Responsive image
博碩士論文 etd-0723117-153033 詳細資訊
Title page for etd-0723117-153033
論文名稱
Title
提升CMOS光伏元件光侷限效果之關鍵技術開發
Enabling techniques for enhanced light trapping in CMOS photovoltaic devices
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
108
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-22
繳交日期
Date of Submission
2017-09-05
關鍵字
Keywords
背面照光金氧半光伏元件、光侷限、多晶矽光柵反射鏡、表面抗反射結構、轉換效率
Conversion Efficiency, surface antireflection, Light trapping, Polysilicon grating reflector, Backside illuminated CMOS photovoltaic devices
統計
Statistics
本論文已被瀏覽 5636 次,被下載 8
The thesis/dissertation has been browsed 5636 times, has been downloaded 8 times.
中文摘要
本研究使用標準互補式CMOS(Complementary Metal-Oxide-Semiconductor)製程設計背面接觸式金氧半光伏元件,且利用CMOS製程閘極的多晶矽材料,設計具備光侷限特性之一維多晶矽次波長光柵反射鏡應用在金氧半光伏元件上。此結構在近紅外之TE極化光(Trans Electric)具有高反射的性質,可在元件內部達成二次反射的機制,讓光源能夠令基板再次吸收,並轉換成載子至電極,藉此來提升金氧半光伏元件之轉換效率。本論文藉由光侷限之多晶矽反射鏡,在TE極化光之元件基板厚度50 μm,可提升1.148倍之光電流。且在最佳效率之基板厚度150 μm,光電流也有1.122倍的提升幅度。另外本論文也在金氧半光伏元件表面製作光侷限結構,像是利用強鹼濕式蝕刻製作的金字塔抗反射結構,可將表面反射率降至8.93%,經由這製程其在光伏元件100 μm的基板厚度及10 mW的照光下轉換效率從9.21%增加至18.19%,且在50 μm基板厚度,其效率提升倍率高達1.981;藉由金屬輔助蝕刻製作的奈米線抗反射結構,反射率也可降至2.57%,其光伏元件在基板厚度150 μm,轉換效率從9.67%增加至12.39%,雖然此製程在效率提升效果沒有濕式蝕刻來的好,但多晶矽反射鏡在奈米線結構是有極化的差異,在150 μm基板厚度之TE極化光可提升1.09倍的光電流量。
Abstract
In this dissertation, we utilize the standard bulk CMOS process to implement backside-illuminated photovoltaic devices (PVs) with backside grating reflectors realized by the polysilicon gate layer in bulk CMOS. Such a high-index-contrast polysilicon grating reflector enables high optical reflection for near-infrared light with TE polarization. When this grating reflector is implemented in the rear of the CMOS PVs, it can redirect the transmitted light back to the bulk silicon substrate to be absorbed, thus enhancing the conversion efficiency of thin CMOS PV. We experimentally demonstrate a 1.148x improvement in photocurrent generated by a 50-μm-thick CMOS PV. A thicker (150-μm) CMOS PV also enables a 1.122x improvement in photocurrent. We apply silicon pyramid structures by alkaline wet etching to the illumination surface of CMOS PVs to reduce the reflectivity down to 8.93%. This leads to an increase of conversion efficiency from 9.21% to 18.19% in 100-μm-thick CMOS PV. However, the employment of pyramid structures reduces the efficacy of polysilicon grating reflectors on the rear of CMOS PVs due to the fact that the direction of light can not be maintained after passing the pyramid structures. On the contrary, if closely-packed silicon nanowire structure is applied on the illumination surface of CMOS PVs, the conversion efficiency is boosted from 9.67% to 12.39% due to its reduced surface reflectivity of 2.57%. In this case we can observe a 1.09x improvement in photocurrent if the incident light is TE-polarized.
目次 Table of Contents
中文審定書 i
英文審定書 ii
致謝 iii
中文摘要 iv
ABSTRACT v
內容目錄 vi
圖目錄 ix
表目錄 xiv
第一章 緒論 1
1.1前言 1
1.2光伏元件原理 2
1.3光伏元件參數介紹 2
1.3.1 短路電流(Short Circuit Current ,Isc) 4
1.3.2 開路電壓(Open-circuit voltage ,Voc) 5
1.3.3 填充因子(Fill factor, FF) 5
1.3.4 轉換效率(Conversion Efficiency, η) 6
1.4影響光伏元件特性之因素 6
1.5抗反射結構 10
1.5.1 金字塔抗反射結構原理及製程介紹 11
1.5.2 奈米線結構成長機制原理及介紹 13
1.6研究動機 17
1.7論文架構 20
第二章 下線晶片介紹與設計考量 22
2.1標準CMOS製程簡介與限制 22
2.2 CMOS光伏元件設計考量 24
2.2.1 一維多晶矽次波長光柵反射鏡模擬 25
2.2.2 CMOS光伏元件PN接面設計 28
2.3下線晶片介紹 31
第三章 CMOS光伏元件實驗製程 36
3.1使用儀器介紹 36
3.1.1 掃描式電子顯微鏡 36
3.1.2 電子束蒸鍍機 37
3.1.3 紫外可見近紅外光光譜儀 38
3.1.4 超臨界流體系統 39
3.2基板磨薄與拋光製程 41
3.3元件基板抗反射結構製作介紹 43
3.3.1 金字塔抗反射結構製作 44
3.3.2 奈米線抗反射結構製作 46
3.4光伏元件量測系統 47
3.4.1 量測系統架構 48
第四章 量測結果分析 51
4.1光伏元件後製程量測結果與分析 51
4.1.1 光伏元件特性的比較 51
4.1.2 磨薄製程與抗反射鍍膜之量測結果與討論 54
4.1.3 金字塔抗反射結構之量測結果與討論 57
4.1.4 奈米線抗反射結構之量測結果與討論 63
4.1.5 光源入射角度對不同製程之光伏元件量測結果及討論 67
4.1.6 光伏元件製程比較及討論 68
4.2多晶矽反射鏡對光伏元件之量測結果與分析 72
4.2.1 有無多晶矽反射鏡之量測結果 72
4.2.2 多晶矽反射鏡對於磨薄及抗反射鍍膜製程之量測結果 75
4.2.3 多晶矽反射鏡在抗反射結構之最佳效率的量測結果 78
第五章 結論 82
5.1結果與討論 82
5.2未來改善方向 84
參考文獻 86
參考文獻 References
[1] https://www.eurobserv-er.org/photovoltaic-barometer-2016/
[2] S. R. Wenham and M. A. Green, “Silicon Solar Cells,” Progress in photovoltaics: research and application, vol 4, 3-33, 1996.
[3] https://en.wikibooks.org/wiki/Introduction_to_Inorganic_Chemistry
[4] http://www.tf.uni-kiel.de/matwis/amat/semitech_en/kap_8/backbone/r8_4_1.html
[5] http://pveducation.org/pvcdrom/solar-cell-operation/effect-of-temperature
[6] K. Sato, M. Shikida, T. Yamashiro, K. Asaumi, Y. Iriye, and M. Yamamoto, "Anisotropic etching rates of single-crystal silicon for TMAH water solution as a function of crystallographic orientation," Sensors and Actuators A: Physical, vol. 73, pp. 131-137, 1999.
[7] M. Shikida, K. Sato, K. Tokoro, and D. Uchikawa, "Differences in anisotropic etching properties of KOH and TMAH solutions," Sensors and Actuators A: Physical, vol. 80, pp. 179-188, 2000.
[8] L. Wang, F. Wang, X. Zhang, N. Wang, Y. Jiang, Q. Hao, et al., "Improving efficiency of silicon heterojunction solar cells by surface texturing of silicon wafers using tetramethylammonium hydroxide," Journal of Power Sources, vol. 268, pp. 619-624, 2014.
[9] W. Lang, "Silicon microstructuring technology," Materials Science and Engineering: R: Reports, vol. 17, pp. 1-55, 1996.
[10] http://pveducation.org/pvcdrom/design/surface-texturing
[11] P. Papet, O. Nichiporuk, A. Kaminski, Y. Rozier, J. Kraiem, J.-F. Lelievre, A. Chaumartin, A. Fave, M. Lemiti, “Pyramidal texturing of silicon solar cell with TMAH chemical anisotropic etching,” Solar Energy Materials and Solar Cells , vol. 90, pp. 2319–2328, 2006.

[12] D. H. Macdonald, A. Cuevas, M. J. Kerr, C. Samundsett, D. Ruby, S. Winderbaum, et al., "Texturing industrial multicrystalline silicon solar cells," Solar Energy, vol. 76, pp. 277-283, 2004.
[13] J. S. You, D. Kim, J. Y. Huh, H. J. Park, J. J. Pak, Ch. S. Kang, “Experiments on anisotropic etching of Si in TMAH,” Solar Energy Materials and Solar Cells, vol. 66, pp. 37-44, 2001.
[14] Y. Saito and T. Kosuge, "Honeycomb-textured structures on crystalline silicon surfaces for solar cells by spontaneous dry etching with chlorine trifluoride gas," Solar Energy Materials and Solar Cells, vol. 91, pp. 1800-1804, 2007.
[15] L. Pirozzi, G. Arabito, F. Artuso, V. Barbarossa, U. Besi-Vetrella, S. Loreti, et al., "Selective emitters in buried contact silicon solar cells: Some low-cost solutions," Solar Energy Materials and Solar Cells, vol. 65, pp. 287-295, 2001.
[16] A. P. Alivisatos, “Semiconductor clusters, nanocrystals, and quantum dots,” Science, vol. 271, pp. 933-937, 1996.
[17] G. D'Arrigo, C. Spinella, G. Arena, and S. Lorenti, “Fabrication of miniaturised Si-based electrocatalytic membranes,” Materials Science and Engineering: C, vol. 23, pp. 13-18, 2003.
[18] E. A. Dalchiele, F. Martín, D. Leinen, R. E. Marotti, and J. R. Ramos-Barrado, "Synthesis, structure and photoelectrochemical properties of single crystalline silicon nanowire arrays," Thin Solid Films, vol. 518, pp. 1804-1808, 2010.
[19] M. Jeon, and K. Kamisako, “Synthesis and characterization of silicon nanowires using tin catalyst for solar cells application,” Materials Letters, vol. 63, no. 9, pp. 777-779, 2009.
[20] R. S. Wagner, and W. C. Ellis, “Vapor‐liquid‐solid mechanism of single crystal growth,” Applied Physics Letters, vol. 4, no. 5, pp. 89-90, 1964.
[21] L. Overmeyer, Y. Wang, and T. Wolfer, “Eutectic Bonding,” CIRP Encyclopedia of Production Engineering, Springer, Berlin Heidelberg, pp. 488-492, 2014.
[22] Y. Civale, L. Nanver, P. Hadley, and E. Goudena, “Aspects of silicon nanowire synthesis by aluminum-catalyzed vapor-liquid-solid mechanism,” Catalyst, vol.
4, pp. 2, 2004.
[23] H. Suzuki, H. Araki, M. Tosa, and T. Noda, “Formation of silicon nanowires by CVD using gold catalysts at low temperatures,” Materials Transactions, vol. 48, pp. 2202-2206, 2007.
[24] D. P. Yu, Z. G. Bai, Y. Ding, Q. L. Hang, H. Z. Zhang, J. J. Wang, Y. H. Zou, W. Qian, G. C. Xiong, H. T. Zhou, and S. Q. Feng, “Nanoscale silicon wires synthesized using simple physical evaporation,” Applied Physics Letters, vol. 72, pp. 3458-3460, 1998.
[25] A. M. Morales, and C. M. Lieber, “A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires,” Science, vol. 279, no. 5348, pp. 208, 1998.
[26] L. Schubert, P. Werner, N. D. Zakharov, G. Gerth, F. M. Kolb, L. Long, U. Gösele, and T. Y. Tan, “Silicon nanowhiskers grown on〈111〉Si substrates by molecular-beam epitaxy,” Applied Physics Letters, vol. 84, pp. 4968-4970, 2004.


[27] X. Li and P. W. Bohn, “Metal-assisted chemical etching in HF/H2O2 produces porous silicon,” Applied Physics Letters, vol. 77, pp. 2572-2574, 2000.
[28] S. Chattopadhyay, X. Li, and P. W. Bohn, “In-plane control of morphology and tunable photoluminescence in porous silicon produced by metal-assisted electroless chemical etching,” Journal of Applied Physics, vol. 91, pp. 6134-6140, 2002.
[29] S. Cruz, A. Hönig-d’Orville, and J. Müller, “Fabrication and optimization of porous silicon substrates for diffusion membrane applications,” Journal of The Electrochemical Society, vol. 152, pp. C418-C424, 2005.
[30] N. Megouda, T. Hadjersi, G. Piret, R. Boukherroub, and O. Elkechai, “Au-assisted electroless etching of silicon in aqueous HF/H2O2 solution,” Applied Surface Science, vol. 255, pp. 6210-6216, 2009.
[31] C.-L. Lee, K. Tsujino, Y. Kanda, S. Ikeda, and M. Matsumura, “Pore formation in silicon by wet etching using micrometre-sized metal particles as catalysts,” Journal of Materials Chemistry, vol. 18, pp. 1015-1020, 2008.
[32] H. Fang, Y. Wu, J. Zhao, and J. Zhu, “Silver catalysis in the fabrication of silicon nanowire arrays,” Nanotechnology, vol. 17, pp. 3768, 2006.
[33] http://www.cisl.columbia.edu/grads/tuku/research/
[34] W. P. Mulligan, D. H. Rose, M. J. Cudzinovic, D. M. De Ceuster, K. R. McIntosh, D. D. Smith, and R. M. Swanson, “Manufacture of solar cells with 21% efficiency,”19th European Photovoltaic Solar Energy Conference(EU PVSEC), pp. 387-390, 2004.
[35] N. J. Guilar, T. J. Kleeburg, A. Chen, D. R. Yankelevich, and R. Amirtharajah, “Integrated Solar Energy Harvesting and Storage,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 17, no. 5, pp. 627-637, 2009.
[36] E. G. Fong, N. J. Guilar, T. J. Kleeburg, H. Pham, D. R. Yankelevich, and R. Amirtharajah, “Integrated Energy-Harvesting Photodiodes With Diffractive Storage Capacitance,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 21, no. 3, pp. 486-497, 2013.
[37] S. Ayazian et al., "A photovoltaic-driven and energy-autonomous CMOS implantable sensor," IEEE Trans. Biomed. Circuits Syst, vol. 6, no. 4, pp. 336-343, 2012.
[38] B. Plesz et al., “Feasibility study of a CMOS-compatible integrated solar photovoltaic cell array,” in Proc. Symp. Design Test Integ. Packag. MEMS/MOEMS, pp. 403-406, 2010.
[39] http://www.bostonscientific.com/en-US/products/pacemakers.html
[40] S. Ayazian et al., "A photovoltaic-driven and energy-autonomous CMOS implantable sensor," IEEE Trans. Biomed. Circuits Syst., vol. 6, no. 4, pp. 336-343, 2012.
[41] A. Ahnood, K. E. Fox, N. V. Apollo, A. Lohrmann, D. J. Garrett, D. A. X. Nayagam, T. Karle, A. Stacey, K. M. Abberton, W. A. Morrison, A. Blakers, and S. Prawer, “Diamond encapsulated photovoltaics for transdermal power delivery,” Biosensors and Bioelectronics, vol. 77, pp. 589-597, 2016/03/15/, 2016.
[42] K. KÖ NIG, “Multiphoton microscopy in life sciences,” Journal of Microscopy, vol. 200, pp. 83-104, 2000.
[43] http://www.cypress.com/
[44] R. Magnusson and S. S. Wang, "New Principle for Optical Filters," Applied Physics Letters, vol. 61, pp. 1022-1024, Aug 31 1992.

[45] B. Cunningham, P. Li, B. Lin, and J. Pepper, "Colorimetric resonant reflection as a direct biochemical assay technique," Sensors and Actuators B-Chemical, vol. 81, pp. 316-328, Jan 5 2002.
[46] Y. Kanamori and K. Hane, "Broadband antireflection subwavelength gratings for polymethyl methacrylate fabricated with molding technique," Optical Review, vol. 9, pp. 183-185, 2002.
[47] C. F. R. Mateus, M. C. Y. Huang, Y. F. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, "Ultrabroadband mirror using low-index cladded subwavelength grating," IEEE Photonics Technology Letters, vol. 16, pp. 518-520, 2004.

[48] Z. Fu-Yun, W. Qi-Qi, Z. Xiao-Sheng, H. Wei, Z. Xin, and Z. Hai-Xia, "3D nanostructure reconstruction based on the SEM imaging principle, and applications," Nanotechnology, vol. 25, p. 185705, 2014.
[49] http://cmnst.ncku.edu.tw/files/15-1023-159877,c17606-1.php?Lang=zh-tw
[50] http://mcf.tamu.edu/instruments/uv-vis-nir-spectrophotometer/
[51] J. B. Rubin, L. B. Davenhall, C. M. V. Taylor, R. Dale Sivils, T. Pierce, and K. Tiefert, “Carbon dioxide-based supercritical fluids as IC manufacturing solvents,” ISEE Electronics and the Environment, pp. 13-20, 1999.
[52] W. H. Mullee, M. A. Biberger, and P. E. Schilling, “Removal of photoresist and residue from substrate using supercritical carbon dioxide process,” United State Patents, Patent 6500605 B1, 2002.
[53] K.-C. Chang, T.-M. Tsai, T.-C. Chang, Y.-E. Syu, C.-C. Wang, S.-L. Chuang, C.- H. Li, D.-S. Gan, and S. M. Sze, “Reducing operation current of Ni-doped silicon oxide resistance random access memory by supercritical CO2 fluid treatment,” Applied Physics Letters, vol. 99, pp. 263501, 2011.
[54] D. Iencinella, E. Centurioni, R. Rizzoli, and F. Zignani, "An optimized texturing process for silicon solar cell substrates using TMAH," Solar Energy Materials and Solar Cells, vol. 87, pp. 725-732, 2005.
[55] I. Zubel and M. Kramkowska, "The effect of isopropyl alcohol on etching rate and roughness of (1 0 0) Si surface etched in KOH and TMAH solutions," Sensors and Actuators A: Physical, vol. 93, pp. 138-147, 2001.
[56] O. Tabata, R. Asahi, H. Funabashi, K. Shimaoka, and S. Sugiyama, "Anisotropic etching of silicon in TMAH solutions," Sensors and Actuators A: Physical, vol. 34, pp. 51-57, 1992.
[57] O. Tabata, "pH-controlled TMAH etchants for silicon micromachining," Sensors and Actuators A: Physical, vol. 53, pp. 335-339, 1996.
[58] Y. J. Hung, S. L. Lee, K. C. Wu, and Y. T. Pan, "Realization and Characterization of Aligned Silicon Nanowire Array With Thin Silver Film," IEEE Photonics Journal, vol. 3, pp. 617-626, 2011.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code