Responsive image
博碩士論文 etd-0723116-125355 詳細資訊
Title page for etd-0723116-125355
論文名稱
Title
以分子束磊晶製備CuAlSe2/Si異質接面及其特性分析
Characterization of CuAlSe2/Si heterostructures grown by MBE
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
58
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-29
繳交日期
Date of Submission
2016-08-23
關鍵字
Keywords
分子束磊晶、PC1D太陽電池元件模擬、CuAlSe2/Si異質接面
molecular beam epitaxy, solar cell, CuAlSe2 /Si heterojunction, PC1D simulation tool
統計
Statistics
本論文已被瀏覽 5708 次,被下載 505
The thesis/dissertation has been browsed 5708 times, has been downloaded 505 times.
中文摘要
本研究論文分為三個部分,首先利用分子束鍍膜系統以三源共蒸鍍的方式成長CuAlSe2(以下簡稱CAS)薄膜在玻璃基板上,藉著Cu/Al 通量比控制,沉積出純相CAS薄膜,並對薄膜進行組成、電性與光性進行量測與分析。
CAS薄膜成長在Si(100)基板上,成長溫度為500℃時,從XRD圖可知晶粒成長方向如同玻璃基板,仍為(112)優選面的多晶薄膜,提升製程溫度到650℃,才有足夠熱能促使薄膜磊晶成長在矽基板上;薄膜成長後隨即在成長腔內於硒蒸氣壓下進行退火,可以有效改善薄膜孔洞和平整性。SEM剖面圖顯示出薄膜與基板附著良好,XRD亦確認CAS可以磊晶在單晶矽基板上,但AES縱深元素分佈圖呈現在CAS/Si界面間有顯著的相互擴散現象,尤其大約有至少5 at%的Si全面進入CAS薄膜中,其n型摻雜的影響將嚴重改變CAS的p型導電型式以致難以達成原先p-n接面設計,因此未來採用低溫磊晶製程為必要手段。
本文最後一部分為p-CAS/n-c-Si異質接面太陽電池的元件模擬與探討,使用模擬軟體為PC1D,模擬條件以材料的現有文獻資料做輸入,模擬發現p-CAS/n-c-Si異質接面的元件最高效率僅10%,從能帶圖可知兩材料P-N接面的能帶落差大,因而阻礙載子傳輸;若在兩者中間插入CuGaSe2成(CGS)為p-CAS/p-CGS/n-c-Si疊層結構,改善能帶結構的連續性,此一元件模擬其能量轉換效率達24%,若進一步針對p-CAS/p-CGS兩材料摻雜濃度與能帶關係做最佳化調整,最大光電轉換效率可達28%。
Abstract
We used molecular beam deposition system to grow CuAlSe2 (CAS) thin film. At first, CAS thin films were grown on glass substrates for adjusting chemical composition to obtain single-phase CAS films and measuring the corresponding electric and optical properties. X-ray diffraction (XRD) data showed that the films prepared with the preset composition of Cu/Al=0.5 and a substrate temperature of 550℃may achieve single-phase CAS films. The bandgap of these films were determined to be 2.65 eV by optical transmission measurements, while the film resistivities were about 104 Ω-cm as measured by four-point probe method. Using the above-mentioned atomic flux and increase of substrate temperature up to 650, CAS films can be grown epitaxially on (100)Si substrate. Further analysis of the CAS/Si interface by Auger depth profiling showed significant interdiffusion between CAS and Si.
Finally, the PC1D simulation tool was applied to predict the energy conversion efficiency of a CAS/Si heterojunction solar cell. We found that the highest efficiency was limited to 10% because of a large band offset existed at the heterojunction. By an insertion of a thin layer of CuGaSe2 (CGS) between CAS and Si to lower the band discontinuity, an energy conversion efficiency as high as 28% could be estimated for the device structure of p-CAS/p-CGS/n-Si with optimized material parameters.
目次 Table of Contents
論文審定書 i
誌謝 ii
摘要 iv
Abstract v
目錄 vi
圖目錄 viii
表目錄 x
第一章 緒論 1
1-1 前言 1
第二章 文獻回顧 2
2-1 CAS材料特性 2
2-2 電學性質 4
2-3 薄膜成長與基板匹配度 5
2-4矽基太陽能電池元件設計 7
2-5 研究動機與目的 9
第三章 實驗方法與步驟 10
3-1實驗設備 10
3-1-1分子束蒸鍍系統(Molecular Beam Deposition) 10
3-1-2磁控濺鍍系統 11
3-2 實驗步驟 12
3-2-1 基板清洗 12
3-2-2薄膜製程 13
3-3薄膜性質量測方法與儀器介紹 15
3-3-1 X光繞射儀 15
3-3-2 四點探針 15
3-3-3 掃描式電子顯微鏡 16
3-3-4 穿透光譜儀 17
第四章 實驗結果與討論 18
4-1 CAS多晶薄膜成長與分析 18
4-1-1 成長單一相CAS多晶薄膜 18
4-1-2 CAS/metal金屬接觸之電學性質量測 22
4-1-3 CAS薄膜光學性量測與分析 25
4-2 CAS磊晶薄膜成長與分析 27
4-2-1 磊晶薄膜成長參數調整 27
4-2-2 薄膜表面與剖面形貌 33
4-3 矽基異質接面太陽能電池模擬 35
4-3-1 CAS/Si異質接面太陽能電池模擬 35
4-3-2 CAS/CGS/Si異質接面太陽能電池模擬 40
第五章 結論 45
第六章 參考文獻 46
參考文獻 References
[1] K. E. Martin A. Green1*, Yoshihiro Hishikawa3, Wilhelm Warta4 and Ewan D. Dunlop5, "Solar cell efficiency tables (version 47)," PROGRESS IN PHOTOVOLTAICS: RESEARCH AND APPLICATIONS, 2015.
[2] R. S. Kumar, A. Sekar, N. V. Jaya, S. Natarajan, and S. Chichibu, "Structural studies of CuAlSe2, and CuAlS2 chalcopyrites at high pressures," Journal of Alloys and Compounds, vol. 312, pp. 4-8, Nov 16 2000.
[3] S. Marsillac, J. C. Bernede, C. ElMoctar, and J. Pouzet, "Physico-chemical characterization of CuAlSe2 films obtained by reaction, induced by annealing, between Se vapour and Al/Cn/Al...Cu/Al/Cu thin films sequentially deposited," Materials Science and Engineering B-Solid State Materials for Advanced Technology, vol. 45, pp. 69-75, Mar 1997.
[4] B. V. Korzoun, L. A. Makovetskaya, V. A. Savchuk, V. A. Rubtsov, G. P. Popelnyuk, and A. P. Chernyakova, "T(X) Phase-Diagram of the Cu2se-Al2se3 System," Journal of Electronic Materials, vol. 24, pp. 903-906, Jul 1995.
[5] S. Chichibu, S. Shirakata, A. Iwai, S. Matsumoto, H. Higuchi, and S. Isomura, "Cualse2 Chalcopyrite Epitaxial Layers Grown by Low-Pressure Metalorganic Chemical-Vapor-Deposition," Journal of Crystal Growth, vol. 131, pp. 551-559, Aug 1993.
[6] W. N. Honeyman, "Preparation and Properties of Single Crystal Cuals2 and Cualse2," Journal of Physics and Chemistry of Solids, vol. 30, pp. 1935-&, 1969.
[7] S. H. You, K. J. Hong, T. S. Jeong, S. Y. Lee, J. J. Bang, J. D. Moon, et al., "Growth and characterization of CuAlSe2(112)/GaAS(100) heteroepitaxial layers grown by hot wall epitaxy method," Journal of Crystal Growth, vol. 290, pp. 18-23, Apr 15 2006.
[8] S. B. Zhang, S. H. Wei, and A. Zunger, "A phenomenological model for systematization and prediction of doping limits in II-VI and I-III-VI2 compounds," Journal of Applied Physics, vol. 83, pp. 3192-3196, Mar 15 1998.
[9] A. Zunger, "Practical doping principles," Applied Physics Letters, vol. 83, pp. 57-59, Jul 7 2003.
[10] S. Chichibu, A. Iwai, S. Matsumoto, and H. Higuchi, "Lp-Mocvd Growth of Cualse2 Epitaxial Layers," Journal of Crystal Growth, vol. 126, pp. 635-642, Feb 1993.
[11] M. Taguchi, A. Yano, S. Tohoda, K. Matsuyama, Y. Nakamura, T. Nishiwaki, et al., "24.7% Record Efficiency HIT Solar Cell on Thin Silicon Wafer," Ieee Journal of Photovoltaics, vol. 4, pp. 96-99, Jan 2014.
[12] K. Masuko, M. Shigematsu, T. Hashiguchi, D. Fujishima, M. Kai, N. Yoshimura, et al., "Achievement of More Than 25% Conversion Efficiency With Crystalline Silicon Heterojunction Solar Cell," Ieee Journal of Photovoltaics, vol. 4, pp. 1433-1435, Nov 2014.
[13] C. O. El Moctar, K. Kambas, S. Marsillac, A. Anagnostopoulos, J. C. Bernede, and K. Benchouck, "Optical properties of CuAlX2 (X = Se, Te) thin films obtained by annealing of copper, aluminum and chalcogen layers sequentially deposited," Thin Solid Films, vol. 371, pp. 195-200, Aug 1 2000.
[14] J. E. Jaffe and A. Zunger, "Theory of the Band-Gap Anomaly in Abc2 Chalcopyrite Semiconductors," Physical Review B, vol. 29, pp. 1882-1906, 1984.
[15] Y. B. K. Reddy and V. S. Raja, "Effect of Cu/Al ratio on the properties of CuAlSe2 thin films prepared by co-evaporation," Materials Chemistry and Physics, vol. 100, pp. 152-157, Nov 10 2006.
[16] D. Liao and A. Rockett, "Epitaxial growth of Cu(In,Ga)Se-2 on GaAs(110)," Journal of Applied Physics, vol. 91, pp. 1978-1983, Feb 15 2002.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code