparison of Seasonal Variation, Chemical Characteristics, and Source Identification of Atmospheric Fine Particles on Both Sides of the Taiwan Strait,” Scientific Report, 10, 1038, 2016.
Lin, W. “Secondary organic carbon quantification and source apportionment of PM10 in Kaifeng, China.” Journal of Environmental Sciences, 21(10), 1353-62, 2009.
Liousse, C., Penner, J. E., Chuang, C., Walton, J. J., Eddleman, H., and Cachier, H., “A global three-dimensional model study of carbonaceous aerosols,” Journal of Geophysical Research, 101(D14), 19,411-19,432, 1996.
Lonati, G., Giugliano, M., and Ozgen, S., “Primary and secondary components of PM2.5 in Milan (Italy),” Environment International, 34(5), 665-70, 2008.
Mangelson, N.F., Lewis, L., Joseph, J.M., Cui, w., Machir, J., Williams, N.W., Eatough, D.J., Rees, L.B., Wilkerson, T., and Jensen, D.T., “The contribution of sulfate and nitrate to atmospheric fine particles during winter inversion fogs in Cache Valley,” Journal of Air & Waste Management Association, 47, 167-175, 1997.
Marcazzan, G.M., Vaccaro. S., Valli, G., and Vecchi, R., “Characterisation of PM10 and PM2.5 particulate matter in the ambient air of Milan (Italy),” Atmospheric Environment, 35(27), 4639-50, 2001.
Masiol, M., Benetello, F., Harrison, R.M., Formenton, G., Gasparo, F.D., and Pavoni, B., “Spatial, seasonal trends and transboundary transport of PM2.5 inorganic ions in the Veneto region (Northeastern Italy),” Atmospheric Environment, 117, 19-31, 2015.
Millero, F.J. and Sohn M,L., Chemical Oceanography, CRC Press, Boca Raton. 531, 0-8493-8840-6, 1992.
Minoura, H., Takahashi, K., Chow, J.C., and Watson, J.G., “Multi-year trend in fine and coarse particle mass, carbon, and ions in downtown Tokyo, Japan,” Atmospheric Environment, 40, 2478-2487, 2006.
McGowan, H. and Andrew, C., “Identification of dust transport pathways from Lake Eyre, Australia using HYSPLIT,” Atmospheric Environment, 42(29), 6915-25, 2008.
Na, K., Sawant, A.A., Song, C., and Cocker, III, D.R.,. “Primary and secondary carbonaceous species in the atmosphere of Western Riverside County, California.” Atmospheric Environment, 38(9), 1345-1355, 2004.
Osada, K., Kido, M., Nishita, C., Matsunaga, K., Iwasaka, Y., Nagatani, M., and Nakada, H., “Changes in ionic constituents of free tropospheric aerosol particles obtained at Mt. Norikura (2772 m a.s.l.), central Japan, during the Shurin period in 2000,” Atmospheric Environment, 36, 5469-5477, 2002.
Pant, P., Shukla, A., Kohl, S.D., Chow, J.C., Watson, J.G., and Harrison, R.M., “Characterization of ambient PM2.5 at a pollution hotspot in New Delhi, India and inference of sources,” Atmospheric Environment, 109 ,178-189, 2015.
Perrone, M.G., “Sources of high PM2.5 concentrations in Milan, Northern Italy: Molecular marker data and CMB modelling,” Science of the Total Environment, 414, 343-55, 2012.
Rojas, C.M., Artaxot, P., and Grieken R.V., “Aerosols in Santiago De Chile: A study using receptor modeling with X-ray fluorescence and single particle analysis,” Atmospheric Environment, 24B ,227-241, 1990.
Sachio, O. and Okita, T., “A chemical characterization of atmospheric aerosol in Sapporo,” Atmospheric Environment, 24(4), 815-22, 1990.
Schwartz, J., “Particulate air pollution and chronnic respiratory disease,” Environmental Research, 62, 7-13, 1994.
Seaton, A., MacNee, W., Donaldson, K., and Godden, D., “Particulate air pollution and acute health effects,” Lancet, 345, 176-78, 1995.
Seinfeld, J.H. and Pandis, S.N., ”Atmospheric Chemistry and Physics: from Air Pollution to Climate Change,” Wiley-Interscience, New York, 1998.
Shahid, I., “Chemical characterization and mass closure of PM10 and PM2.5 at an urban site in Karachi-Pakistan,” Atmospheric Environment, 128, 114-23, 2016.
Shen, Z., Cao, J., Tong, Z., and Liu, S., “Chemical characteristics of submicron particles in winter in Xi’an,” Aerosol and Air Quality Research, 9, (1), 80-93, 2009.
Solomon, P.A. and Moyers, J.L., ”Use of a high volume dichotomous virtual impactor to estimate light extinction due to carbon and related species in the Phoenix haze,” Sciene of the Total Environment, 36, 169-175, 1984.
Takahashi,,K., Satoh, H., Satoh, T., Kakuchi, T., Miura, M., Sasaki, A., Sasaki, M., and Kaga, H., “Formation kinetics of levoglucosan from glucose in high temperature water,” Chemical Engineering Journal, 153, 1-3, 170-174, 2009.
Tenzin, W., Congrong, H., Marzenna, R.D , and Lidia, M, “Seasonal variations of outdoor air pollution and factors driving them in the school environment in rural Bhutan,” Atmospheric Environment, 113, 151-158, 2015.
Tolis, E.I., Saraga, D.E., Lytra, M.K., Papathanasiou, A.C., Bougaidis, P.N., Partroakis, O.E., Ioannodis, I.i., and Bartzis, J.G., “Concentration and chemical composition of PM2.5 for a one-year period at Thessaloniki, Greece: A comparison between city and port area,” Atmospheric Environment, 113, 197-207, 2015.
Tsai, F.J., Tu, J.Y., Hsu, S C., and Chen, W.N., “Case study of the Asian dust and pollutant event in Spring 2006: Source, transport, and contribution to Taiwan.” Science of the Total Environment, 478, 163-74, 2014.
Tsitouridou, R. and Samara, C., “First results of acidic and alkaline constituents determination in air particulates of Thessaloniki, Greece,” Atmospheric Environment., 27B, 313-319, 1993.
Turpin, B.J., Huntzicker, J.J., Larson, S.M., and Cass, G.R., “Los-Angeles Summer Midday Particulate Carbon - Primary and Secondary Aerosol.” Environmental Science & Technology 25, 1788-93, 1991.
Ulas, I., “Impact of sea-salt emissions on the model performance and aerosol chemical composition and deposition in the East Mediterranean coastal regions,” Atmospheric Environment., 75, 329-340, 2013.
Villalobos, A.M., Francisco, B., Héctor, J, and James, J.S., “Chemical Speciation and Source Apportionment of Fine Particulate Matter in Santiago, Chile, 2013.” Science of the Total Environment 512-513: 133-42, 2015.
Whitby, K.T., and Sverdrup, G.M., “California aerosols: their physical and chemical characteristics,“ Environmental Science & Technology, 9, 477-517, 1980.
Wang, H.L., Qiao, L.P., Lou, S.R., Zhou, M., Ding, A.J., Huang, H.Y., Chen, J.M., Wang, Q., Tao, S.K., Chen, C.H., Li, L, and Huang, C., “Chemical composition of PM2.5 and meteorological impact among,” three years in urban Shanghai, China, Journal of Cleaner Production, 112, 1302-1311, 2016.
Wang, Y., Zhuang, G.S., Tang, A.H., Yuan, H., Sun, Y.L., Chen, S., and Zheng, A.H.,” The ion chemistry and the source of PM2.5 aerosol in Beijing,” Atmospheric Environment, 13, 7053-7074, 2005.
Wangchuk, T., He, C., Dudzinska, M.R., and Morawska, L., “Seasonal variations of outdoor air pollution and factors driving them in the school environment in rural Bhutan,” Atmospheric Environment, 113, 151-158, 2015.
Yuan, C.S., Hai, C.X., and Zhao, M., “Source profiles and fingerprints of fine and coarse sands resuspended from soils sampled in Central Inner Mongolia.” Particuology, 4(6), 304-311, 2006.
Zhang, X.Q. and McMurry, P.H., “Theoretical analysis of evaporative losses from impactor and filter deposits,” Atmospheric Environment, 21(8), 1779-1789, 1987.
Zhu, C., Kawamura, K., and Kunwar, B., “Effect of biomass burning over the western North Pacific Rim: Wintertime maxima of anhydrosugars in ambient aerosols from Okinawa,” Atmospheric Chemistry and Physics, 15, 1959-1973, 2015.
詹俊南、張能復,“台灣地區PM10污染特性分析",國立台灣大學環境工程研究所碩士論文,1996。
袁中新、袁景嵩、張瑞正、袁菁、張章堂,“台灣南部地區PM2.5及PM10之時空分佈趨勢探討”,第十五屆空氣污染控制技術研討會論文集,1998。
洪崇軒、袁中新、施志恆、袁菁、吳明洋,“高雄市車行地下隧道空氣品質特性研究”,第十五屆空氣污染控制技術研討會論文集,1998。
袁中新、洪崇軒、王宏恩、劉山豪, "南台灣地區懸浮微粒物化特徵及生成機制探討" ,1999氣膠科技國際研討會論文集,1999。
鄭曼婷,“台中沿海及都F會區氣膠特性及來源分析",國科會/環保署科技研究計劃期末報告,1999。
徐玉眉,“海鹽氣膠氯損失之研究”,國立台灣大學環境工程研究所碩士論文,2000。
劉山豪,“高雄都會區消光係數與能見度量測及細微粒污染源貢獻量解析”,國立中山大學環境工程研究所碩士論文,2000。
王證權,“亞洲氣膠特性實驗-台灣北海岸春季氣膠化學特性”國立中央大學環境工程研究所碩士論文,2001。
鐘博章,“東海南部大氣中金屬元素之濃度、來源及通量研究”,國立台灣大學海洋研究所,2002。
葉士鳴,“大氣中懸浮微粒含碳成分之分佈與來源”,國立成功大學環境工程研究所碩士論文,2002。
藍文農,“台灣中部地區大氣有機碳及元素碳微粒之特性研究”,國立中興大學環境工程研究所碩士論文,2002。
蔡瀛逸,“懸浮微粒之成份來源解析及管制策略探討",高雄縣環境保護局研究計畫,2003。
邵承宗,”大陸沙塵暴對澎湖地區懸浮微粒特性之影響研究”,國立中山大學環境工程研究所碩士論文,2003。
朱宏勳、李崇德,“長程傳輸對北台灣大氣氣膠特性的影響”,國立中央大學環境工程研究所碩士論文,2004。
郭瓊文,“彭佳嶼海域大氣懸浮微粒中金屬元素之組成及來源探討”,國立台灣大學海洋研究所碩士論文,2004。
黃希爾,“東亞生質燃燒對台灣高山氣膠特性的影響”,國立中央大學環境工程研究所碩士論文,2004。
陳康興、陳瑞仁、林銳敏、黃國林,“高屏地區大氣細微粒(PM2.5)特徵及來源分析研究”,環保署/國科會空污防制科研合作計畫報告,2005。
黃元勳,“屏東郊區大氣微粒化學組成特性探討”,國立屏東科技大學環境工程與科學研究所碩士論文,2006。
袁中新、蔡協宏、林勳佑、黃明合、林志逢,“高污染空品區室外空氣污染熱區解析與暴露特性分析”,行政院國家科學委員會研究計畫報告,2006。
劉乙琦、蔡協宏、覃偉民、袁中新,“2002~2005年台灣地區沙塵暴長程傳輸路徑及沙塵物化特徵比較分析",第二十五空氣污染控制技術研討會論文集,2007。
底宗鴻,“高雄地區陸域及鄰近海域懸浮微粒物化特性分析及時空分佈探討",國立中山大學環境工程研究所,2008。
蔡怡君,“不同地區懸浮微粒成分特徵之觀測與模擬分析研究",國立雲林科技大學環境與安全衛生工程研究所碩士論文,2008。
李宗璋,“金廈地區懸浮微粒物化特性分析及污染源解析探討”,國立中山大學環境工程研究所,2009。
覃偉民,“亞洲沙塵同位素特徵及傳輸過程之物化特性消長變化趨勢分析”,國立中山大學環境工程研究所,2009。
劉育甫、蔡協宏、袁中新、洪崇軒、林啟燦、錢立行,“海島地區懸浮微粒物化特性分析-以琉球嶼為例”,第六屆海峽兩岸氣膠技術研討會論文,2009。
李宗璋、袁中新、王新紅、吳水平,“金門及廈門地區大氣懸浮微粒之化学特徵分析及污染源解析",第七屆海峽兩岸氣膠技術研討會暨第二屆空氣污染技術研會論文摘要集,2010。
陳士傑、黃國林、陳瑞仁、蔡仁雄、周俊利、林文印、劉紹臣、林能暉,“南臺灣沿海地區大氣氣膠特徵探討",第七屆海峽兩岸氣膠技術研討會暨第二屆空氣污染技術研會論文摘要集,2010。
吳仲翼,“廈門灣大氣懸浮微粒濃度日夜變化趨勢分析及污染源指紋特徵探討”,國立中山大學環境工程研究所碩士論文,2011。
林建利,“稻作種類 Chamber 燃燒粒子特徵暨碳排放研究”,國立雲林科技大學環境與安全衛生工程系碩士班碩士論文,2012。
廖建欽,“閩江口海島及陸域大氣懸浮微粒濃度季節變化趨勢分析及污染源貢獻量探討”,國立中山大學環境工程研究所碩士論文,2013。
張正馳,“馬祖地區PM2.5時空分佈及化學成分分析”,國立中山大學環境工程研究所碩士論文,2014。
蘇彥綸,“馬祖地區系懸浮微粒濃度晝夜差異解析及污染源指紋特徵之探討”,國立中山大學環境工程研究所碩士論文,2015。
袁中新、李宗璋、莊學龍、陳明宏、黃康明、宋克義,“東沙島細懸浮微粒(PM2.5)濃度時空分佈及化學成份解析”,第十二屆全國氣溶膠會議暨第十三屆海峽兩岸氣溶膠技術研討會, 2015。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code