Responsive image
博碩士論文 etd-0724101-131343 詳細資訊
Title page for etd-0724101-131343
論文名稱
Title
LDV在不同加熱管之池沸騰現象研究
Saturated Nucleate Pool Boiling From Smooth/Plasma Coating Enhanced Tube Using LDV Method
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
65
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2001-06-29
繳交日期
Date of Submission
2001-07-24
關鍵字
Keywords
雷射、電漿塗佈、池沸騰
plasma coating, ldv, pool boiling
統計
Statistics
本論文已被瀏覽 5720 次,被下載 3664
The thesis/dissertation has been browsed 5720 times, has been downloaded 3664 times.
中文摘要
本論文主要探討池沸騰熱傳在工業上的運用,就目前要準確的預測其熱傳係數卻相當困難。原因是池沸騰之核化沸騰熱傳現象相當複雜,且其熱傳係數會隨著加熱表面之表面情況、幾何形狀大小、材料、排列及工作液體之不同而有所變化。而在這些不同的加熱表面下,沸騰時氣泡脫離半徑(departure diameter)、頻率(frequency)、速度(velocity)及加熱表面之有效核蕊密度(active nucleation site density)等參數(bubble dynamics data)會有所不同,因此會造成不同之熱傳效果。為了在不增加熱傳面積前題提升熱傳效率,將對上述所提影響核化沸騰之參數進行更深入的探討。在實驗工作液體有R-134a及R-600a,測試管有平滑管與以電漿塗佈(plasma spraying)來改變加熱表面之材料及表面情況。分析測試管幾何形狀及不同表面情況對核化沸騰熱傳之影響;並利用高速之攝影設備拍攝與配合LDV量測,了解在各種測試管在沸騰之情況下氣泡生成之情形,以期瞭解熱傳增強表面在R-600a及R-134a 兩種冷媒之沸騰傳熱機制。依據實驗結果,可尋求出不同狀況下的沸騰曲線,與氣泡速度對熱傳係數的影響。並在不同冷媒性質、測試管與熱傳係數關係建立一經驗公式。目標希望能夠找出熱傳效果最好之增強表面,以提供設計高性能滿溢式(flooded type)冰水機之參考;對核化沸騰之熱傳現象有全盤且更深入之了解,以建立完整之學理基礎,提供學術界作為參考。
Abstract
Pool boiling process is frequently encountered in a number of engineering applications. It is difficult to exactly predict the heat transfer coefficient. This is because the boiling phenomenon is rather complex and influenced by many factors, such as surface condition, heater size, geometry, material, arrangement of heated rods, and refrigerants, etc. The key boiling parameters (bubble dynamics data) such as bubble departure diameter, frequency, velocity and nucleation site density will be varied in such different heated surface resulting in the different effect of heat transfer. Furthermore, more fundamental of the physical phenomenon can be obtained. This study was performed experimentally. R-134a and R-600a were used as refrigerants. The surface condition will be changed with plasma spray coating. It is expected that the surface condition can affect the nucleate boiling heat transfer in certain degree. In addition, using the high speed digital vide camera and LDV to measure the bubble diameter and dynamics of R-600a and R-134a while growing. According of the results of experiments. The boiling curves in different situation were drawn and the influences of heat transfer coefficients by bubble velocity was also examinate. Finally, to broaden our basic understanding of different characteristics of refrigeration surface condition and heat transfer coefficient, thermal design data of a flooded type evaporator of high performance as well as more and further physical insight of the above-stated nucleate boiling heat transfer can be acquired. The results will hopefully be helpful not only for the academia but for the industry.
目次 Table of Contents
目 錄
頁 次
目錄 i
圖目錄 iv
表目錄 vi
符號說明 vii
中文摘要 x
英文摘要 xi

第一章 緒論 1
1-1 前言 1
1-2 背景與目的 2
1-3 文獻回顧 5
1-4 研究範圍 9

第二章 實驗系統設備 10
2-1 加熱系統 10
2-2 測試容器 10
2-3 LDV系統 12
2-4 凝結器 15

第三章 實驗方法及步驟 15
3-1 實驗方法 15
3-1-1 測試管製作 15
3-1-2 控制測試管之熱通量 15
3-1-3 固定系統之飽和狀態 15
3-1-4 SEM觀測 16
3-1-5 LDV量測與照相 16
3-2 實驗步驟 16
3-2-1 清洗 16
3-2-2 測漏 17
3-2-3 LDV系統之校正 17
3-2-4 進行實驗 17
3-2-5 數據處理 18

第四章 理論分析與數據處理 19

第五章 誤差分析 21

第六章 結果與討論 23
6-1 沸騰曲線與磁滯現象 23
6-2 熱傳效率 24
6-3 測試管表面特徵觀測與量測 25
6-4 氣泡成長與上升速度 26
6-5 氣泡直徑與頻率 27
6-6 氣泡上升速度經驗公式 28
6-7 熱傳增強管經驗公式 28
第七章 結論與建議 54
7-1 結論 54
7-2 建議 55

參考文獻 56

附錄A 61


圖 目 錄

頁次
圖2-1 雷射測試系統示意圖 13
圖2-2 測試加熱管之截面示意圖 14
圖6-1 沸騰曲線圖 32
圖6-2 熱傳係數圖 33
圖6-3 SEM觀測結果圖 34
圖6-4 氣泡速度與高度關係圖 35
圖6-5 氣泡速度與氣泡直徑關係圖 36
圖6-6 氣泡脫離直徑與熱通量關係圖 37
圖6-7 氣泡頻率與熱通量關係圖 38
圖6-8 氣泡直徑與氣泡頻率關係圖 39
圖6-9 氣泡上升速度經驗公式圖 40
圖6-10 熱傳增強管熱傳經驗公式圖 41
圖6-11 平滑管在R-134a的氣泡影像圖 42
圖6-12 平滑管在R-134a的氣泡影像圖(續) 43
圖6-13 塗佈鉬管在R-134a的氣泡影像圖 44
圖6-14 塗佈鉬管在R-134a的氣泡影像圖(續) 45
圖6-15 塗佈銅管在R-134a的氣泡影像圖 46
圖6-16 塗佈銅管在R-134a的氣泡影像圖(續) 47
圖6-17 平滑管在R-600a的氣泡影像圖 48
圖6-18 平滑管在R-600a的氣泡影像圖(續) 49
圖6-19 塗佈鉬管在R-600a的氣泡影像圖 50
圖6-20 塗佈鉬管在R-600a的氣泡影像圖(續) 51
圖6-21 塗佈銅管在R-600a的氣泡影像圖 52
圖6-22 塗佈銅管在R-600a的氣泡影像圖(續) 53

表 目 錄

頁次
表5-1 參數及變數誤差值 22
表6-1 冷媒性質 29
表6-2 測試管種類與表面性質測量 30
表6-3 氣泡平均直徑與平均速度比較 31
參考文獻 References
1.Ayub, Z. H., and Bergles, A. E., 1987, “Pool Boiling from GEWA Surfaces in Water and R-113,” Warme und Stoffubertragung, Vol. 21, pp. 209-219.

2.Ammerman C. N. and You, S. M. and Hang, Y. S. 1996,“Identification of Pool Boiling Heat Transfer Mechanisms From a Wire Immersed in Saturated FC-72 Using a Single-Photo/LDA Method,” Vol. 118/117.

3.Afgan, N. H., Jovic, L. A., Kovalev, S. A. and Lenykov, V. A., 1985, "Boiling Heat Transfer from Surfaces with Porous Layers," International Journal of Heat and Mass Transfer, Vol.28, pp.415-422.

4.Ayub Z. H., and Bergles, A. E., 1988, “Pool Boiling Enhancement of a Modified GEWA-T Surface in Water,” ASME Journal of Heat Transfer, Vol. 110,pp. 266-268.

5.Alicia H. Howard and Issam Mudawar 1999“Orientation Effects on Pool Boiling Critical Heat Flux (CHF) and Modeling of CHF for Near-Vertical Surface” International Journal of Heat and Mass Transfer, Vol. 42,pp. 1665-1688.

6.Barthau, G., 1992, “Active Nucleation Site Density and Pool Boiling Heat Transfer-An Experimental Study,” International Journal of Heat and Mass Transfer, Vol. 35, pp. 271-278.

7.Bergez, 1995, "Nucleate Pool Boiling Heat Transfer of Pure Liquids at Low to Moderate Heat Fluxes," International Journal of Heat and Mass Transfer, Vol.38, pp.1799-1811.

8.Brian K. Mori, W. Douglas Baines 2001“Bubble Departure from Cavities” International Journal of heat and mass transfer, Vol.44,pp. 771-783.


9.Chang J. Y. and You, S. M. 1997, “Enhanced Boiling Heat Transfer From Micro-Porous Cylindrical Surfaces in Saturated FC-87 and R-123,” Vol. 119-319.

10.Chang.J. Y. and You, S. M. 1996, “Heater Orientation Effects on Pool Boiling of Micro-Porous-Enhanced Surfaces in Saturated FC-72,” Vol. 118-937.

11.Collier, J. G., and Thome, J. R., 1994, "Convection Boiling and Condensation," Third Edition. Oxford University Press. New York.Chapter4, pp. 143-148.

12.Cornwell, K., Duffin, N. W., Schuller, R. B., 1980,“ An Experimental Study of the Effects of Fluid Flow on Boiling Within a Kettle Reboiler Tube Bundle,” ASME Paper No. 80-HT-45.

13.Chan, A. M. C., and Shoukri, M., 1987, “Boiling Characteristics of Small Multitube Bundles,” ASME Journal of Heat Transfer, Vol. 109, pp.753-760.

14.Clift R. and Grace J. R. and Weber M. E. 1978 “Bubbles, Drops, and Particles” San Diego, Calif. : Academic Press.

15.Carey, V. P. c1992. “Liquid-vapor phase-change phenomena” Washington, D.C. :Hemisphere Pub. Corp.

16.Fujita, Y., and Tsutsui, M., 1994, "Heat Transfer in Nucleate Pool Boiling of Binary Mixtures," International Journal of Heat and Mass Transfer, Vol.37,Suppl. 1, pp.291-302.

17.Fujita, Y., Ohta, H., Hidaka, S., and Nishikawa, k.,1986, “ Nucleate Boiling Heat Transfer on Horizontal Tubes,” Proceedings of 8th Int. Heat Transfer Conf., San Francisco, VOL. 5, PP. 2131-2136.

18. Hsieh, S. S. and Weng C. J. 1997, “Nucleate pool boiling from coated surfaces in saturated R-134a and R-407c,” International Journal of Heat and Mass Transfer, Vol.40. No. 3. pp. 519-532.

19.Hsieh, S. S. and Yang, T. Y. 2001. “Nucleate Pool Boiling From Coated and Spirally Wrapped Tubes in Saturated R-134a and R-600a at Low and Moderate Heat Flux,” ASME Journal of Heat Transfer, Vol.123,pp. 257-270.

20.Hetsroni G. and Zakin J.L. and Lin Z. and Mosyak A. and Pancallo E. A. and Rozenblit R. 2001“The Effect of Surfactants on Bubble Growth, Wall Thermal Patterns and Heat Transfer in Pool Boiling” International Journal of Heat and Mass Transfer, Vol. 44,pp. 485-497.

21.Hohl R. and Blum J. and Buchholz M. and Luttich T. and Auracher H. and Marquardt W. 2001“Model-Based Experimental Analysis of Pool Boiling Heat Transfer with Controlled Wall Temperature Transient” International Journal of Heat and Mass Transfer, Vol. 44,pp. 2225-2238.

22.Jianya Shen , Klaus Spindler and Erich Hahne 1999“Pool Boiling Heat Transfer of Refrigerant Mixtures R32/R125” Int. Comm. Heat Mass Transfer, Vol. 26, No.8,pp. 1091-1102.

23.Liu Z. W. and Lin W. W. and Lee D. J. 2001“Pool Boiling of FC-72 and HFE-7100” ASME Journal of Heat Transfer, Vol.123,pp. 399-411.

24.Liang-Han Chien, Ralph L. Webb 1998”Measurement of bubble dynamics on an enhanced boiling surface” Experimental Thermal and Fluid Science, vol.16,pp. 177-186.

25.Marto, P. J., and Lepere, V. J.,1982, “Pool Boiling Heat Transfer from Enhanced Surfaces to Dielectric Fluids, ” ASME JOURNAL OF HEAT TRANSFER, Vol. 104, pp.292-299.

26.Marto, P. J., and Hernandez, B.,1983, “Nucleate Pool Boiling Characteristics of a GEWA-T Surface in Freon-113,” ALCHE Symp. Series, Vol. 79, No. 225, pp.1-10.

27.Moon-Hyun Chun and Myeong-Gie Kan, 1998, “ Effects of Heat Exchanger Tube Parameters on Nucleate Pool Boiling Heat Transfer,” Journal of Heat Transfer, Vol. 120, pp. 468-476.

28.Marto, P. J. and Anderson, C. L. 1992, “Nucleate Boiling Characteristics of R-113 in a Small Tube Bundle,” ASME Journal of Heat Transfer, Vol. 114,pp.433-425.

29.Memory S. B. and Chilman S.V. and Marto, P. J. 1994, “ Nucleate Pool Boiling of a TURBO-B Bundle in R-113,” International Journal of Heat Transfer Vol. 116, pp. 670-678.


30.Mudde R. F and Groen J. S. and H. E. A. Van Den Akker 1997“Liquid Velocity Field in a Bubble Column:LDA experiments” Chemical Engineering Science, Vol.52,pp. 4217-4224.

31.Paul, D. D., and Abdel-Khalik, S. I., 1983, “A Statistical Analysis of Saturated Nucleate Boiling Along a Heated Wire,” International Journal of Heat and Mass Transfer, Vol. 26, pp. 509-519.

32.Stephan, K., and Mitrovic, J., 1981, “Heat Transfer in Natural Convection Boiling on Refrigerant and Refrigerant-Oil Mixtures in Bundles of T-shaped Finned Tubes,” ASME HTD-Vol. 18, pp. 131-146.

33.Sokol, P., Blein, P., Gorenflo, D., Rott, W., and Schomann, H., 1990, “Pool Boiling Heat Transfer from Plain and Finned Tubes to Propane and Propylene,” IHTC-1990, PP. 75-80.

34.Stephan, K. and Abdelsalam, M., 1980, "Heat Transfer Correlations for Natural Convection Boiling," International Journal of Heat and Mass Transfer, Vol.23, pp.73-87.

35.Shi, M. H. , Ma, J. and Wang, B. X., 1993, “Analysis on Hysteresis in Nucleate Pool Boiling Heat Transfer,” International Journal of Heat and Mass Transfer, Vol. 36, No. 18, pp. 509-519.

36.Tong, W., Bar-Cohen, A., and Simon, T. W.,1990, “Thermal Transport Mechanisms in Nucleate Pool Boiling of Highly-Wetting Liquids,” presented at the 1990 International Heat Conference, Paper No. 1-BO-05.

37.Webb, R. L., and Pais, C., 1992, “Nucleate Boiling Data for Five Refrigerants on Plain, Integral-Fin, and Enhanced Tube Geometries,” Int. J. Heat Transfer, Vol. 35, pp. 1893-1904.

38.Wallner, R., 1974, “Heat Transfer in Flooded Shell and Tube Evaporators,” Proceedings 5th Int. Heat Transfer Conf., Tokyo, Vol. 5, pp. 214-217.

39.Wasekar V. M. and R. M. Manglik 2000“Pool Boiling Heat Transfer in Aqueous Solutions of an Anionic Surfactant” ASME Journal of Heat Transfer, Vol.122,pp. 708-715.

40.Yilmaz, S., and Westwater, J. W., 1981, “Effect of Commercially Enhanced Surfaces on the Boiling Heat Transfer Curve,” ASME HTD-Vol. 18,pp. 73-91.

41.Ying He, Masahiro Shoji, Shigeo Maruyama 2001“Numerical Study of High Heat Flux Pool Boiling Heat Transfer” International Journal of Heat and Mass Transfer, Vol.44,pp. 2357-2373.

42.Zuber, N., 1963, "Nucleate Boiling-the Region of Isolated Bubbles-Similarity with Natural Convection," International Journal of Heat and Mass Transfer, Vol.6, pp.53-65.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code