Responsive image
博碩士論文 etd-0723117-124437 詳細資訊
Title page for etd-0723117-124437
論文名稱
Title
導電高分子PEDOT:PSS修飾PDMS微凸塊結構之可撓性觸覺感測陣列
Flexible Tactile Sensor Array Utilizing Micro-structured PDMS Bumps with PEDOT:PSS Conductive Polymer
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
88
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-26
繳交日期
Date of Submission
2017-08-23
關鍵字
Keywords
電子皮膚、觸覺感測陣列、接觸電阻、導電高分子、可撓性感測器
electronic skin, tactile sensor array, flexible sensor, contact resistance, conductive polymer
統計
Statistics
本論文已被瀏覽 5722 次,被下載 0
The thesis/dissertation has been browsed 5722 times, has been downloaded 0 times.
中文摘要
本研究提出一種創新的觸覺感測陣列之製程方法,結合雷射加工、模轉印以及表面電漿處理技術,製備表面塗布導電高分子PEDOT:PSS之PDMS微凸塊結構,並且微凸塊陣列經導電高分子進行表面修飾後,將可應用於壓阻式觸覺感測。其製程方法,主要利用雷射燒蝕聚甲基丙烯酸甲酯(PMMA)基板,而基板表面在加工完成後,會因PMMA高分子結構的熱降解現象,產生許多離散分布的熱氣泡腔,若將其作為轉印模具,即可輕易複製出表面具有微結構分布的PDMS凸塊。並因為該凸塊微結構的設計,能夠有效地提升觸覺感測器在小壓力範圍0.2 ~ 0.7 N的響應能力。而材料試驗結果也表明,本研究所開發以PDMS為基底的觸覺感測陣列,彈性常數為8.3 N/mm。在正向作用力0 ~ 2.0 N範圍內,感測薄膜具有良好的彈性能力以及可再現性。除此之外,在觸覺感測的實際應用中,本研究將所製作的感測陣列,結合自組裝的陣列掃瞄系統,並於感測器表面施加靜態壓力以及動態的滑動軌跡,進行觸覺影像量測。由結果得知,該觸覺感測系統能夠分別辨識0.6、1.0 N的靜態壓力,以及其壓力分佈情形。另外,滑動軌跡的測試結果,可發現感測陣列隨著接觸物件的滑動軌跡而改變,僅有受到接觸物件影響的感測單元,會產生1 V以上的輸出電壓,其餘單元則沒有明顯的電壓輸出,故能夠辨識動態軌跡之觸覺影像。此研究提供了一種簡單而有效的製程方法,用以生產高效的可撓性觸覺感測器,並大大地具有電子皮膚之應用潛力。
Abstract
This work presents a novel flexible tactile sensor array fabricated with PEDOT:PSS conductive polymer modified micro-structured polydimethylsiloxane (PDMS) bumps. PDMS bump arrays with micro-structures are coated with PEDOT:PSS conductive polymer for resistive tactile sensing. The micro-structures on PDMS bumps are produced by replicating the formed thermal bubble cavities during laser ablation of polymethyl methacrylate (PMMA) substrate. The micro-structures on the PDMS bumps greatly enhance the small force response such that the developed sensor exhibits a good response for detecting forces ranging from 0.2 ~ 0.7 N. Results also indicate that the developed PDMS-based tactile sensor has good elastic property with the spring constant of 8.3 N/mm with excellent reproducibility. Additionally, in the practical application of the tactile sensing, the sensor array will be combined with array scanning system, and applied the static pressure, dynamic sliding trajectory on the sensor array to measure the tactile image. Results show that the tactile sensing system is able to identify the static pressure of 0.6, 1.0 N, and the pressure distribution. Moreover, the sliding trajectory can be found in the sensing array with the changes of contact condition. Only the sensing unit affected by the contact object will produce an output voltage of 1 V or more, and the remaining unit will have no significant voltage output. The developed sensor will be able to recognize the tactile image of the dynamic contact behavior. In this study, the developed method provides a simple yet high performance way to produce flexible tactile sensor for electronic skin applications.
目次 Table of Contents
中文摘要 i
Abstract ii
目錄 iii
圖目錄 v
表目錄 viii
符號表 ix
簡寫表 xi
第一章 緒論 1
1.1 前言 1
1.1.1 觸覺感測簡介 2
1.2 觸覺感測器種類與原理 4
1.2.1 電容式感測器 4
1.2.2 壓電式感測器 9
1.2.3 壓阻式感測器 12
1.2.4 其他類型觸覺感測器 16
1.3 研究動機與目的 18
1.4 論文架構 19
第二章 感測材料及實驗原理 20
2.1 感測材料 20
2.1.1 導電高分子簡介 20
2.1.2 導電高分子PEDOT:PSS 22
2.2 感測原理 24
2.2.1 壓阻式感測基本原理 24
2.2.2 本研究所發展之觸覺感測機制 27
第三章 元件製作與實驗架構 30
3.1 製程設計與原理 30
3.2 觸覺感測器製作 31
3.2.1 高分子傳統加工方法 34
3.2.2 二氧化碳雷射加工方法 34
3.2.3 表面電漿改質方法 36
3.3 接觸角量測系統 37
3.4 正向力量測系統 38
3.4 陣列式掃描系統 39
第四章 實驗結果與討論 42
4.1 表面改質結果 42
4.1.1 圖案化電極之電阻值 43
4.2 感測器結構分析 44
4.2.1 SEM表面觀察 44
4.2.2 ANSYS®結構模擬 46
4.3 感測器基本特性量測 48
4.3.1 感測單元之材料特性量測 48
4.3.2 感測單元之力響應量測 49
4.3.3 感測單元之重複性量測 51
4.4 觸覺影像量測 53
4.5 滑動軌跡量測 56
第五章 結論與未來展望 59
5.1 結論 59
5.2 未來展望 61
參考文獻 63
自述 71
參考文獻 References
[1] S. Aoyagi, T. Tanaka, and M. Minami, "Recognition of contact state of four layers arrayed type tactile sensor by using neural network," in Porceeding of 2006 IEEE International Conference on Information Acquisition, 2006, pp. 393-397.
[2] C. Lucarotti, C. Oddo, N. Vitiello, and M. Carrozza, "Synthetic and bio-artificial tactile sensing: a review," Sensors, vol. 13, pp. 1435-1466, 2013.
[3] G. Song, H. Wang, J. Zhang, and T. Meng, "Automatic docking system for recharging home surveillance robots," IEEE Transactions on Consumer Electronics, vol. 57, pp. 428-435, 2011.
[4] X. Wang, L. Dong, H. Zhang, R. Yu, C. Pan, and Z. L. Wang, "Recent progress in electronic skin," Advanced Science, vol. 2, pp. 150-169, 2015.
[5] J. M. Romano, K. Hsiao, G. Niemeyer, S. Chitta, and K. J. Kuchenbecker, "Human-inspired robotic grasp control with tactile sensing," IEEE Transactions on Robotics, vol. 27, pp. 1067-1079, 2011.
[6] A. M. Okamura, "Methods for haptic feedback in teleoperated robot-assisted surgery," The Industrial Robot, vol. 31, pp. 499-508, 2004.
[7] M. L. Hammock, A. Chortos, B. C. K. Tee, J. B. H. Tok, and Z. Bao, "25th anniversary article: the evolution of electronic skin (e‐skin): a brief history, design considerations, and recent progress," Advanced Materials, vol. 25, pp. 5997-6038, 2013.
[8] M. H. Lee and H. R. Nicholls, "Review article tactile sensing for mechatronics—a state of the art survey," Mechatronics, vol. 9, pp. 1-31, 1999.
[9] S. Gong, W. Schwalb, Y. Wang, Y. Chen, Y. Tang, J. Si, B. Shirinzadeh, and W. Cheng, "A wearable and highly sensitive pressure sensor with ultrathin gold nanowires," Nature Communications, vol. 5, pp. 1-8, 2014..
[10] L. Pan, A. Chortos, G. Yu, Y. Wang, S. Isaacson, R. Allen,Y. Shi, R. Dauskardt, and Z. Bao, "An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film," Nature Communications, vol. 5, pp.3002, 2014.
[11] C. Dagdeviren, Y. Su, P. Joe, R. Yona, Y. Liu, Y.-S. Kim,Y. A. Huang, A. R. Damadoran, J. Xia, and L. W. Martin, "Conformable amplified lead zirconate titanate sensors with enhanced piezoelectric response for cutaneous pressure monitoring," Nature Communications, vol. 5, pp. 4496, 2014.
[12] Z. Li and Z. L. Wang, "Air/liquid‐pressure and heartbeat‐driven flexible fiber nanogenerators as a micro/nano‐power source or diagnostic sensor," Advanced Materials, vol. 23, pp. 84-89, 2011.
[13] S. C. Mannsfeld, B. C. Tee, R. M. Stoltenberg, C. V. H. Chen, S. Barman, B. V. Muir, A. N. Sokolov, C. Reese, and Z. Bao, "Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers," Nature Materials, vol. 9, pp. 859-864, 2010.
[14] Y. Zang, F. Zhang, C.-a. Di, and D. Zhu, "Advances of flexible pressure sensors toward artificial intelligence and health care applications," Materials Horizons, vol. 2, pp. 140-156, 2015.
[15] G. A. Salvatore, N. Münzenrieder, T. Kinkeldei, L. Petti, C. Zysset, I. Strebel, L. Büthe, and G. Tröster, "Wafer-scale design of lightweight and transparent electronics that wraps around hairs," Nature Communications, vol. 5, pp.2982, 2014.
[16] S. M. Huang, M. R. Tofighi, and A. Rosen, "Novel microwave techniques for non-invasive intracranial pressure monitoring following traumatic brain injury," in Proceedings of 2014 IEEE Benjamin Franklin Symposium on Microwave and Antenna Sub-systems for Radar, Telecommunications, and Biomedical Applications (BenMAS), 2014, pp. 1-3.
[17] C. L. Choong, M. B. Shim, B. S. Lee, S. Jeon, D. S. Ko, T. H. Kang, J. Bae, S. H. Lee, K. E. Byun, J. Im, Y. J. Jeong, C. E. Park, J. J. Park, and U. I. Chung, "Highly stretchable resistive pressure sensors using a conductive elastomeric composite on a micropyramid array," Advanced Materials, vol. 26, pp. 3451-3458, 2014.
[18] C. Pan, Z. Li, W. Guo, J. Zhu, and Z. L. Wang, "Fiber-based hybrid nanogenerators for/as self-powered systems in biological liquid," Angewandte Chemie International Edition in English, vol. 50, pp. 11192-11196, 2011.
[19] A. Frutiger, J. T. Muth, D. M. Vogt, Y. Mengüç, A. Campo, A. D. Valentine, C. J. Walsh, and J. A. Lewis, "Capacitive soft strain sensors via multicore–shell fiber printing," Advanced Materials, vol. 27, pp. 2440-2446, 2015.
[20] Z. Chu, P. M. Sarro, and S. Middelhoek, "Silicon three-axial tactile sensor," Sensors and Actuators A: Physical, vol. 54, pp. 505-510, 1996.
[21] M. Leineweber, G. Pelz, M. Schmidt, H. Kappert, and G. Zimmer, "New tactile sensor chip with silicone rubber cover," Sensors and Actuators A: Physical, vol. 84, pp. 236-245, 2000.
[22] H. K. Lee, S. I. Chang, and E. Yoon, "A flexible polymer tactile sensor: fabrication and modular expandability for large area deployment," Journal of Microelectromechanical Systems, vol. 15, pp. 1681-1686, 2006.
[23] H. K. Kim, S. Lee, and K. S. Yun, "Capacitive tactile sensor array for touch screen application," Sensors and Actuators A: Physical, vol. 165, pp. 2-7, 2011.
[24] S. Takamatsu, T. Kobayashi, N. Shibayama, K. Miyake, and T. Itoh, "Meter-scale surface capacitive type of touch sensors fabricated by weaving conductive-polymer- coated fibers," in Proceedings of Design, Test, Integration and Packaging of MEMS/MOEMS, pp. 142-147, 2011.
[25] W. P. Mason, "Piezoelectricity, its history and applications," The Journal of the Acoustical Society of America, vol. 70, pp. 1561-1566, 1981.
[26] N. W. Hagood and A. von Flotow, "Damping of structural vibrations with piezoelectric materials and passive electrical networks," Journal of Sound and Vibration, vol. 146, pp. 243-268, 1991.
[27] P. S. Girão, P. M. P. Ramos, O. Postolache, and J. M. D. Pereira, "Tactile sensors for robotic applications," Measurement, vol. 46, pp. 1257-1271, 2013.
[28] K. Motoo, F. Arai, and T. Fukuda, "Piezoelectric vibration-type tactile sensor using elasticity and viscosity change of structure," IEEE Sensors Journal, vol. 7, pp. 1044-1051, 2007.
[29] C. Li, P. M. Wu, S. Lee, A. Gorton, M. J. Schulz, and C. H. Ahn, "Flexible dome and bump shape piezoelectric tactile sensors using PVDF-TrFE copolymer," Journal of Microelectromechanical Systems, vol. 17, pp. 334-341, 2008.
[30] C. H. Chung, W. B. Dong, and W. B. Lo, "Flexible piezoelectric tactile sensor with structural electrodes array for shape recognition system," in Proceedings of the International Conference on Sensing Technology, 2008, pp. 504-507.
[31] P. Yu, W. Liu, C. Gu, X. Cheng, and X. Fu, "Flexible piezoelectric tactile sensor array for dynamic three-axis force measurement," Sensors, vol. 16, p. 819, 2016.
[32] K. Weiss and H. Worn, "The working principle of resistive tactile sensor cells," in Proceedings of the IEEE International Conference on Mechatronics and Automation, 2005, vol. 1, pp. 471-476.
[33] T. V. Papakostas, J. Lima, and M. Lowe, "A large area force sensor for smart skin applications," in Proceedings of IEEE Sensors, vol.2, pp. 1620-1624, 2002.
[34] C. C. Wen and W. Fang, "Tuning the sensing range and sensitivity of three axes tactile sensors using the polymer composite membrane," Sensors and Actuators A: Physical, vol. 145-146, pp. 14-22, 2008.
[35] M. Y. Cheng, C. M. Tsao, Y. T. Lai, and Y. J. Yang, "A novel highly-twistable tactile sensing array using extendable spiral electrodes," in Proceedings of International Conference on Micro Electro Mechanical Systems, pp. 92-95, 2009.
[36] H. Park, Y. R. Jeong, J. Yun, S. Y. Hong, S. Jin, S. J. Lee, G. Zi, and J. S. Ha, "Stretchable array of highly sensitive pressure sensors consisting of polyaniline nanofibers and Au-coated polydimethylsiloxane micropillars," ACS Nano, vol. 9, pp. 9974-9985, 2015.
[37] C. C. Shiau, Y. C. Liao, Z. K. Kao, Y. C. Yeh, and Y. W. Lu, "Paper-based flexible taxel device using electrical contact resistance variation for elasticity measurement on biological objects," Sensors, vol. 13, pp. 4038-4044, 2013.
[38] M. Umemori, J. Sugawara, M. Kawauchi, and H. Mitani, "A pressure-distribution sensor (PDS) for evaluation of lip functions," American Journal of Orthodontics and Dentofacial Orthopedics, vol. 109, pp. 473-480, 1996..
[39] T. Mukai, "Soft areal tactile sensors with embedded semiconductor pressure sensors in a structured elastic body," Sensors, vol. 3, pp. 1518-1521, 2004.
[40] H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, and A. J. Heeger, "Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)X," Journal of the Chemical Society, Chemical Communications, vol. 16, pp. 578-580, 1977.
[41] C. K. Chiang, C. R. Fincher, Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau, and A. G. MacDiarmid, "Electrical conductivity in doped polyacetylene," Physical Review Letters, vol. 39, pp. 1098-1101, 1977.
[42] T. P. McAndrew, "Corrosion prevention with electrically conductive polymers," Trends in Polymer Science, vol. 1, pp. 7-12, 1997.
[43] A. Aleshin, S. Williams, and A. Heeger, "Transport properties of poly (3, 4-ethylenedioxythiophene)/poly (styrenesulfonate)," Synthetic Metals, vol. 94, pp. 173- 177, 1998.
[44] D. Li and L. J. Guo, "Organic thin film transistors and polymer light-emitting diodes patterned by polymer inking and stamping," Journal of Physics D: Applied Physics, vol. 41, p. 105-115, 2008.
[45] F. J. Liu, "Electrodeposition of manganese dioxide in three-dimensional poly (3, 4-ethylenedioxythiophene)–poly (styrene sulfonic acid)–polyaniline for supercapacitor," Journal of Power Sources, vol. 182, pp. 383-388, 2008.
[46] Y. Xia and J. Ouyang, "PEDOT: PSS films with significantly enhanced conductivities induced by preferential solvation with cosolvents and their application in polymer photovoltaic cells," Journal of Materials Chemistry, vol. 21, pp. 4927-4936, 2011.
[47] S. Kirchmeyer and K. Reuter, "Scientific importance, properties and growing applications of poly (3, 4-ethylenedioxythiophene)," Journal of Materials Chemistry, vol. 15, pp. 2077-2088, 2005.
[48] J. C. Wang, R. Karmakar, Y. J. Lu, C. Y. Huang, and K. C. Wei, "Characterization of piezoresistive PEDOT:PSS pressure sensors with inter-digitated and cross-point electrode structures," Sensors, vol. 15, p. 818, 2015.
[49] W. A. Daoud, J. H. Xin, and Y. S. Szeto, "Polyethylenedioxythiophene coatings for humidity, temperature and strain sensing polyamide fibers," Sensors and Actuators B: Chemical, vol. 109, pp. 329-333, 2005/09/14/ 2005.
[50] J. G. Webster, Tactile sensors for robotics and medicine: John Wiley & Sons, Inc., 1988.
[51] E. Little, "Strain gauge measurement," Strain Measurement in Biomechanics, ed: Springer, pp. 39-57, 1992.
[52] 張繼升, "可撓式正溫度係數高分子電阻薄膜之研究", 清華大學化學工程學系博士班學位論文, pp. 1-173, 2005
[53] R. S. Timsit, "Electrical contact resistance: properties of stationary interfaces," IEEE Transactions on Components and Packaging Technologies, Vol. 22, pp. 85-98, 1999.
[54] U. Wallrabe, H. Dittrich, G. Friedsam, T. Hanemann, J. Mohr, K. Müller, V. Piotter, P. Ruther, T. Schaller, and W. Zißler, "Micromolded easy-assembly multi fiber connector: RibCon®," Microsystem Technologies, vol. 8, pp. 83-87, 2002.
[55] J. Giboz, T. Copponnex, and P. Mélé, "Microinjection molding of thermoplastic polymers: a review," Journal of Micromechanics and Microengineering, vol. 17, pp. R96-R109, 2007.
[56] J. S. Ko, H. C. Yoon, H. Yang, H. B. Pyo, K. H. Chung, S. J. Kim, and Y. T. Kim, "A polymer-based microfluidic device for immunosensing biochips," Lab on a Chip, vol. 3, pp. 106-113, 2003.
[57] J. Narasimhan and I. Papautsky, "Polymer embossing tools for rapid prototyping of plastic microfluidic devices," Journal of Micromechanics and Microengineering, vol. 14, pp. 96-103, 2003.
[58] J. Li, D. Chen, and G. Chen, "Low‐temperature thermal bonding of PMMA microfluidic chips," Analytical Letters, vol. 38, pp. 1127-1136, 2005.
[59] A. Rasmussen, M. Gaitan, L. E. Locascio, and M. E. Zaghloul, "Fabrication techniques to realize CMOS-compatible microfluidic microchannels," Journal of Microelectromechanical Systems, vol. 10, pp. 286-297, 2001.
[60] S. M. Ford, B. Kar, S. Mcwhorter, J. Davies, S. A. Soper, M. Klopf, G. Calderon, and V. Saile, "Microcapillary electrophoresis devices fabricated using polymeric substrates and X‐ray lithography," Journal of Microcolumn Separations, vol. 10, pp. 413-422, 1998.
[61] C. K. N. Patel, "Continuous-wave laser action on vibrational-rotational transitions of CO2," Physical Review, vol. 136, pp. A1187-A1193, 1964
[62] M. Morra, E. Occhiello, R. Marola, F. Garbassi, P. Humphrey, and D. Johnson, "On the aging of oxygen plasma-treated polydimethylsiloxane surfaces," Journal of Colloid and Interface Science, vol. 137, pp. 11-24, 1990.
[63] M. Morra, E. Occhiello, R. Marola, F. Garbassi, P. Humphrey, and D. Johnson, "On the aging of oxygen plasma-treated polydimethylsiloxane surfaces," Journal of Colloid and Interface Science, vol. 137, pp. 11-24, 1990.
[64] J. Zhou, A. V. Ellis, and N. H. Voelcker, "Recent developments in PDMS surface modification for microfluidic devices," Electrophoresis, vol. 31, pp. 2-16, 2010.
[65] 汪欣怡, "PDMS軟式可調焦鏡片分析與製作," 臺灣科技大學機械工程研究所學位論文, pp.1-151, 2008.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.15.156.140
論文開放下載的時間是 校外不公開

Your IP address is 3.15.156.140
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code