Responsive image
博碩士論文 etd-0724102-045920 詳細資訊
Title page for etd-0724102-045920
論文名稱
Title
ArsA同源蛋白ARR4在酵母細胞熱耐受性表現的角色
Role of yeast ArsA homologue ARR4 in thermotolerance of Saccharomyces cerevisiae
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
48
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2002-06-21
繳交日期
Date of Submission
2002-07-24
關鍵字
Keywords
氧化性傷害、ARR4基因、熱耐受性、ArsA同源蛋白
STRE, ROS, Thermotolerance, ARR4, yeast, Heat stress
統計
Statistics
本論文已被瀏覽 5681 次,被下載 8768
The thesis/dissertation has been browsed 5681 times, has been downloaded 8768 times.
中文摘要
S. cerevisiae中含有的ORF YDL100C為系統名稱,經由SGD (Saccharomyces Genome Database) 資料顯示,目前此基因名稱暫定為ARR4基因,與E. coli的ArsA基因序列經由Genetic Computer Group (GCG)序列比對,其同源性約29 %。其基因序列分析產物 ARR4 蛋白上也具有相似的ATP結合位,此結合位在胺基酸序列的第25到32的氨基酸上。之前研究指出此ATP結合位並不受陰離子激發,所以被認為和砷化物抗性機制無直接關係或無關,而此點目前也有報告指出酵母菌對砷化物的抗性另有其他機制。
本論文探討ARR4基因在酵母菌於高溫時調節細胞存活的機能上扮演的角色,先前研究初步發現ARR4基因缺失的酵母細胞在高溫下無法生長。本論文的研究結果顯示,細胞中氧化自由基的堆積過多及抗氧化能力的下降,是此ARR4基因缺失的酵母細胞在高溫下細胞致死的原因,但細胞於30℃則無此現象。由於heat stress 、oxidative stress及osmatic stress等外壓發生時會啟動STRE (stress response element ) 調控機制使細胞度過危機。進一步以RT-PCR 分析CTT1、SOD1、TSL1基因的表現與ARR4基因缺失的相關性時,結果顯示,ARR4基因缺失的突變株其CTT1基因在heat stress 24小時後mRNA的表現量比野生株有減少的現象,說明ARR4基因蛋白在酵母細胞在遇到外來壓力時可能並參與活化STRE的上游作用角色。



Abstract
The ArsA homologue ARR4 in Saccharomyces cerevisiae, encoded by YDL100C. Homologues of the E. coli ArsA are found in S. cerevisiae about 29 % from Genetic Computer Group (GCG). The ARR4 gene product contains an ATP binding site that is similar to protein ArsA from E. coli
Disruption of ARR4 in yeast is not lethal but the disrupted strain was unable to grow at 40℃, suggesting that the possible cause of cell death in KO strain at 40℃ was investigated. The accumulation of trehalose and the in vivo molecular oxidation level are higher in KO strain than that in WT strain under heat stress condition. These suggest that the increased reactive oxygen species (ROS) but not the amount of thermoprotectant trehalose is most likely to be the reason for cell death in KO strain. In this report ROS scavenger system show that the activities of ROS scavenger system are lower in KO compared to that in WT strain at 30℃ or 40℃. This suggests that ARR4 is involved in the heat stress 、oxidative stress and osmatic stress triggers activation of the STRE ( stress tolerance response element) regulon.
Further studies involvement ARR4 of CTT1, SOD1, and TSL1 gene of STRE-drive gene by RT-PCR. Here the report that the KO strain exhibits a thermosensitivity phenotype in comparison to wild-type strain, indicating that ARR4 may act as a component of a stress tolerance network.


目次 Table of Contents
一、 中文摘要……………………………………… 3
二、 英文摘要……………………………………… 4
三、 背景介紹……………………………………… 5
四、 材料及實驗方法……………………………… 11
五、 實驗結果……………………………………… 17
六、 討論…………………………………………… 20
七、 圖表…………………………………………… 24
八、 參考文獻……………………………………… 46

參考文獻 References
1.San Francisco MJ, Tisa LS, Rosen BP. Identification of the membrane component of the anion pump encoded by the arsenical resistance operon of R-factor R773. Mol Microbiol. 1989 Jan;3(1):15-21.

2.Tisa LS, Rosen BP. Molecular characterization of an anion pump. The ArsB protein is the membrane anchor for the ArsA protein. J Biol Chem. 1990 Jan 5;265(1):190-4.

3.Hedges RW, Baumberg S. Resistance to arsenic compounds conferred by a plasmid transmissible between strains of Escherichia coli. J Bacteriol. 1973 Jul;115(1):459-60. No abstract available.

4.Mobley HL, Rosen BP. Energetics of plasmid-mediated arsenate resistance in Escherichia coli. Proc Natl Acad Sci U S A. 1982 Oct;79(20):6119-22.

5.Rosen BP, Borbolla MG. A plasmid-encoded arsenite pump produces arsenite resistance in Escherichia coli. Biochem Biophys Res Commun. 1984 Nov 14;124(3):760-5.

6.Boskovic J, Soler-Mira A, Garcia-Cantalejo JM, Ballesta JP, Jimenez A, Remacha M. The sequence of a 16,691 bp segment of Saccharomyces cerevisiae chromosome IV identifies the DUN1, PMT1, PMT5, SRP14 and DPR1 genes, and five new open reading frames. Yeast. 1996 Oct;12(13):1377-84.

7.Shen J, Hsu CM, Kang BK, Rosen BP, Bhattacherjee, H. Biochem. Biophys. Res. Commun. 2002 ( in submission ).

8.Zuniga S, Boskovic J, Jimenez A, Ballesta JP, Remacha M. Disruption of six Saccharomyces cerevisiae novel genes and phenotypic analysis of the deletants. Yeast. 1999 Jul;15(10B):945-53.

9.Mukhopadhyay R, Rosen BP. Saccharomyces cerevisiae ACR2 gene encodes an arsenate reductase. FEMS Microbiol Lett. 1998 Nov 1;168(1):127-36.

10.Vaughan-Martini A, Cardinali G, Martini A. Differential killer sensitivity as a tool for fingerprinting wine-yeast strains of Saccharomyces cerevisiae. J Ind Microbiol. 1996 Aug;17(2):124-7.

11.Komatsu Y, Kodama O, Fujita K. Heat-shock treatment reduces in situ temperature in yeast at sub-lethal high temperature. Cell Mol Biol (Noisy-le-grand). 1996 Sep;42(6):839-45.

12.Parsell DA, Lindquist S. Heat shock proteins and stress tolerance. In The Biology of Heat Shock Proteins and Molecular Chaperones. 1994: 457-489. Cold Spring Harbor Laboratory Press.

13.Lindquist S, Kim G. Heat-shock protein 104 expression is sufficient for thermotolerance in yeast. Proc Natl Acad Sci U S A. 1996 May 28;93(11):5301-6.

14.Davidson JF, Whyte B, Bissinger PH, Schiestl RH. Oxidative stress is involved in heat-induced cell death in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1996 May 14;93(10):5116-21.

15.Thannickal VJ, Fanburg BL. Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol. 2000 Dec;279(6):L1005-28. Review.

16.Ruis H, Schuller C. Stress signaling in yeast. Bioessays. 1995 Nov;17(11):959-65. Review.

17.Trevelyan WE, Harrison JS. Yeast carbohydrate fractions. Speparation from nucleic acid, Analysis, and behaviour during anaerobic fermentation. J Biol Chem. 1956 Jul 19;63(29):23-33.

18.Jakubowski W, Bilinski T, Bartosz G. Oxidative stress during aging of stationary cultures of the yeast Saccharomyces cerevisiae. Free Radic Biol Med. 2000 Mar 1;28(5):659-64.

19.Marklund S, Marklund, G. Involvement of the Superoxide Anion Radical in the Autoxidation of Pyrogallol and a Conventient for Superoxide Dismutase.Eur J Biochem. 1974 May;47(1):469-74.

20.Hissin PJ, Hilf R. A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem. 1976 Jul;74(1):214-26. No abstract available.

21.Senft AP, Dalton TP, Shertzer HG. Determining glutathione and glutathione disulfide using the fluorescence probe o-phthalaldehyde. Anal Biochem. 2000 Apr 10;280(1):80-6.

22.葉瓊霞. (2001) 國立中山大學生科所碩士論文.

23.Reinders A, Burckert N, Boller T, Wiemken A, De Virgilio C. Saccharomyces cerevisiae cAMP-dependent protein kinase controls entry into stationary phase through the Rim15p protein kinase. Genes Dev. 1998 Sep 15;12(18):2943-55.

24.Inoue Y, Tsujimoto Y, Kimura A. Expression of the glyoxalase I gene of Saccharomyces cerevisiae is regulated by high osmolarity glycerol mitogen-activated protein kinase pathway in osmotic stress response. J Biol Chem. 1998 Jan 30;273(5):2977-83.

25.Izawa S, Inoue Y, Kimura A. Importance of catalase in the adaptive response to hydrogen peroxide: analysis of acatalasaemic Saccharomyces cerevisiae. Biochem J. 1996 Nov 15;320 ( Pt 1):61-7.



電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code