Responsive image
博碩士論文 etd-0723116-165447 詳細資訊
Title page for etd-0723116-165447
論文名稱
Title
管件液壓沖孔加工之有限元素模擬與模具設計
Finite Element Simulation and Die Design for Tube Hydro-piercing Processes
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
167
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-06-30
繳交日期
Date of Submission
2016-08-23
關鍵字
Keywords
剪斷面、殘餘厚度、有限元素模擬、模具設計、液壓沖孔
Die design, Finite element analysis, Shearing Surface, Residual thickness, Hydro-piercing
統計
Statistics
本論文已被瀏覽 5761 次,被下載 42
The thesis/dissertation has been browsed 5761 times, has been downloaded 42 times.
中文摘要
本研究為設計管件液壓沖孔之模具及沖頭外形。使用材料為鋼材SPFC590Y以及鋁合金6005,首先進行拉伸試驗取得材料之塑流應力數據。另外亦將原始材料鋁合金6005進行退火,以探討延展性對於液壓沖孔之影響。並藉由有限元素分析軟體”Deform 3D”進行管件液壓沖孔之模擬,其依據破壞準則為Normalized Cockcroft and Latham (NCL)。並利用模擬與拉伸試驗之結果所求得材料之臨界破壞值,探討各項參數對於液壓沖孔之影響以及液壓沖孔之變形機制。
進行液壓沖孔實驗以驗證有限元素模式之適用性。首先進行液壓沖孔之模具設計,並規劃不同參數進行液壓沖孔實驗,以利探討對於剪斷面之影響。結果顯示內壓力、沖頭外形、衝程對於剪斷面之影響,皆與有限元素模擬結果之趨勢相同,在鋼材之剪斷面解析中,誤差皆於10%以內。最後利用迴歸分析之方式,將殘餘厚度與衝程、內壓力以及管厚之模擬結果推導為經驗公式,再將公式代入其參數並與模擬值互相驗證,以驗證其公式之適用性。經驗公式推得對於液壓沖孔製程控制上能有效利用。
Abstract
This study is focused on the design of the punch shape and die in tube hydro-piercing processes. At first, the material parameters of carbon steel SPFC590Y and aluminum alloy 6005 are obtained using tensile tests. Aluminum alloy 6005 tubes are annealed to investigate the effects of material ductility on hydro-piercing processes. The flow stress curves obtained are used in the finite element simulations of tube hydro-piercing process with software “Deform 3D”. Ductile fracture criterion of Normalized Cockcroft and Latham is used during the simulations. The critical damage values for the criterion are obtained by comparing simulation results and tensile test data. The effects of various parameters such as the stroke, internal pressure, etc. on hydro-piercing processes and deformation mechanism are discussed.
Experiments are conducted to compare with the simulation results to verify the validity of the analytical models. At first, the die design of hydro-piercing processes were conducted, and then the effects of various parameters on shearing surface are discussed by experiments of hydro-piercing. The experimental results show the same trends with simulation results in the effects of internal pressure, punch shape and stroke on shearing surface. Finally formula for the relationship between residual thickness, internal pressure, stroke and tube thickness are developed by regression analysis. Analytical values from the parameters formula are compared with simulation data to verify the validity of the formula. The formula is useful for process control in the hydro-piercing processes.
目次 Table of Contents
論文審定書 i
論文公開授權書 ii
謝誌 iii
摘要 iv
Abstract v
目錄 vi
圖目錄 x
表目錄 xviii
符號說明 xx
第一章 緒論 1
1.1 前言 1
1.2 沖孔技術簡介 2
1.2.1 傳統沖孔製程 3
1.2.2 液壓沖孔製程 4
1.3 文獻回顧 6
1.3.1 延性破壞準則相關之文獻 6
1.3.2 沖孔技術相關之文獻 9
1.3.3 精密沖孔以及微小沖孔技術相關之文獻 12
1.3.4 液壓沖孔技術相關之文獻 14
1.4 研究動機與目的 20
1.5 論文架構與研究流程 20
第二章 材料之機械性質 23
2.1 鋼材SPFC590Y塑流應力之求得 23
2.2 鋁合金6005塑流應力之求得 24
2.2.1 鋁合金6005之單軸拉伸試驗 24
2.2.2 塑流應力之計算 26
2.3 破壞值之求得 31
2.3.1 鋼材SPFC590Y 31
2.3.2 鋁合金6005 33
第三章 液壓沖孔製程之有限元素分析 36
3.1 有限元素模型之建立與參數設定 36
3.2 鋼材SPFC590Y之解析結果與討論 40
3.2.1 沖頭外形與剪斷面之關係 40
3.2.2 沖頭模具之應力分析 44
3.2.3 負載曲線之解析 52
3.2.4 剪斷面與內壓力、材料厚度之關係 55
3.2.5 衝程與殘餘厚度之關係 59
3.3 鋁合金6005之解析結果與討論 62
3.3.1 沖頭外形與剪斷面之關係 62
3.3.2 沖頭模具應力之分析 66
3.3.3 負載曲線之解析 68
3.3.4 剪斷面與內壓力、材料厚度之關係 72
3.3.5 衝程與殘餘厚度之關係 76
3.4 液壓沖孔之變形機制 78
3.4.1 鋼材SPFC590Y 78
3.4.2 鋁合金6005 80
3.4.3 矩形管液壓沖孔之變形機制 84
第四章 液壓沖孔實驗 89
4.1 液壓沖孔模具之設計 89
4.1.1 活塞缸負載之計算 89
4.1.2 活塞缸之設計概念 89
4.1.3 沖孔機構設計 90
4.2 實驗設備與實驗規劃 92
4.3 鋼材SPFC590Y之實驗結果與討論 98
4.3.1 不同內壓力下剪斷面分布狀況 98
4.3.2 沖頭外形與剪斷面之關係 103
4.3.3 不同衝程與殘餘厚度之關係 104
4.4 鋁合金6005之實驗結果與討論 107
4.4.1 不同內壓力下剪斷面分布狀況 107
4.4.2 沖頭外形與剪斷面之關係 110
4.4.3 不同衝程與殘餘厚度之關係 112
4.4.4 破壞準則Brozzo對於液壓沖孔模擬之影響 117
4.5 不同材料與剪斷面之關係 120
第五章 殘餘厚度經驗公式之建立 122
5.1 殘餘厚度與加工條件之關係 122
5.1.1 液壓沖孔參數之規劃 122
5.1.2 經驗公式之建立 128
5.2 無因次化經驗公式 129
5.2.1 鋼材SPFC590Y經驗公式之推導 132
5.2.2 鋁合金6005經驗公式之推導 133
5.3 經驗公式之驗證 136
5.3.1 鋼材SPFC590Y之驗證結果 136
5.3.2 鋁合金6005之驗證結果 137
第六章 結論 140
6.1 液壓沖孔製程之模擬 140
6.2 液壓沖孔之實驗 141
6.3 經驗公式之建立 142
6.4 今後研究之課題 142
參考文獻 References
[1] L.M. Smith, “Hydroforming for Advanced Manufacturing”, Woodhead Publishing, pp.202-205, 2008, USA.
[2] H. Singh, “ Fundamentals of Hydroforming”, Society of Manufacturing Engineers, pp.77-90, 2003, Dearborn, USA.
[3] Y.Yoshida, “Methods of Shearing Process Simulation for Understanding for Finite Element Analysis of Plastic Working”, Journal of the Japan Society for Technology of Plasticity, Vol. 56, No.648, pp.8-12, 2015.
[4] Z.G. Wu, S.H. Li, W.G. Zhang, W.R. Wang, “Ductile Fracture Simulation of Hydropiercing Process Based on Various Criteria in 3D Modeling”, Materials and Design, Vol. 31, pp.3661–3671, 2010.
[5] 劉松柏,“材料強度破壞學”, 成璟文化, pp.8, 2000, 新北市
[6] A.M. Freudenthal, “The Inelastic Behavior of Engineering Materials and Structure”, John Wiley, 1950.
[7] M.G. Cockcroft, D.J. Latham, “Ductility and Workability of Metals.”, Journal of the Institute of Metals, Vol. 96, pp. 33-39, 1968.
[8] S.I. Oh, C.C. Chen, S. Kobayashi, “Ductile Fracture in Axisymmetric Extrusion and Drawing”, ASME Journal of Engineering for Industry, Vol. 101, pp.36–44, 1979.
[9] P. Brozzo, B. Deluca, R. Rendina, “A New Method for the Prediction of Formability Limits in Metal Sheets”, Proc. 7th Biennial Conf. Int. Deep Drawing Research Group, 1972.
[10] F.A. McClintock, “A Criterion for Ductile Fracture by the Growth of Holes”, ASME Journal of applied mechanics, Vol. 35, pp.363–371, 1968.
[11] J.R. Rice and D.M. Tracey, “On the Ductile Enlargement of Voids in Triaxial Stress Fields”, Journal of the Mechanics and Physics of Solids, Vol. 17, pp.201, 1969.
[12] M. Oyane, T. Sato, K. Okimoto and S. Shima, “Criteria for Ductile Fracture and Their Applications”, Journal of Materials Processing Technology, Vol. 4, pp.65–81, 1980.
[13] N. Hatanaka, K. Yamaguchi, N. Takakura, “Finite Element Simulation of the Shearing Mechanism in the Blanking of Sheet Metal”, Journal of Materials Processing Technology, Vol. 139, pp.64–70, 2003.
[14] R. Hambli and M. Reszka, “Fracture Criteria Identification Using an Inverse Technique Method and Blanking Experiment”, International Journal of Mechanical Sciences, Vol. 44, pp.1349–1361, 2002.
[15] M. Murakawaa, M. Suzuki , T. Shionome, F. Komuro, A. Harai, A. Matsumoto, N.Koga, “Precision Piercing and Blanking of Ultrahigh-Strength Steel Sheets”, Procedia Engineering, Vol. 81, pp.1114 – 1120, 2014.
[16] T. Shiratori, S. Nakano, Y. Suzuki, M. Katoh, N. Sato, T. Komatsu, M. Yang, “Influence of Grain Size on Process Effected Zone in Micropiercing at Austenitic Stainless Steel SUS304”, Journal of the Japan Society for Technology of Plasticity, Vol. 56, No.657, pp.885-890, 2015.
[17] M. Shiomi, Y. Ueda, K. Osakada, “Piercing of Steel Sheet by using Hydrostatic Pressure”, CIRP Annals - Manufacturing Technology, Vol. 55, Issue 1, pp.255–258, 2006.
[18] M. Mizumura, K. Sato, Y. Kuriyama, “Development of Nut-Inlaying Technique in Hydroformed Component by Hydro-Burring”, Materials Transactions, Vol. 53, pp.801-806, 2012.
[19] G. Liu, J.F. Lin, G. Wang, H.B. Su, X.P. Chen, H.M. Jiang., “Influence of tube properties on quality of hydropiercing”, Transactions of Nonferrous Metals Society of China, Vol. 21, pp.456–460, 2011.
[20] M. Uchida, A. Tomsawa, “Study on Outward Hydropiercing by Internal Hydraulic Pressure, 4th International Conference on Tube Hydroforming, pp.214-219, 2009, Kaohsiung.
[21] 陳禹齊,“異形管件液壓成形之研究”, 國立中山大學碩士論文, pp.18-20, 2016
[22] 黃振賢,“金屬熱處理(第18版)”, 新文京開發出版有限公司, pp.474-478, 2009, 新北市
[23] ASTM., “Standard Test Methods for Tension Testing of Metallic Materials”, E8/E8M-15, pp.11, 2015, Pennsylvania, USA.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code