Responsive image
博碩士論文 etd-0723116-230154 詳細資訊
Title page for etd-0723116-230154
論文名稱
Title
多葉凸輪減速機構設計與動力分析
Geometric Design and Kinetics Analyses of Lobe Cam Drives
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
87
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-17
繳交日期
Date of Submission
2016-08-26
關鍵字
Keywords
剛體轉置法、多葉凸輪、大減速比、減速機構
reducers, high reduction ratio, rigid body transformation, lobe cam
統計
Statistics
本論文已被瀏覽 5675 次,被下載 3
The thesis/dissertation has been browsed 5675 times, has been downloaded 3 times.
中文摘要
多葉凸輪減速機構為一種創新型減速機構,應用於機器手臂關節減速用。而此減速機構優點可提供小空間大減速比、具純滾動而低磨耗且加工容易,相較於諧和式減速機之低負載、加工不易、運轉壽命短,多葉凸輪減速機構可具有高負載、可長時間運轉與成本低之優勢。
本論文將針對多葉凸輪減速機構提出一較具完整之設計流程,包含幾何設計、運動與動力分析等。首先,採用剛體轉置法進行多葉凸輪之外廓求取,利用微分幾何求取曲率半徑,建立減速機構之幾何參數設計流程,並提出接觸點法找出機構作動過程中之接觸點與實際作動之壓力角。再利用剛體向量法進行運動分析,分析多葉凸輪與各滾子作動狀態,計算多葉凸輪與滾子之自轉速度。利用牛頓第二定律進行機構之動力分析。本文針對各項設計參數對於壓力角、滾子與滾子盤間受力與力矩、接觸應力、輸入扭矩及支座反力之影響進行探討。
Abstract
A lobe cam reducer is an innovative reduction mechanism that can be applied as a robotic arm joint reducer with desirable rigidity. With a pure rolling contact in motion and an easy processing characteristic, the rotational speed reduction mechanism can provide a large reduction ratio with a limited space. Compared to a harmonic reducer that is limited in low-load applications, difficult to manufacturing, and with a short operating life, a lobe cam reducer can bear a higher load with a low manufacturing cost and a longer operation life.
This study is focused on presenting a design process, including geometric and kinematic design as well as dynamic analysis for lobe cam reducers. First, the basic design parameters are identified for design selection, subsequently, the conjugate lobe cam profiles are synthesized by using rigid body transformation, and then the curvatures of the cam profiles are analyzed by differential geometry. In addition, the pressure angles of the conjugate lobe cams during operations are evaluated in this study. To characterize the rotational speeds of the lobe cams and rollers, the vector method of rigid body is used. Furthermore, the effects of design parameters on pressure angles, contact forces between the rollers of turrets and the lobe cams, contact stresses, input torque, and support reactions, etc. are observed.
目次 Table of Contents
論文審定書………………………………………………………………………………i
誌謝……………………………………………………………………………………..iii
摘要…………………………………………………………………………………..…iv
Abstract ………………………………………………….…………………………...... .v
目錄……………………………………………………………………………………. vi
圖次..…………………………………………………………………………………...vii
表次…………...……………………………………………………………………...…ix
第一章 緒論…….………………………………………………………………………1
1.1前言……………………………………………………………………………1
1.2文獻回顧………………………………………………………………………2
1.3研究目的與研究方法…………………………………………………………3
1.4論文大綱………………………………………………………………………3
第二章 機構合成與運動分析……………….…………………………………………5
2.1 多葉凸輪減速機構介紹……………...………………………………………5
2.2 多葉凸輪減速機構速比計算及應用………...………………………………6
2.3 凸輪外廓之合成……………………………….……………………………10
2.4 凸輪外廓曲率半徑求取……………………….……………………………13
2.5 壓力角求取…………………………………….……………………………19
2.6 多葉凸輪減速機構運動分析………………….……………………………22
2.7 多葉凸輪雷射加工路徑設計………………….……………………………31
第三章 機構動力分析……………………………………...…………………………34
3.1 輸入軸與偏心套筒動力分析…………………….…………………………34
3.2 多葉凸輪動力分析……………………………….…………………………35
3.3 第一段固定滾子轉盤動力分析………………….…………………………36
3.4 輸出滾子轉盤動力分析………………………….…………………………39
3.5 動力分析計算…………………………………….…………………………42
第四章 機構實例設計與分析………………………………...………………………46
4.1 多葉凸輪幾何參數分析…………………………….………………………46
4.2 多葉凸輪幾何分析優化……………………………….……………………52
4.3 多葉凸輪動力分析………………………………….………………………53
4.4 多葉凸輪設計優化………………………………….………………………60
4.5多葉凸輪優化設計之分析與比較.………………….………………………61
第五章 機構加工組裝…………………………………………...……………………65
5.1 多葉凸輪減速機構設計……………………………….……………………66
5.2 多葉凸輪減速機構加工……………………………….……………………68
5.3 多葉凸輪減速機構組裝……………………………….……………………69
第六章 結論及未來展望…………………………………………...…………………72
6.1 結論……………………………………………………….…………………72
6.2 未來展望………………………………………………….…………………73
參考文獻…………………………………………………………….…………………74
參考文獻 References
[1] 行政院生產力 4.0 發展方案
[2] 黃仲宏,2014,「台灣智慧型機器人產業的現況分析與發展動向」,智慧自動化產業期刊 No. 9,pp. 2–13。
[3] Musser, C. W., 1959, “Strain Wave Gearing,” U.S. Patent No. 291959.
[4] Fujimoto, K., 2009, “Eccentric Oscillating-type Planetary Gear Device,” U.S. Patent No. 7476174.
[5] 中華民國,2014,偏心凸輪變速機構,發明號I431209。
[6] 郭子齊, 2012, 偏心凸輪式減速機構之設計, 國立中山大學機械與機電工程研究所碩士論文。
[7] 何易倫, 2015, 偏心凸輪式減速機構運動與動力分析, 國立中山大學機械與機電工程研究所碩士論文。
[8] Malhotra, S. K. and Parameswaran, M. A., 1983., “Analysis of a cycloid speed reducer,” Mechanism and Machine Theory, Vol. 18, Issue 6, Pages 491-499
[9] Dizioglu B. ,1986,On the real singularities points of cycloids, epi-and hypocycloids. Mech. Mach. Theory 21(3): 223-224.
[10] D.C.H Yang, and J.G Blanche, 1990, “Design and application guidelines for cycloid drives with machining tolerances,” Mechanism and Machine Theory, Volume 25, Issue 5, Pages 487-501.
[11] Litvin, F. L., and Feng, P. H. , 1996, “Computerized Design and Generation of Cycloidal Gearings,” Mech.Mach. Theory, Vol. 31, No. 7, pp. 891-911.
[12] Shung, J. B., and Pennock, G. R. , 1994, ‘‘Geometry for Trochoidal-Type Machines with Conjugate Envelopes,’’ Mech. Mach. Theory, Vol. 29, No. 1, pp. 25–42.
[13] A. Romiti, T. Raparelli, L. Mazza, S. and Pastorelli, September–October 1995, “Kinematic analysis of a gearless articulated speed reducer, "Mechanics Research Communications, Volume 22, Issue 5, Pages 415-429.
[14] Meng Yunhong, Wu Changlin, and Ling Liping, July 2007, “Mathematical modeling of the transmission performance of 2K–H pin cycloid planetary mechanism,"Mechanism and Machine Theory, Volume 42,Issue 7, pp. 776-790.
[15] Hwang, Y.W. and Hsieh, C.F. , 2006, “Geometry Design and Analysis for Trochoidal-Type Speed Reducers: with Conjugate Envelopes,” Transactions of the Canadian Society for Mechanical Engineering, Vol. 30,No.2, pp. 261-278.
[16] Blagojevica, M., KocIcb, M., Marjanovica, N., and Stojanovica, B.,2012, Influence of theFriction on the Cycloidal Speed Reducer Efficiency. Journal of the Balkan Tribological Association Vol, 18(2), 217-227.
[17] Mackic, T., Blagojevic, M., Babic, Z., and Kostic, N. ,2013, Influence of Design Parameters on CycloDrive Efficiency. Journal of the Balkan Tribological Association Vol, 19(4), 497-507.
[18] Botsiber, D. W., and Kingston, L., 1956, "Design and Performace of the Cycloid Speed Reducer," Machine Design, Vol. 28, no 13, pp. 65-69
[19] Joong-Ho Shin, and Soon-Man Kwon, 2006, “On the lobe profile design in a cycloid reducer using instant velocity center,"Mechanism and Machine Theory, Volume 41, Issue 5, pp. 596-616.
[20] Hwang Y. W. and Hsieh C. F., 2007, “Geometric Design Using Hypotrochoid and Non-undercutting Conditions for an Internal Cycloidal Gear,” Trans. ASME J. Mech. Des., Vol.129, pp. 413–420.
[21] Hwang Y. W. and Hsieh C. F. Determination of surface singularities of a cycloidal gear drive with inner meshing ,2007, Math. Comp. Model.; 45(4): 340–354.
[22] Blanche, J. G. and Yang, D. C. H., 1989, “Cycloid Drives with Machining Tolerances,” J. Mech. Trans. Auto. Des., 111, pp. 337–344.
[23] Park, M. W. Park and Park, N. G., 2007,“Development of speed reducer with planocentric involute gearing mechanism,"Journal of Mechanical Science and Technology, Volume 21, Issue 8, pp. 1172-1177.
[24] Kim, K. H. and Ahn, H. J. , 2009, “Torsional Rigidity of a Cycloid Drive Considering Finite Bearing and Hertz Contact Stiffness,” ASME Conf. Proc. IDETC/CIE2009 ,Volume 6:ASME Power Transmission and Gearing Conference; 3rd International Conference on Micro- and Nanosystems; 11th International Conference on Advanced Vehicle and Tire Technologies.
[25] Sandeep V. Thube and Todd R. Bobak , 2011,” The Dynamic Simulation and Analysis of a Cycloidal Speed Reducer”ASME Conf. Proc. IDETC/CIE2011Volume 8: 11th International Power Transmission and Gearing Conference; 13th International Conference on Advanced Vehicle and Tire Technologies.
[26] Blagojevic, M., Marjanovic, N., and Djordjevic, Z., 2011, “A New Design of a Two-Stage Cycloidal Speed Reducer,” ASME J. of Mech. Des., Vol. 133. pp. 1–7.
[27] Chmurawa, M. and Lokiec, A., 2001, “Distribution of Loads in Cycloidal Planetary Gear (CYCLO) Including Modification of Equidistant,” 16th European ADAMS User Conference, Berchtesgaden, Germany.
[28] Tsay, D. M. and Lin, B. J., 1996, Profile Determination of Planar and Spatial Cam with Cylindrical Roller-Followers, IMechE Journal of Manufacturing Science and Engineering , Vol.119, pp. 21–29. Varitron
[29] Yang, D. C. H. and Blanch, J. G., 1990, “Design and Application Guidelines for Cycloid Drives With Machining Tolerances,” Mech. Mach. Theory, 25, pp. 487–501.
[30] Harnoy, A., 2002, “Bearing Design in Machinery: Engineering Tribology and Lubrication,” CRC, New York, NY.
[31] Blanche, J. G. and Yang, D. C. H., 1989, “Cycloid Drives with Machining Tolerances,” J. Mech. Trans. Auto. Des., 111, pp. 337–344.
[32] Sensinger, J.W., 2010, “Unified Approach to Cycloid Drive Profile, Stress, and Efficiency Optimization,” ASME J. Mech. Des., Vol. 132, pp. 1–5.
[33]Nakamura, K., 2010, Speed Reduction Device, U.S. Patent No. 7811193B2.
[34] Marjanovic, M. N., Djordjevic Z., Stojanovic, B., and Disic, A., 2011, “A New Design of a Two-Stage Cycloidal Speed Reducer,” ASME J. Mech. Des, Vol.133, pp. 1–7.
[35] Fong, Z. H. and Tsay, C. W., 2000 “Study on the Undercutting of Internal Cycloidal Gear with Small Tooth Difference,” J. CSME, Vol.21, No.4, pp. 359–367.
[36]Hsieh, C. F. and Hwang Y. W., 2007, “Geometric Design Using Hypotrochoid and Non Undercutting Conditions for an Internal Cycloidal Gear,” ASME J. Mech. Des, Vol. 129, pp. 413–420
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.206.160.129
論文開放下載的時間是 校外不公開

Your IP address is 18.206.160.129
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code