Responsive image
博碩士論文 etd-0723117-110121 詳細資訊
Title page for etd-0723117-110121
論文名稱
Title
以微米級步進式壓電致動器驅動之三軸向定位平台
A Tri-axis Positioning Stage Using Microstepping Piezoelectric Actuators
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
136
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-24
繳交日期
Date of Submission
2017-08-23
關鍵字
Keywords
三軸向定位平台、運動方程式、壓電致動器
Tri-axis positioning stage, Equation of motion, Piezoelectric actuator
統計
Statistics
本論文已被瀏覽 5769 次,被下載 37
The thesis/dissertation has been browsed 5769 times, has been downloaded 37 times.
中文摘要
現今為一個正在將工業4. 0進行普及化的年代,在產品的生產線上,逐漸減少對人力的浪費是必要的趨勢,以機器人代替勞動者枯燥乏味的工作內容,並同時能達到更高的生產效率。對於生產微型至小型產品的組裝,只使用人力資源更是容易發生組裝品質不佳與效率較低的問題產生,故本論文研究一擁有高精度及高效率的陣列式組裝平台針對以上所述產品的開發給予幫助。
本研究開發之三軸向壓電定位平台將應用於微型零件組裝平台上,以高精度、響應快、低耗能特性的壓電致動器來做為驅動裝置,並搭配穩定且擁有高線性度之雙軸向移動機構與旋轉機構來達成移動功能,同時本研究採用光學尺作為高精度且穩定的位移感測器搭配嵌入式系統來達成定位功能。本文將從壓電致動器的選擇出發,進而針對所使用的壓電致動器推導出其運動方程式,藉此了解其運動狀態並根據方程式可對壓電致動器進行優化其基本的結構參數。再者搭配光學尺作為移動的定位感測器,將高精度的回饋參數提供至微控制器,使其能準確地驅動壓電致動器至目標位置。
最後完成之三軸向定位平台在實際使用時搭配擁有0.1 μm精度之雷射位移計作為第二位移感測器,與高精度之荷重元作為力量感測器,經實驗結果顯示本研究之壓電致動器在工作佔空比為8 %時平移方向擁有最高1 μm、旋轉方向0.000016°之步進能力,且最大行程可達到8 mm;出力大小在線性方向擁有最大1,853.5 mN的出力大小及旋轉方向最大189 gf∙cm的扭力,其旋轉角度的範圍不受限制;而定位能力在0.1 mm下之重複精度為0.92 μm。
Abstract
The replacement of human with robots not only reduces the requirement of manpower, but also achieves higher productivity. With mere manpower, lousy assembly quality and low efficiency issues easily occur when manufacturing small or even micro-size products. Thus, the research intends to develop an array type assembly platform, possessing high accuracy and high efficiency, to facilitate the production.
The tri-axis positioning stage using microstepping piezoelectric actuators proposed by this work will be applied to the miniature parts assembly platform. The compacted piezoelectric actuator possesses with micro stepping, rapid response and low power consumption, less components ability. Then, integrated with bi-axis positioning mechanism and rotation mechanism with high linearity and stability to achieve positioning. Moreover the optical encoder combined with the embedded system are applied as the position sensing module. The thesis begins with the selection of piezoelectric actuators. To completely understand the motion behavior of the actuator, the equation of motion is derived and serves as the foundation to optimize basic structural parameters. The microcontroller drives the piezoelectric actuator to its targeted position on the basis of the feedback data from the optical encoder
With the aid of a laser displacement meter featuring a resolution of 0.1 μm, and a load cell for force sensing, the tri-axis positioning stage provides a stepping resolution of 1 μm with the duty ratio of 8%, and a rotation resolution of 0.000016°, meanwhile the repeat accuracy of 0.92 μm is possessed. The total traveling distance in the linear direction is 8 mm, and the rotation motion is unlimited. Moreover the output force of 1,853.5 mN and the torque of 189 gf·cm were measured in the experiment.
目次 Table of Contents
論文審定書 i
論文公開授權書 ii
誌謝 iii
摘要 iv
ABSTRACT v
目錄 vii
圖次 ix
表次 xi
符號說明 xii
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.2.1 壓電致動器介紹 2
1.2.2 定位平台介紹 9
1.3 研究動機 13
1.4 本文架構 14
第二章 三軸向定位平台設計 15
2.1 三軸向定位平台機構設計 15
2.1.1 雙軸向壓電定位平台機構設計 16
2.1.2 旋轉壓電定位平台機構設計 21
2.2 定位系統架設 24
第三章 摩擦驅動之步進式壓電致動器研究 28
3.1 壓電致動器基本架構 28
3.2摩擦驅動之步進式壓電致動器運動方程式 30
3.3運動方程式之動態分析 48
3.3.1 壓電致動器側壁軌跡模擬 48
3.3.2 以MATLAB計算壓電致動器運動方程式 52
第四章 驅動與定位控制系統建立 64
4.1驅動與定位控制電路介紹 65
4.2 控制系統架設 66
第五章 三軸向定位平台之實驗量測 71
5.1實驗架設 71
5.2壓電致動器驅動能力量測 72
5.3定位能力量測 74
第六章 結論與未來展望 78
6.1結論 78
6.2未來展望 79
參考文獻 80
附錄 83
附件1-MATLAB計算壓電致動器運動方程式編碼 83
附件2-STM32程式編碼 94
附件3-驅動控制系統電路圖 120
附件4-定位控制系統電路圖 121
參考文獻 References
[1] L. Petit, and P. Gonnard, “Industrial Design of a Centimetric “TWILA” Ultrasonic Motor,” Sensors and Actuators A, vol. 120, no. 1, pp. 211-224, 2005.
[2] M. Ueyama, M. Kuwama, and H. Nagata, “Lens Barrel Having a Piezoelectric Actuator for Moving Optical Elements,” U.S Patent, no. 5675444, 1997.
[3] C. Fisher, D. Braun , J. Kaluzny , and T. Haran, “Cobra—A Two Degree of Freedom Fiber Optic Positioning Mechanism,” Aerospace Conference, on. IEEE, 2009.
[4] S. Ueha, Y. Tomikawa, M. Kurosawa , and N. Nakamura, “Ultrasonic Motors Theory and Applications,” Clarendon Press, 1993.
[5] T. Maeno,“Recent Progress of Ultrasonic Motors in Japan, ” The First International Workshop on Ultrasonic Motors and Actuators, pp. 14-15, 2005.
[6] T. Takano, Y. Tomikawa, and C. Kusakabe, “Same-Phase Drive Type Ultrasonic Motors Using Two Degenerate Bending Vibration Modes of a Disk,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 39, no. 2, 1992.
[7] A. Yabuki, M. Aoyagi, Y. Tomikawa, and T. Takano, “Piezoelectric Linear Motors for Driving Head Element of CD-ROM,” Japanese Journal of Applied Physics, vol. 33, pp.5365-5369, 1994.
[8] W. Wischnewskiy, and S. Kovalev, “Two-Phase Piezoelectric Linear Actuators Based on The Longitudinal and Bending Acoustic Waves for Ultrasonic Motors,” Actuator Conference, 2002.
[9] M. Guo, S. Pan, J. Hu, C. Zhao, and S. Dong, “A Small Linear Ultrasonic Motor Utilizing Longitudinal And Bending Modes of a Piezoelectric Tube,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 61, no. 4, 2014.
[10] F. Giraud, “Practical Considerations in Ultrasonic Motor Selection,” Power Electronics and Motion Control Conference, 2010.
[11] S. Cagatay, B. Koc, and K. Uchino, “A 1.6-mm, Metal Tube Ultrasonic Motor,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 50, no. 7, 2003.
[12] B. He, K. Xu, and Z. P. Xing, “A Multi-Modes Cylindrical Piezoelectric Rotary Motor with a Single-Vibrator,” Piezoelectricity, Acoustic Waves and Device Applications (SPAWDA), 2012 Symposium on, 2012.
[13] Z. P. Xing, B. He, and K. Xu, “A Miniature Cylindrical Piezoelectric Motor with an Asymmetric Vibrator,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 60, no. 7, 2013.
[14] T. Morita, R. Yoshida, Y. Okamoto, M. K. Kurosawa, and T. Higuchi, “A Smooth Impact Rotation Motor Using a Multi-Layer Torsional Piezoelectric Actuator,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 46, no. 6, 1999.
[15] Z. Qi, P. C. Liang, M. Y. Ting, K. F. Rang, and F. Z. Hua, “Piezoelectric Rotary Motor Based on Active Bulk Torsional Element With Grooved Helical Electrodes,” IEEE/ASME Transactions on Mechatronics, vol. 17, no. 2, 2012.
[16] K. Nakamura, M. Kurosawa, and S. Ueha, “Characteristics of a Hybrid Transducer-Type Ultrasonic Motor,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 38, no. 3, 1991.
[17] J. Liu, S. Shi, W. Chen, and H. Dong, “Design and Primitive Study of a Cylindrical Traveling Wave Ultrasonic Motor Using Outer Excitation,” Optomechatronic Technologies (ISOT), 2010 International Symposium on, 2010.
[18] T. G. Zsurzsan, M. A. E. Andersen, Z. Zhang, and N. A. Andersen,“Investigating The Electromechanical Coupling in Piezoelectric Actuator Drive Motor Under Heavy Load,” Power Electronics and Application Conference and Exposition, 2015.
[19] T. G. Zsurzsan, C. Mangeot, M. A. E. Andersen, Z. Zhang, and N. A. Andersen, “Piezoelectric Stack Actuator Parameter Extraction With Hysteresis Compensation,” Power Electronics and Application Conference and Exposition, 2014.
[20] M. Takato, M. Tatani, J. Tanida, S. Yamasaki, K. Saito, and F. Uchikoba, “Piezo Impact Type MEMS Rotary Actuator and Application to Millimeter Size AI Controlled Robot,” Ultrasonics Symposium (IUS), 2013 IEEE International, 2013.
[21] M. Tatani, K. Maezumi, M. Takato, S. Yamasaki, H. Obara, Y. Naito, K. Iwata, Y. Okane, Y. Ishihara, T. Hidaka, Y. Asano, H. Oku, K. Sito, and F. Uchikoba, “Impact-Type MEMS Microrobot Controlled by Bare Chip IC of Hardware Neuron,” Electronics Packaging (ICEP), 2014 International Conference on, 2014.
[22] S. P. Salisbury, R. B. Mrad, D. F. Waechter, and S. E. Prasad, “Design, Modeling, and Closed-Loop Control of a Complementary Clamp Piezoworm Stage,” IEEE/ASME Transactions on Mechatronics, vol. 14, no. 6, 2009.
[23] F. J. Lin, Y. S. Kung, S. Y. Chen, and Y. H. Liu, “Recurrent Wavelet-Based Elman Neural Network Control for Multi-Axis Motion Control Stage Using Linear Ultrasonic Motors,” IET Electric Power Applications, vol. 4, no. 5, 2010.
[24] J. C. Shen, W. Y. Jywe, Q. Z. Lu, and C. H. Wu, “Control of a High Precision Positioning Stage,” Industrial Electronics and Applications (ICIEA), 2012 7th IEEE Conference on, 2012.
[25] J. C. Shen, Q. Z. Lu, C. H. Wu, and W. Y. Jywe, “Sliding-Mode Tracking Control With DNLRX Model-Based Friction Compensation for the Precision Stage,” IEEE/ASME Transactions on Mechatronics, vol. 19, no. 2, 2014.
[26] L. Wang, W. Rong, L. Qi, and Z. Qin, “Optimal Design of a 6-DOF Parallel Robot for Precise Manipulation,” Mechatronics and Automation, 2009. ICMA 2009. International Conference on, 2009.
[27] Z. Du, R. Shi, and W. Dong, “A Piezo-Actuated High-Precision Flexible Parallel Pointing Mechanism: Conceptual Design, Development, and Experiments,” IEEE Transactions on Robotics, vol. 30, no. 1, 2014.
[28] http://140.134.32.129/edu/eleme/position/4-2-2.htm
[29] Y. J. Wang, C. Chien, Y. B. Jiang, and K. C. Fu, “Design and Dynamic Analysis of a Piezoelectric Linear Stage for Pipetting Liquid Samples,” Smart Materials and Structures, vol. 26, 2017.
[30] M. Colakoglu, and K. L. Jerina, “Damping Behaviour of Cyclically Deformed 304 Stainless Steel,” Indian Journal of Engineering & Materials Sciences, vol. 10, pp. 480-485, 2003.
[31] G. Nader, E. C. N. Silva, and J. C. Adamowski, “Effective Damping Value of Piezoelectric Transducer Determined by Experimental Techniques and Numerical Analysis,” ABCM Symposium Series in Mechatronics, vol. 1, pp.271-279, 2004.
[32] S. S. Rao, “Mechanical Vibrations Fifth Edition in SI Unit,” Pearson, 2011.
[33] http://www3.ipc.org.es/dms/pdfs/Baldosas_ceramicas_caracteristicas_fisico-quimicas/Impact_resistance/4-4-1-D DOC12 ing-DEF_vPDF.pdf
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code