Responsive image
博碩士論文 etd-0724101-154841 詳細資訊
Title page for etd-0724101-154841
論文名稱
Title
大型海底管線為含VE材料之複合殼結構時的動力行為分析
The Dynamic Analysis for Large Undersea Pipelines with VE-layer Modeled as Composite Shell.
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
137
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2001-07-20
繳交日期
Date of Submission
2001-07-24
關鍵字
Keywords
海底管線、複合材料
composite materials, pipelines
統計
Statistics
本論文已被瀏覽 5664 次,被下載 1588
The thesis/dissertation has been browsed 5664 times, has been downloaded 1588 times.
中文摘要
中文摘要


本研究主要是要探討大型海底管線結構在海洋環境中受到環境外力作用後的動力行為分析。其中,對於結構的部份,本研究主要以納入高分子黏彈性阻尼材質為管線夾層所組成的三層(上、下層為鋼質層)複合式管線為考量;而在理論的部份則採用了Reddy於1984年針對複合材質結構物所提出的高階剪變形理論(HSDT)並延續Lee(1994)對於黏彈性阻尼材料應用在海洋結構中的研究,來探討於管線結構中加入阻尼材料後,結構物的振動情形及減振效果…等動力性能。
本研究在結構區分上大致分為一般管線結構和海底管線結構二部份。在一般管線結構的分析上主要針對管線結構物的管徑大小、管身長度、黏彈性材質的厚度…等幾何條件來探討,於作用外力上則分為高頻和低頻二種外力型式;在海底管線結構的分析上則主要針對管線結構物的放置水深、受力型式(分為水平波浪力和揚升力二種)、波浪週期和波長…等環境因素為考量範疇。
研究中主要以理論推導為主,並配合數值計算,針對上述管線結構物,考慮以黏彈性阻尼材料複合組成的情況下,比照單一材質組成之管結構體,受到外力作用時,其振動、變形及整體動力行為作一探討。並進一部尋求改善其動力性能的方法,而達到延緩結構破壞、延長海底管線壽命,進而達到減災、防災之效果。

Abstract
英文摘要


The research is to investigate the dynamic behavior for the large undersea pipeline structure system subjected to the wave force. In this study, the primary structure is composed of two steel layers and one viscoelastic layer modeled as a three-layered pipeline structure in composite type.
The theory of this study is based on Reddy’s“High-order Shear Deformation Theory”and continues Lee’s research on VE materials applied in the engineering structures to discuss the dynamic behavior and the ability of VE materials to restrain the vibration.
Based on the theory derived, the analytical results of vibration, deformation of the pipeline and the dynamic behavior for the whole pipeline system are obtained and discussed, in order to improve the dynamic performance for pipeline system and eventually to upgrade the durability of the system.
This thesis is divided into two parts for pipeline structures — the general pipeline structures and the undersea pipeline structures. For the general pipeline structures, the study focuses on the effect of the vibration mitigation due to the variation of the diameter of pipelines, length of pipelines and thickness of the viscoelastic material. Besides, the external forces of high-frequency loading and low-frequency loading are both applied. For the undersea pipeline structures, the depth of water, loading types (include the in-line force and the lift force), the periods of wave and the wave length of environmental effects are taken into account.
目次 Table of Contents
目錄

頁次
第一章 緒 論 1
1.1 前言 …………………………………………………………… 1
1.2 研究目的 …………………………………………………………… 2
1.3 本文架構 …………………………………………………………… 3

第二章 理論推述與引用 5
2.1 高階剪變形理論 …………………………………………………… 5
2.1.1 單層均質板之高階剪變形理論 ……………………………… 6
2.1.2 複合多層板之高階剪變形理論 ……………………………… 18
2.1.3 複合多層殼之高階剪變形理論 ……………………………… 20
2.2 外力項的計算 ………………………………………………………31
2.2.1 傾斜管線的波浪力作用 ……………………………………… 31
2.2.2 水平管線的波浪力作用 ……………………………………… 34
2.3 波浪理論之引用 ……………………………………………………35
2.3.1 微小振幅波理論 ……………………………………………… 36

第三章 海底管線結構物之動力分析 38
3.1 整體系統之靜力分析 ………………………………………………39
3.1.1 平衡方程式的解 ……………………………………………… 40
3.2 整體系統之動力分析 ………………………………………………41
3.2.1 結構體之勁度矩陣 …………………………………………… 41
3.2.2 結構體之質量矩陣 …………………………………………… 42
3.2.3 結構體之阻尼矩陣 …………………………………………… 43
3.3 外力項的計算 ………………………………………………………44
3.3.1 水平管線的波浪作用力 ……………………………………… 44
3.3.2 瞬間作用之固定載重 ………………………………………… 46
3.4 運動方程式的解 ……………………………………………………47
3.4.1 自然頻率及振態形狀 ………………………………………… 47
3.4.2 由振態矩陣求系統阻尼矩陣 ………………………………… 49
3.4.3 多自由度動力問題的解 ……………………………………… 51

3.5 黏彈性阻尼材料的應用 ……………………………………………53
3.5.1 黏彈性阻尼材料的力學特性 ………………………………… 53
3.5.2 整體系統之分析模式 ………………………………………… 55

第四章 數值結果與討論 62
4.1 管線特性及材料性質 ………………………………………………62
4.2 收斂性質驗證 ………………………………………………………62
4.2.1 不同時間區間的收斂性驗證 ………………………………… 63
4.2.2 不同位移近似值項數的收斂性驗證 ………………………… 63
4.3 動力分析–一般管線結構 …………………………………………64
4.3.1 不同外力形式作用下之位移歷時反應 ……………………… 64
4.3.2 不同管線長度結構之減振分析 ……………………………… 65
4.3.3 阻尼材質層厚度變化之減振分析 …………………………… 66
4.3.4 於相同管徑下,阻尼材質層厚度變化時之減振分析 ……… 67
4.3.5 於不同頻率諧合外力作用下之阻尼效應分析 ……………… 67
4.3.6複合材料含高分子阻尼材質時之減振分析 ………………… 68
4.4 動力分析–海底管線結構 …………………………………………68
4.4.1 波浪條件與參數 ……………………………………………… 68
4.4.2 於10米水深,不同週期之波浪力對阻尼材質效能的探討
……………………………………………………… 69
4.4.3 於20米水深,不同週期之波浪力對阻尼材質效能的探討
……………………………………………………… 70
4.4.4 於30米水深,不同週期之波浪力對阻尼材質效能的探討
……………………………………………………… 70

第五章 結 論 72

參考文獻 74

附錄 115

授權書
參考文獻 References
參考文獻

李皇章、葉國雄、林秀峰、郭秀吉(1987),“ 長康油氣田海底管線之規劃
設計與施工 ”,第九屆海洋工程研討會。
廖國綸(1999),“ 海底管線受波浪作用時之三維動力特性分析 ”,國立
中山大學碩士論文。
湯麟武(1996),“ 港灣及海域工程(第二版)”,中國土木水利工程學會。
高家俊、周?睇芋]1988),“ 柱體在波浪中所受之非線性波力 ”,國科會研
究報告,編號NSC77-0410-E006-23。
Ambartsumyan, S. A. (1964),“ Theory of Anisotropic Shells, ”Moscow, 1961;
English translation, NASA-TT-F-118.
Ambartsumyan, S. A. (1953),“ Calculation of Laminated Anisotropic Shells, ”
Izv. Akad. Nauk. Armenskoi SSR, Ser. Fiz. Mat. Est. Tekh. Nauk., Vol.6, No.3,
p.15.
Bert, C. W. (1974b),“ Analysis of Shells, ”Chapter 5 in Structural Design and
Analysis, Part I, C. C. Chamis (ed.), Vol.7 of Composite Materials, L. J.
Broutman and R. H . Krock (eds.), Academic Press, New York, pp.207-258.
Bathe, K. J. (1982),“ Finite Element Procedures in Engineering Analysis, ”
Prentice-Hall, Inc., Englewood Cliffs, New Jersey.
Biddle, D. D. (1971),“ Laboratory Study of Lift Force on Circular Piles, ”
Journal of Waterways, Harbors and Coastal Engineering Div., ASCE, Vol.97,
ww4, pp.595-614.
Chakrabarti, S. K. (1976),“ Wave Force on Vertical Circular Cylinder, ”
Journal of Waterways, Harbors and Coastal Engineering Div., ASCE, Vol.102,
ww2, paper No.12140, pp.203-221.


Koiter, W. T. (1967),“ Foundations and Basic Equations of Shell Theory. A
survey of Recent Progress, ”Theory of Shells, F. I. Niordson (ed.), IUTAM
Symposium, Copenhagen, pp.93-105.
Lee, H. H. (1998),“ Non-linear Vibration of a Multilayer Sandwich Beam with
Viscoelastic Layers, ”Journal of Sound and Vibration, Vol.216, No.4, pp.601-
621.
Lee, H. H. and C. -S. Tsai (1994),“ Analytical Model of Viscoelastic Dampers
for Seismic Mitigation of Structures, ”Computers & Structures, Vol.50, No.1,
pp.111-121.
Michael, F. Ashby and David R. H. Jones (1980),“ Engineering Materials, ”
Robert Maxwell, M. C.
Morison, J. R. M. P. O’Brien, J. W. Johnson and S. A. Schaaf (1950),“ Forces
Exerted by Surface Waves in Piles, ”Petroleum Transactions, American
Institute of Mining Engineering, Vol.189, pp.149-154.
Mahmoodi, P. (1972),“ Structural Dampers, ”J. Structural Div. ASCE 95,
pp.1661-1667.
Naghdi, P. M. (1956),“ A Survey of Recent Progress in the Theory of Elastic
Shells, ”Appl. Mech. Rev., Vol.9, No.9, pp.365-368.
Paz, M. (1985),“ Structural Dynamics Theory and Computations, ”3rd Ed.,
Van Nostrand Reinhold, Inc., New York.
Penzien, J. and Tseng, S. (1978),“ Three Dimensional Dynamics Analysis of
Fixed Offshore Platforms, ”In Numerical Methods in Offshore Engineering,
John Wiley and Sons, New York, pp.221-243.
Reddy, J. N. (1984),“ Exact Solutions of Moderately Thick Laminated
Shells, ”ASCE, Vol.110, No.5, pp.794-809.


Reddy, J. N. (1984),“ Energy and Variational Methods in Applied
Mechanics, ”John Wiley and Sons, Inc. U.S.A.
Reddy, J. N. and C. F. Liu (1985),“ A High-Order Shear Deformation Theory of
Laminated Elastic Shells, ”Int. J. Engng Sci., Vol.23, No.3, pp.319-330.
Reddy, J. N. (1997),“ Mechanics of Laminated Composite Plates Theory and
Analysis, ”CRC Press, Inc. U.S.A.
Raichlen, F. and Watanabe, A. (1997),“ Wave Induced Forces on A Submarine
Pipeline, ”Proceedings of the 7th International Offshore and Polar Engineering
Conference, pp.261-268.
Sanders Jr., J. L. (1959),“ An Improved First Approximation Theory for Thin
Shells, ”NASA TR-24.
Tsai, C. S. and H. H. Lee (1992),“ Applications of Viscoelastic Dampers to
High-Rise Buildings, ”Journal of Structural Engineering, Vol.119, No.4,
pp.1222-1232.
Teng, C. C. and J. H. Nath (1987),“ Smooth and Roughened Horizontal
Cylinders in Periodic Waves and Current, ”Report for National Science
Foundation and Oregon State University Sea Grant College Program, Dept. of
Civil Engineering, Oregon State University, Corvallis.
Whitney, J. M. and Sun, C. T. (1974),“ A Refined Theory for Laminated
Anisotropic, Cylindrical Shells, ”J. App. Mech., Vol.41, pp.471-476.
Widera, G. E. O. and Chung, S. W. (1970),“ A Theory for Non-homogeneous
Anisotropic Cylindrical Shells, ”Z. Angew. Math. Phys., Vol.21, pp.378-399.




電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code