Responsive image
博碩士論文 etd-0723118-114110 詳細資訊
Title page for etd-0723118-114110
論文名稱
Title
高熵合金之表面改質分析與奈米壓痕潛變行為
Surface modification analysis and nanoindentation creep behavior of high entropy alloys
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
160
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-24
繳交日期
Date of Submission
2018-08-23
關鍵字
Keywords
強化機制、奈米壓痕、潛變、活化能、超音波珠擊表面處理、高熵合金
nanoindentation, creep, strengthening mechanism, surface mechanical attrition treatment, activation energy, high entropy alloy
統計
Statistics
本論文已被瀏覽 5719 次,被下載 37
The thesis/dissertation has been browsed 5719 times, has been downloaded 37 times.
中文摘要
本文研究中,我們使用超音波珠擊和奈米壓痕設備作為研究工具,進行高熵合金的表面晶粒細化和潛變性能之研究,相關結果將在論文中分別進行描述和討論。
在表面細晶化處理之研究中,在兩個常用高熵合金,單相結構(面心FCC)Fe20Co20Ni20Cr20Mn20,與雙相結構(面心FCC+體心BCC) Fe18Co18Ni20Cr18Mn18Al9,其表面上進行超音波珠擊表面處理(SMAT),以提高其在室溫下的表面性質。在適當的處理下,晶粒尺寸可以從約50 μm減小到約0.1-1 μm,硬度從約2.5-5.0 GPa增加到約5.0-8.5 GPa,並且拉伸強度和伸長率可以增強接近一倍。由上述可以知道漸進的細化層和表面的強化層提升了高熵合金的機械性質。本研究並建立這些強化機制和疊加規則,且與實驗結果進行比較。
另一方面,利用了奈米壓痕系統在單相FCC結構Fe20Co20Ni20Cr20Mn20與FCC+BCC雙相結構Fe18Co18Ni20Cr18Mn18Al9的高熵合金,分別在溫度300-600oC範圍內且針對FCC(111)方向上的晶粒進行潛變實驗。透過相同應力水平(σ/ E)為2.5x10-3下進行分析,可以發現兩種合金的應力指數約為4,即應變速率敏感係數為0.25。這表示潛變的機制主要由差排進行主導。在固定的相同應力水平下,兩種合金的活化能分別為259±10和260±8 kJ/mol。然而,由於兩種合金在400-600oC會有析出反應,所以在固定結構條件下的實際活化能應大於260 kJ/mol,推測大約為280-300 kJ/mol。另外,兩種高熵合金較純鎳或鎳基超合金會有較大的活性體積,例如:在600oC時約250 Å3,比純鎳或鎳基超合金(~150 Å3或更小)要大,相關的潛變數據並會與鎳基超合金的潛變數據進行比較和討論。
Abstract
In this research, we used the ultrasonic mechanical surface attrition treatment and nanoindentation as research tools, conducting the surface grain refinement and creep properties of high-entropy alloys. The relevant results will be separately described and discussed in the manuscripts.
For the first part, most high entropy alloys (HEAs) are cast to form single phase solid solution. Their hardness and strength at room temperature under the as-cast condition are typically lower than expectation. In the research, the ultrasonic surface mechanical attrition treatment (SMAT) is conducted on the surface of two HEAs, face-centered cubic (FCC) single-phased Fe20Co20Ni20Cr20Mn20 and the face-centered plus body-centered cubic (FCC+BCC) dual-phased Fe18Co18Ni20Cr18Mn18Al9, to upgrade their room temperature surface characteristics. By proper SMAT multiple paths, the grain size can be reduced from ∼50 μm down to ∼0.1-1 μm, the hardness increased from ~2.5-5.0 GPa up to ~5.0-8.5 GPa, and the tensile strength and elongation can be nearly doubled. The gradient refined and strengthened surface layers are demonstrated to appreciably upgrade the HEA performance. The strengthening mechanisms and superposition rules are established and are compared well with the experimental measurements.
Additionally, the creep responses under nanoindentation for the FCC single-phased Fe20Co20Ni20Cr20Mn20 and the FCC+BCC dual-phased Fe18Co18Ni20Cr18Mn18Al9 HEAs are examined on the FCC (111) grains over the temperature regime from 300 to 600oC, under a normalized stress level (σ/E) of 2.5x10-3. The stress exponents for both alloys are found to be about 4, or the strain rate sensitivity is about 0.25, indicating the similar dislocation climb power law creep as the controlling dominant creep mechanism. The extracted activation energy for these two under the “constant normalized stress” is 259±10 and 260±8 kJ/mol, respectively. However, since there is precipitation effect in both alloys over ~400-600oC, the actual activation energy under the “constant structure condition” should be greater than 260 kJ/mol, presumably about 280-300 kJ/mol. The current two HEAs possess relatively large volume, for example, about 250 Å3 at 600oC, larger than those for pure Ni or typical Ni based superalloys (~150 Å3 or less). The current creep response is compared and discussed with that of the Ni based superalloys.
目次 Table of Contents
論文審定書 i
誌謝 ii
摘要 iv
Abstract vi
Content viii
List of Tables xii
List of Figures xiv
Chapter 1 Introduction 1
1-1 Introduction and application of high entropy alloys 1
1-2 Motivation 2
Chapter 2 Background and Literature Review 7
2-1 The History of alloys 7
2-2 Definition of high entropy alloys 7
2-3 Four core-effects of HEAs 10
2-3-1 High entropy effect 10
2-3-2 Severe lattice distortion effect 11
2-3-3 Sluggish diffusion effect 12
2-3-4 Cocktail effect 13
2-4 The solid solution of high entropy alloys 14
2-5 The behavior of high entropy alloys 15
2-5-1 Mechanical behavior 16
2-5-1-1 The mechanical behavior at room temperatures 16
2-5-1-2 The mechanical behavior at high temperatures 17
2-5-2 Chemical behavior 18
2-5-3 Physical behavior 19
2-6 Surface mechanical attrition treatment (SMAT) 20
2-6-1 Introduction of surface mechanical attrition treatment 20
2-6-2 Grain refinements 21
2-6-3 Applications of surface mechanical attrition treatment 23
2-7 Creep 24
2-7-1 Introduction of creep 25
2-7-2 The creep curve 25
2-7-3 Mechanisms of creep deformation 26
2-7-3-1 Dislocation glide 26
2-7-3-2 Dislocation creep 26
2-7-3-3 Diffusion creep 28
2-7-3-4 Grain boundary sliding 29
2-7-4 The indentation creep 30
Chapter 3 Experimental Procedures 33
3-1 Sample preparation 33
3-1-1 Raw material 33
3-1-2 Mechanical polishing and electropolishing process 33
3-1-3 Surface mechanical attrition treatment (SMAT) 34
3-1-4 Dual beam focused-ion-beam (FIB) 34
3-2 Property measurements and analyses 35
3-2-1 X-ray diffraction (XRD) 35
3-2-2 Vickers hardness (Hv) 36
3-2-3 Scanning electron microscopy (SEM) 36
3-2-4 Transmission electron microscopy (TEM) 37
3-2-5 Nanoindentation 37
3-2-6 Universal testing machine (UTM) 38
3-2-7 Differential scanning calorimeter (DSC) 38
Chapter 4 Results and Discussions 40
4-1 SMAT response 40
4-1-1 The experiment results for SMAT 40
4-1-1-1 XRD analysis 40
4-1-1-2 EDS and SEM analyses 41
4-1-1-3 EBSD analysis 42
4-1-1-4 TEM analysis 43
4-1-1-5 Hardness measurements 43
4-1-1-6 Tensile results 44
4-1-2 Discussions for SMAT 45
4-1-2-1 Strengthening analyses by rule of mixture 45
4-1-2-2 Strengthening analyses in terms of grain size and work hardening strengthening 48
4-2 Creep behavior 51
4-2-1 The experiment results and analyses for nanoindentation creep 51
4-2-1-1 XRD analysis 51
4-2-1-2 EDS analysis 52
4-2-1-3 SEM and EBSD analyses 52
4-2-1-4 Room and elevated temperature nanoindentation testing 52
4-2-2 Discussions for creep testing 57
4-2-2-1 In situ hardening during creep at 300 to 600oC 57
4-2-2-2 Correction for the activation energy for “constant structure condition” 58
4-2-2-3 Creep deformation mechanisms 60
Chapter 5 Conclusions 62
References 65
Tables 81
Figures 91
參考文獻 References
[1] J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau, S. Y. Chang, Nanostructured High‐Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater., 6 (2004), 299-303.
[2] B. Cantor, I. T. H. Chang, P. Knight, A. J. B. Vincent, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng. A, 375-377 (2004), 213-218.
[3] C. Shang, E. Axinte, W. Ge, Z. Zhang, Y. Wang, High-entropy alloy coatings with excellent mechanical, corrosion resistance and magnetic properties prepared by mechanical alloying and hot pressing sintering, Surfaces and Interfaces, 9 (2017), 36-43.
[4] M. G. Poletti, G. Fiore, F. Gili, D. Mangherini, L. Battezzati, Development of a new high entropy alloy for wear resistance: FeCoCrNiW0.3 and FeCoCrNiW0.3+5 at.% of C, Mater. Design, 115 (2017), 247-254.
[5] Y. Shi, B. Yang, P. K. Liaw, Corrosion-Resistant High-Entropy Alloys: A Review, Metals, 7 (2017), 43.
[6] Y. F. Kao, S. K. Chen, T. J. Chen, P. C. Chu, J. W. Yeh, S. J. Lin, Electrical, magnetic, and Hall properties of AlxCoCrFeNi high-entropy alloys, J. Alloy Compd., 509 (2011), 1607-1614.
[7] S. Shafeie, S. Guo, Q. Hu, H. Fahlquist, P. Erhart, A. Palmqvist, High-entropy alloys as high-temperature thermoelectric materials, J. Appl. Phys., 118 (2015), 184905.
[8] M. Sahlberg, D. Karlsson, C. Zlotea, U. Jansson, Superior hydrogen storage in high entropy alloys, Sci. Rep., 6 (2016), 36770.
[9] J. W. Yeh, Recent progress in high-entropy alloys, Ann. Chim. Sci. Mat., 31 (2006), 633-648.
[10] Z. P. Lu, H. Wang, M. W. Chen, I. Baker, J. W. Yeh, C. T. Liu, T. G. Nieh, An assessment on the future development of high-entropy alloys: summary from a recent workshop, Intermetallics, 66 (2015), 67-76.
[11] Y. Zhang, X. Yang, P. K. Liaw, Alloy design and properties optimization of high-entropy alloys, JOM, 64 (2012), 830-838.
[12] A. Gali, E. P. George, Tensile properties of high- and medium-entropy alloys, Intermetallics, 39 (2013), 74-78.
[13] Y. Zhang, T. T. Zuo, Z. Tang, M. C. Gao, K. A. Dahmen, P. K. Liaw, Z. P. Lu, Microstructures and properties of high-entropy alloys, Prog. Mater. Sci., 61 (2014), 1-93.
[14] J. Y. He, H. Wang, Y. Wu, X. J. Liu, H. H. Mao, T. G. Nieh, Z. P. Lu, Precipitation behavior and its effects on tensile properties of FeCoNiCr high-entropy alloys, Intermetallics, 79 (2016), 41-52.
[15] D. Wu, J. S. C. Jang, T. G. Nieh, Elastic and plastic deformations in a high entropy alloy investigated using a nanoindentation method, Intermetallics, 68 (2016), 118-127.
[16] Z. S. Nong, J. C. Zhu, R. D. Zhao, Prediction of structure and elastic properties of AlCrFeNiTi system high entropy alloys, Intermetallics, 86 (2017), 134-136.
[17] S. Zhao, X. Xie, G. D. Smith, S. J. Patel, Microstructural stability and mechanical properties of a new nickel-based superalloy, Mater. Sci. Eng. A, 355 (2003), 96-105.
[18] H. De Cicco, M. I. Luppo, L. M. Gribaudo, J. Ovejero-Garcia, Microstructural development and creep behavior in A286 superalloy, Mater. Charact., 52 (2004), 85-92.
[19] D. Cai, L. Xiong, W. Liu, G. Sun, M. Yao, Development of processing maps for a Ni-based superalloy, Mater. Charact., 58 (2017), 941-946.
[20] X. Yang, Y. Zhang, P. K. Liaw, Microstructure and compressive properties of TiZrNbMoVx high-entropy alloys, Proc. Eng., (2012), 292-298.
[21] Y. Zhang, X. F. Wang, G. L. Chen, Y. Qiao, Effect of Ti on microstructure and properties of CoCrCuFeNiTix high-entropy alloys, Ann. Chim. Sci. Matér., 31 (2006), 699-709.
[22] Y. J. Zhou, Y. Zhang, Y. L. Wang, G. L. Chen, Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties, Appl. Phys. Lett., 90 (2007), 181904.
[23] X. F. Wang, Y. Zhang, Y. Qiao, G. L. Chen, Novel microstructure and properties of multicomponent CoCrCuFeNiTix alloys, Intermetallics, 15 (2007), 357-362.
[24] C. Lin, H. Tsai, Evolution of microstructure, hardness, and corrosion properties of high-entropy Al0.5CoCrFeNi alloy, Intermetallics, 19 (2011), 288-294.
[25] Y. Zhang, G. L. Chen, C. L. Gan, Phase change and mechanical behaviors of TixCoCrFeNiCu1-yAly high entropy alloys, J. ASTM Int., 7 (2010), 102527.
[26] O. N. Senkov, G. B. Wilks, J. M. Scott, D. B. Miracle, Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys, Intermetallics, 19 (2011), 698-706.
[27] K. Lu, J. Lu, Surface nanocrystallization (SNC) of metallic materials-presentation of the concept behind a new approach, J. Mater. Sci. Technol., 15 (1999), 193-197.
[28] N. R. Tao, M. L. Sui, J. Lu, K. Lu, Surface nanocrystallization of iron induced by ultrasonic shot peening, Nanostruct. Mater., 11 (1999), 433-440.
[29] G. Liu, J. Lu, K. Lu, Surface nanocrystallization of 316L stainless steel induced by ultrasonic shot peening, Mater. Sci. Eng. A, 286 (2000), 91-95.
[30] N. R. Tao, Z. B. Wang, W. P. Tong, M. L. Sui, J. Lu, K. Lu, An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment, Acta Mater., 50 (2002), 4603-4616.
[31] K. Y. Zhu, A. Vassel, F. Brisset, K. Lu, J. Lu, Nanostructure formation mechanism of -titanium using SMAT, Acta Mater., 52 (2004), 4101-4110.
[32] X. Wu, N. R. Tao, Y. Hong, G. Liu, B. Xu, J. Lu, K. Lu, Strain-induced grain refinement of cobalt during surface mechanical attrition treatment, Acta Mater., 53 (2005), 681-691.
[33] T. Roland, D. Retraint, K. Lu, J. Lu, Fatigue life improvement through surface nanostructuring of stainless steel by means of surface mechanical attrition treatment, Scr. Mater., 54 (2006), 1949-1954.
[34] T. H. Fang, W. L. Li, N. R. Tao, K. Lu, Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper, Science, 331 (2011), 1587-1590.
[35] J. Azadmanjiri, C. C. Berndt, A. Kapoor, C. Wen, Development of surface nano-crystallization in alloys by surface mechanical attrition treatment (SMAT), Crit. Rev. Solid State, 40 (2015), 164-181.
[36] B. Schuh, F. Mendez-Martin, B. Völker, E. P. George. H.Clemens, R. Pippan, A. Hohenwarter, Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation, Acta Mater., 96 (2015), 258-268.
[37] Y. M. Wang, E. Ma, Strain hardening, strain rate sensitivity, and ductility of nanostructured metals, Mater. Sci. Eng. A, 375 (2004) 46-52.
[38] S. Praveen, H. S. Kim, High-entropy alloys: Potential candidates for high-temperature applications-An overview, Adv. Eng. Mater., (2017), 1700645.
[39] M. F. Ashby, Materials Selection in Mechanical Design, Fourth Edition, (2011).
[40] P. Gaskell, A New Introdution to Bibliography, (1995).
[41] R. A. Swalin, Thermodynamics of Solid, (1972).
[42] A. Ruffa, Thermal potential, mechanical instability, and melting entropy, Phys. Rev. B, 25 (1982), 5895.
[43] C. A. Gearhart, Einstein before 1905: The early papers on statistical mechanics, Am. J. Phys., 58 (1990), 468-480.
[44] B. S. Murty, J. W. Yeh, S. Ranganathan, High entropy alloys, (2014).
[45] J. W. Yeh, Y. L. Chen, S. J. Lin, S. K. Chen, High-entropy alloys-A new era of exploitation, Mater. Sci. Forum, 560 (2007), 1-9.
[46] Y. Zhang, X. Yang, P. K. Liaw, Alloy design and properties optimization of high-entropy alloys, JOM, 64 (2012), 830-838.
[47] Y. Zhang, Y. J. Zhou, J. P. Lin, G. L. Chen, P. K. Liaw, Solid-solution phase formation rules for multi-component alloys, Adv. Eng. Mater., 10 (2008), 534-538.
[48] O. N. Senkov, G. B. Wilks, D. B. Miracle, C. P. Chuang, P. K. Liaw, Refractory high-entropy alloys, Intermetallics, 18 (2010), 1758-1765.
[49] C. Li, J. C. Li, M. Zhao, Q. Jiang, Effect of alloying elements on microstructure and properties of multiprincipal elements high entropy alloys, J. Alloy Compd., 475 (2009), 752-757.
[50] Y. Zhang, Y. J. Zhou, Solid solution formation criteria for high entropy alloys. Mater. Sci. Forum, 561-565 (2007), 1731-1739.
[51] Y. Zhang, Mechanical properties and structures of high entropy alloys and bulk metallic glasses composites, Mater. Sci. Forum, 654-656 (2010), 1058-1061.
[52] X. Yang, Y. Zhang, Prediction of high-entropy stabilized solid solution in multi-component alloys, Mater. Phys. Chem., 132 (2012), 233-238.
[53] C. Lin, H. Tsai, H. Bor, Effect of aging treatment on microstructure and properties of high-entropy Cu0.5CoCrFeNi alloy, Intermetallics, 18 (2010), 1244-1250.
[54] X. Q. Gao, K. Zhao, H. B. Ke, D. W. Ding, W. H. Wang, H. Y. Bai, High mixing entropy bulk metallic glasses, J. Non-Cryst. Solids, 357 (2011), 3557-3560.
[55] Y. Zhang, T. T. Zuo, P. K. Liaw, Y. Q. Cheng, High-entropy alloys with high saturation magnetization and electrical resistivity, Sci. Rep., 3 (2013), 1455.
[56] P. W. Atkins, Atkins' physical chemistry, Oxford, NY, (2010).
[57] S. Guo, C. Ng, J. Lu, C. T. Liu, Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys, J. Appl. Phys., 109 (2011), 103505.
[58] L. A. Dominguez, R. Goodall, I. Todd, Prediction and validation of quaternary high entropy alloys using statistical approaches, Mater. Sci. Tech-Lond., 31 (2015), 1201-1206.
[59] W. H. Liu, Y. Wu, J. Y. He, T. G. Nieh, Z. P. Lu, Grain growth and the Hall–Petch relationship in a high-entropy FeCrNiCoMn alloy, Scr. Mater., 68 (2013), 526-529.
[60] S. Ranganathan, Alloyed pleasures: multimetallic cocktails, Curr. Sci., 85 (2003), 1404-1406.
[61] J. Y. He, W. H. Liu, H. Wang, Y. Wu, X. J. Liu, T. G. Nieh, Z. P. Lu, Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system, Acta Mater., 62 (2014), 105-113.
[62] M. H. Tsai, J. W. Yeh, High-entropy alloys: A critical review, Mater. Res. Lett., 2 (2014), 107-123.
[63] S. Singh, N. Wanderka, B. S. Murty, U. Glatzel, J. Banhart, Decomposition in multicomponent AlCoCrCuFeNi high-entropy alloy. Acta Mater., 59 (2011), 182-190.
[64] V. Dolique, A. -L. Thomann, P. Brault, Y. Tessier, P. Gillon, Complex structure/composition relationship in thin films of AlCoCrCuFeNi high entropy alloy, Mater. Chem. Phys., 117 (2009), 142-147.
[65] V. Dolique, A. -L. Thomann, P. Brault, Y. Tessier, P. Gillon, Thermal stability of AlCoCrCuFeNi high entropy alloy thin films studied by in-situ XRD analysis, Surf. Coat. Technol., 204 (2010), 1989-1992.
[66] N. H. Tariq, M. Naeem, B. A. Hasan, J. I. Akhter, M. Siddique, Effect of W and Zr on structural, thermal and magnetic properties of AlCoCrCuFeNi high entropy alloy, J. Alloys Compd., 556 (2013), 79-85.
[67] K. B. Zhang, Z. Y. Fu, J. Y. Zhang, W. M. Wang, H. Wang, Y. C. Wang, Q. J. Zhang, Characterization of nanocrystalline CoCrFeNiCuAl high-entropy alloy powder processed by mechanical alloying, Mater. Sci. Forum, 620-622 (2009), 383-386.
[68] K. B. Zhang, Z. Y. Fu, J. Y. Zhang, J. Shi, W. M. Wang, H. Wang, Y. C. Wang, Q. J. Zhang, Nanocrystalline CoCrFeNiCuAl high-entropy solid solution synthesized by mechanical alloying, J. Alloys Compd., 485 (2009), L31-L34.
[69] U. S. Hsu, U. D. Hung, J. W. Yeh, S. K. Chen, Y. S. Huang, C. C. Yang, Alloying behavior of iron, gold and silver in AlCoCrCuNi-based equimolar high-entropy alloys, Mater. Sci. Eng. A, 460-461 (2007), 403-408.
[70] C. C. Tung, J. W. Yeh, T. T. Shun, S. K. Chen, Y. S. Huang, H. C. Chen, On the elemental effect of AlCoCrCuFeNi high-entropy alloy system, Mater. Lett., 61 (2007), 1-5.
[71] L. H. Wen, H. C. Kou, J. S. Li, H. Chang, X. Y. Xue, L. Zhou, Effect of aging temperature on microstructure and properties of AlCoCrCuFeNi high-entropy alloy, Intermetallics, 17 (2009), 266-269.
[72] A. V. Kuznetsov, D. G. Shaysultanov, N. D. Stepanov, G. A. Salishchev, O. N. Senkov, Tensile properties of an AlCrCuNiFeCo high-entropy alloy in as-cast and wrought conditions, Mater. Sci. Eng. A, 533 (2012), 107-118.
[73] A. V. Kuznetsov, D. G. Shaysultanov, N. D. Stepanov, G. A. Salishchev, O. N. Senkov, Superplasticity of AlCoCrCuFeNi high entropy alloy, Mater. Sci. Forum, 735 (2012), 146-151.
[74] S. Singh, N. Wanderka, K. Kiefer, K. Siemensmeyer, J. Banhart, Effect of decomposition of the Cr-Fe-Co rich phase of AlCoCrCuFeNi high entropy alloy on magnetic properties, Ultramicroscopy, 111 (2011), 619-622.
[75] Y. X. Zhuang, W. J. Liu, Z. Y. Chen, H. D. Xue, J. C. He, Effect of elemental interaction on microstructure and mechanical properties of FeCoNiCuAl alloys, Mater. Sci. Eng. A, 556 (2012), 395-399.
[76] J. Y. He, C. Zhu, D. Q. Zhou, W. H. Liu, T. G. Nieh, Z. P. Lu, Steady state flow of the FeCoNiCrMn high entropy alloy at elevated temperatures, Intermetallics, 55 (2014), 9-14.
[77] W. Kai, C. C. Li, F. P. Cheng, K. P. Chu, R. T. Huang, L. W. Tsay, J. J. Kai, Air-oxidation of FeCoNiCr-based quinary high-entropy alloys at 700-900°C, Corros. Sci., 121 (2017), 116-125.
[78] S. G. Ma, Y. Zhang, Effect of Nb addition on the microstructure and properties of AlCoCrFeNi high entropy alloys, Mater. Sci. Eng. A, 253 (2012), 480-486.
[79] Y. J. Zhou, Y. Zhang, T. N. Kim, G. L. Chen, Microstructure characterizations and strengthening mechanism of multi-principal component AlCoCrFeNiTi0.5 solid solution alloy with excellent mechanical properties, Mater. Lett., 62 (2008), 2673-2676.
[80] F. J. Wang, Y. Zhang, G. L. Chen, H. A. Davies, Cooling rate and size effect on the microstructure and mechanical properties of AlCoCrFeNi high entropy alloy, J. Eng. Mater. Technol., 131 (2009), 034501-034503.
[81] C. Y. Hsu, W. R. Wang, W. Y. Tang, S. K. Chen, J. W. Yeh, Microstructure and mechanical properties of new AlCoxCrFeMo0.5Ni high-entropy alloys, Adv. Eng. Mater., 12 (2010), 44-49.
[82] C. C. Juan, C. Y. Hsu, C. W. Tsai, W. R. Wang, T. S. Sheu, J. W. Yew, S. K. Chen, On microstructure and mechanical performance of AlCoCrFeMo0.5Nix high-entropy alloys, Intermetallics, 32 (2013), 401-407.
[83] D. G. Shaysultanov, N. D. Stepanov, A. V. Kuznetsov, G. A. Salishchev, O. N. Senkov, Phase composition and superplastic behaviour of a wrought AlCoCrCuFeNi high-entropy alloy, JOM, 65 (2013), 1815-1828.
[84] W. Kai, C. C. Li, F. P. Cheng, K. P. Chu, R. T. Huang, L. W. Tsay, J. J. Kai, Air-oxidation of FeCoNiCr-based quinary high-entropy alloys at 700-900°C, Corros. Sci., 121 (2017), 116-125.
[85] W. Kai, W. L. Jang, R. T. Huang, C. C. Lee, H. H. Hsieh, C. F. Du, Air Oxidation of FeCoNi-Base Equi-Molar Alloys at 800-1000°C, Oxid. Met., 63 (2005), 169-192.
[86] C. P. Lee, Y. Y. Chen, C. Y. Hsu, J. W. Yeh, H. C. Shih, The effect of boron on the corrosion resistance of the high entropy alloys Al0.5CoCrCuFeNiBx, J. Electrochem. Soc., 154 (2007), C424-C430.
[87] S. H. Chen, Y. F. Kao, Near-constant resistivity in 4.2-360 K in a B2 Al2.08CoCrFeNi, AIP Advances, 2 (2012), 012111.
[88] H. Gleiter, Nanostructured materials: basic concepts and microstructure, Acta Mater., 48 (2000), 1-29.
[89] J. S. C. Jang, C. C. Koch, The hall-petch relationship in nanocrystalline iron produced by ball milling, Scr. Metall. Mater., 24 (1990), 1599-1604.
[90] D. G. Morris, Mechanical behavior of nanostuctured materials, Trans. Tech. Publications Ltd., Germany, (1998).
[91] C. C. Koch, The synthesis of non-equilibrium structures by ball-milling, Mater. Sci. Forum, 88-90 (1992), 243-262.
[92] R. Z. Valiev, A. V. Korznikov, R. R. Mulyukov, Structure and properties of ultrafine-grained materials produced by severe plastic deformation, Mater. Sci. Eng. A, 168 (1993), 141-148.
[93] U. Erb, A. M. EI-Sherik, G. Palumbo, K. T. Aust, Synthesis, structure and properties of electroplated nanocrystalline materials, Nonostruct. Mater., 2 (1993), 383-390.
[94] K. Lu, J. Lu, Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment, Mater. Sci. Eng. A, 375-377 (2004), 38-45.
[95] K. Lu, Nanocrystalline metals crystallized from amorphous solids: nanocrystallization, structure, and properties, Mater. Sci. Eng. R, 16 (1996), 161-221.
[96] N. R. Tao, H. W. Zhang, J. Lu, K. Lu, Development of nanostructures in metallic materials with low stacking fault energies during surface mechanical attrition treatment (SMAT), Mater. Trans., 44 (2003), 1919-1925.
[97] W. Y. Tsai, J. C. Huang, Y. J. Gao, Y. L. Chung, G. R. Huang, Relationship between microstructure and properties for ultrasonic surface mechanical attrition treatment, Scr. Mater., 103 (2015), 45-48.
[98] D. M. Stefanescu, Science and engineering of casting solidification, Springer, Germany, (2002).
[99] E. O. Hall, The deformation and ageing of mild steel: III discussion of results, Proc. Phys. Soc. Lond. B, 64 (1951), 747-753.
[100] N. Petch, The cleavage strength of polycrystals, J. Iron. Steel Inst., 174 (1953), 25-28.
[101] D. Tabor, The hardness of metals, Oxford, UK, (1951).
[102] T. G. Nieh, J. G. Wang, Hall–Petch relationship in nanocrystalline Ni and Be-B alloys, Intermetallics, 13 (2005), 377-385.
[103] J. Schiøtz, T. Vegge, F. D. Di Tolla, K. W. Jacobsen, Atomic-scale simulations of the mechanical deformation of nanocrystalline metals, Phys. Rev. B, 60 (1999), 11971-11983.
[104] C. T. Liu, L. Heatherly, D. S. Easton, C. A. Carmichael, J. H. Schneibel, C. H. Chen, J. L. Wright, M. H. Yoo, J. A. Horton, A. Inoue, Test environments and mechanical properties of Zr-base bulk amorphous alloys, Metall. Mater. Trans. A, 29 (1998), 1811-1820.
[105] W. J. Wright, R. B. Schwarz, W. D. Nix, Localized heating during serrated plastic flow in bulk metallic glasses, Mater. Sci. Eng. A, 319-321 (2001), 229-232.
[106] Y. Liu, B. Jin, J. Lu, Mechanical properties and thermal stability of nanocrystallized pure aluminum produced by surface mechanical attrition treatment, Mater. Sci. Eng. A, 636 (2015), 446-451.
[107] T. Balusamy, T. S. N. Sankara Narayanan, K. Ravichandran, Effect of surface mechanical attrition treatment (SMAT) on boronizing of EN8 steel, Surf. Coat. Tech., 213 (2012), 221-228.
[108] Y. Sun, Sliding wear behaviour of surface mechanical attrition treated AISI 304 stainless steel, Tribol. Int., 57 (2013), 67-75.
[109]M. E. Kassner, M. -T. Pérez-Prado, Five-power-law creep in single phase metals and alloys, Prog. Mater. Sci., 45 (2000), 1-102.
[110] G. E. Dieter, Mechanical metallurgy, McGraw-Hill, NY, (1988).
[111] M. F. Ashby, H. J. Frost, Deformation mechanism maps-The plasticity and creep of metals and ceramics, Oxford, UK, (1982).
[112] J. Weertman, Theory of steady-state creep based on dislocation climb, J. Appl. Phys., 26 (1955), 1213.
[113] J. Harper, J. E. Dorn, Viscous creep of aluminum near its melting temperature, Acta Metall., 5 (1957), 654-665.
[114] F. R. N. Nabarro, Report on conference on strength of solids, The Physical Society, London, (1948).
[115] C. Herring, Diffusional viscosity of a polycrystalline solid, J. Appl. Phys., 21 (1950), 437-445.
[116] T. G. Langdon, Identifiying creep mechanisms at low stresses, Mater. Sci. Eng. A, 283 (2000), 266-273.
[117] R. L. Coble, A model for boundary diffusion controlled creep in polycrystalline materials, J. Appl. Phys., 34 (1963), 1679-1682.
[118] H. C. Chang, N. J. Grant, Mechanism of grand boundary sliding, JOM, 8 (1956), 169-170.
[119] F. N. Rhines, W. E. Bond, M. A. Kissel, Influence of alloying upon grain-boundary creep, NACA, Washington, (1956).
[120] W. Rosenhain, D. Ewwn, The intercrystalline cohesion of metals, J. Inst. Met., 10 (1913), 119-149.
[121] W. B. Li, J. L. Henshall, R. M. Hooper, K. E. Easterling, The mechanisms of indentation creep, Acta Metall. Mater., 39 (1991), 3099-3110.
[122] G. R. Huang, W. Y. Tsai, J. C. Huang, C. K. Hu, Analytical modelling for ultrasonic surface mechanical attrition treatment, AIP Advances, 5 (2015), 077126.
[123] ASTM E8 / E8M-13, Standard test methods for tension testing of metallic materials, ASTM International, West Conshohocken, PA, (2013).
[124] L. Chen, F. Yuan, P. Jiang, J. Xie, X. Wu, Mechanical properties and deformation mechanism of Mg-Al-Zn alloy with gradient microstructure in grain size and orientation, Mater. Sci. Eng. A, 694 (2017), 98-109.
[125] X. Yang, X. Ma, J. Moering, H. Zhou, W. Wang, Y. Gong, J. Tao, Y. Zhu, X. Zhu, Influence of gradient structure volume fraction on the mechanical properties of pure copper, Mater. Sci. Eng. A, 645 (2015), 280-285.
[126] I. Brooks, P. Lin, G. Palumbo, G. D. Hibbard, U. Erb, Analysis of hardness-tensile strength relationships for electroformed nanocrystalline materials, Mater. Sci. Eng. A, 491 (2008), 412-419.
[127] G. D. Sathiaraj, P. P. Bhattacharjee, Effect of starting grain size on the evolution of microstructure and texture during thermo-mechanical processing of CoCrFeMnNi high entropy alloy, J. Alloys Compd., 647 (2015), 82-96.
[128] F. Chen, S. Chen, X. H. Dong, C. Y. Li, X. T. Hong, X. P. Zhang, Size effects on tensile strength of aluminum-bronze alloy at room temperature, Mater. Des., 85 (2015), 778-784.
[129] E. Hug, P. A. Dubos, C. Keller, L. Duchêne, A. M. Habraken, Size effects and temperature dependence on strain-hardening mechanisms in some face centered cubic materials, Mech. Mater., 91 (2015), 136-151.
[130] X. Zhou, H. Zhou, X. Li, C. Chen, Size effects on tensile and compressive strengths in metallic glass nanowires, J. Mech. Phys. Solids, 84 (2015), 130-144.
[131] U. F. Kocks, Superposition of alloy Hardening, strain Hardening and dynamic Recovery, Fifth International Conference on the Strength of Metals and Alloys, Pergamon, Turkey, (1979),1661-1680.
[132] A. J. Ardell, Precipitation hardening, Metall. Trans., 16A (1985), 2131-2165.
[133] J. C. Huang, A. J. Ardell, Addition rules and the contribution of ’ precipitates to strengthening of aged Al-Li-Cu alloys, Acta Metall., 36 (1988), 2995-3006.
[134] P, Hanggi, P. Talkner, M. Borkovec, Reaction-rate theory: fifty years after Kramers, Rev. Mod. Phys., 62 (1990), 251.
[135] D. Caillard, J. L. Martin, Thermally activated mechanisms in crystal plasticity, Elsevier Science, (2003).
[136] W. Blum, Discussion: Activation volumes of plastic deformation of crystals, Scr. Mater., 146 (2018), 27-30.
[137] C. L. Wang, M. Zhang, T. G. Nieh, Nanoindentation creep of nanocrystalline nickel at elevated temperatures, J. Phys. D: Appl. Phys., 42 (2009), 115405-115412.
[138] H. Conrad, High strength materials, John Wiley & Sons, Inc., (1965).
[139] R. J. Asaro, S. Suresh, Mechanistic models for the activation volume and rate sensitivity in metals with nanocrystalline grains and nano-scale twins, Acta Mater., 53 (2005), 3369-3382.
[140] C. D. Gu, J. S. Lian, Q. Jiang, W. T. Zeng, Experimental and modelling investigations on strain rate sensitivity of an electrodeposited 20 nm grain sized Ni, Phys. D: Appl. Phys., 40 (2007), 7440-7446.
[141] C. Gu, J. Lian, Q. Jiang, Z. Jiang, Ductile-brittle-ductile transition in an electrodeposited 13 nanometer grain sized Ni-8.6 wt.% Co alloy, Mater. Sci. Eng. A, 459 (2007), 75-81.
[142] S. Cheng, E. Ma, Y. M. Wang, L. J. Kecskes, K. M. Youssef, C. C. Koch, U. P. Trociewitz, K. Han, Tensile properties of in situ consolidated nanocrystalline Cu, Acta Mater., 53 (2005), 1521-1533.
[143] Q. Wei, S. Cheng, K. T. Ramesh, E. Ma, Effect of nanocrystalline and ultrafine grain sizes on the strain rate sensitivity and activation volume: fcc versus bcc metals, Mater. Sci. Eng. A, 381 (2004), 71-79.
[144] J. K. Mason, A. C. Lund, C. A. Schuh, Determination the activation energy and volume for the onset of plasticity during nanoindentation, Phys. Rev. B, 73 (2006) 054102.
[145] C. Zhu, Z. P. Lu, T. G. Nieh, Incipient plasticity and dislocation nucleation of FeCoCrNiMn high-entropy alloy, Acta Mater., 61 (2013) 2993-3001.
[146] D. Wu, T. G. Nieh, Incipient plasticity and dislocation nucleation in body-centered cubic chromium, Mater. Sci. Eng. A, 609 (2014), 110-115.
[147] W. M. Choi, S. Jung, Y. H. Jo, S. Lee, B. J. Lee, Design of new face-centered cubic high entropy alloys by thermodynamic calculation, Met. Mater. Int., 23 (2017), 839-847.
[148] F. Otto, A. Dlouhý, K.G. Pradeep, M. Kubenova, D. Raabe, G. Eggeler, E.P. George, Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after prolonged anneals at intermediate temperatures, Acta Mater., 112 (2016), 40-52.
[149] M. Vaidya, S. Trubel, B. S. Murty, G. Wilde, S. V. Divinski, Ni tracer diffusion in CoCrFeNi and CoCrFeMnNi high entropy alloys, J. Alloy compd., 688 (2016), 994-1001.
[150] R. P. Delal, C. R. Thomas, L. E. Dordi, “Superalloys”, The Metallurgical Society, Warrendale, USA, (1984).
[151] C. T. Sims, N. S. Stoloff, and W. C. Hagel, “Superalloys II”, John Wiley & Sons, NY, (1987).
[152] J. K. Wright and R. N. Wright, Creep rupture of pressurized alloy 617 tubes, INL/EXT-13-30251, Idaho National Laboratory, Sept., (2013).
[153] V. Knezevic, A. Schneider and C. Landier, Creep behavior of thick-wall alloy 617 seamless pipes for 700oC power plant technology, Procedia Engineering, (2013), 240-245.
[154] X. Wen, Creep Behavior of High Temperature Alloys for Generation IV Nuclear Energy Systems, University of Cincinnati, USA, (2014).
[155] Verena Maier, Benoit Merle, Mathias Göken, and Karsten Durst, An improved long-term nanoindentation creep testing approach for studying the local deformation processes in nanocrystalline metals at room and elevated temperatures, J. Mater. Res., 28 (2013), 1177-1188.
[156] L. Z. He, Q. Zheng, X. F. Sun, H. R. Guan, Z. Q. Hu, A. K. Tieu, C. Lu and H. T. Zhu, High-temperature creep-deformation behavior of the Ni-based superalloy M963, Metall. Mater. Trans. A, 36 (2005), 2385-2391.
[157] Sugui Tian, Yong Su, Benjiang Qian, Xingfu Yu, Fushun Liang, Anan Li, Creep behavior of a single crystal nickel-based superalloy containing 4.2% Re, Mater. Design, 37 (2012), 236-242.
[158] T. Cao, J. Shang, J. Zhao, C. Cheng, R. Wang, H. Wang, The influence of Al elements on the structure and the creep behavior of AlxCoCrFeNi high entropy alloys, Mater. Lett., (2016), 344-347.
[159] Y. Y. Zhao, H. W. Chen, Z. P. Lu, T. G. Nieh, Thermal stability and coarsening of coherent particles in a precipitation-hardened (NiCoFeCr)94Ti2Al4 high-entropy alloy, Acta Mater., 147 (2018), 184-194.
[160] M. Vaidya, K. G. Pradeep, B. S. Murty, G. Wilde, S. V. Divinski, Bulk tracer diffusion in CoCrFeNi and CoCrFeMnNi high entropy alloys, Acta Mater., 146 (2018), 211-224.
[161] H. Ma, Constitutive models of creep for lead-free solders, J. Mater. Sci., 44 (2009), 3841-3851.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code