Responsive image
博碩士論文 etd-0724104-002112 詳細資訊
Title page for etd-0724104-002112
論文名稱
Title
錫-鉛與錫-銀-銅錫球疲勞壽命公式之研究
Fatigue Lifes of Sn/Pb and Sn/Ag/Cu Solder Balls
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
136
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2004-07-05
繳交日期
Date of Submission
2004-07-24
關鍵字
Keywords
等效塑性剪應變、疲勞、無鉛銲料
CSP, Coffin-Manson, VCSEL, FEA, equivalent plastic shear strain
統計
Statistics
本論文已被瀏覽 5978 次,被下載 0
The thesis/dissertation has been browsed 5978 times, has been downloaded 0 times.
中文摘要
本論文主要在建立錫-銀-銅與錫-鉛兩錫球材料疲勞壽命有關之 Coffin-Manson 關係式。文中先配合 CSP 錫球構裝,分別進行熱循環疲勞試驗與錫球推力試驗,再結合有限元素套裝軟體 MARC 程式,計算出不同錫球材料對應之等效塑性剪應變變幅。依據等效塑性剪應變變幅-疲勞壽命關係,導出錫球之 Coffin-Manson 關係式。文中並配合文獻發表之常溫低循環疲勞實驗結果,以印證此公式之適用性。並探討應用所建立 Coffin-Manson 關係式,對 BGA 形式之 CSP與 VCSEL 構件,分別使用錫-銀-銅、錫-鉛材料錫球,探討兩者各別在承受 JESD22-A104A 及 TA-TSY-000983 熱循環規範下,所預估疲勞壽命之差異準確性。數據結果顯示,本研究所提利用銲域局部等效塑性剪應變變幅概念建立之 Coffin-Manson 疲勞壽命預估公式,對錫-銀-銅與錫-鉛錫球疲勞壽命之預估,具頗佳之精度與實用性。
Abstract
The Coffin-Manson equations of Sn/Ag/Cu and Sn/Pb solder joints are presented in this thesis. The experimental results of CSP thermal cycle fatigue test and ball shear test are used to formulate Coffin-Manson equations. The maximum amplitude of equivalent plastic shear strain corresponding to these two experiments are employed. The MARC finite element package is used to calculate the plastic shear strain. Different published fatigue experiment results have been used to show the accuracy and the feasibility of these proposed equations. The 3-D finite element models of the BGA type’s CSP and VCSEL assembly are employed to simulate the thermal cycling fatigue. Results indicate that the fatigue lifes of solder predicted by using the proposed equations have good agreement with those measured from experimental tests.
目次 Table of Contents
目錄 i
圖目錄 iv
表目錄 ix
符號說明 x
摘要 xiii
第一章 緒論 1
1-1 前言 1
1-1-1 簡介 1
1-1-2 研究動機與方法 4
1-2 文獻回顧 5
1-2-1 疲勞壽命理論 5
1-2-2 錫球推力試驗 7
1-3 組織與章節 8
第二章 相關理論與有限元素分析 9
2-1 Surface Evolver 基礎理論 9
2-2 有限元素分析方法 11
2-2-1 力學模式 11
2-2-2 熱分析模式 14
2-2-3 接觸(Contact) 19
2-3疲勞壽命理論模式 25
第三章 錫球疲勞壽命公式之建立 30
3-1 CSP熱循環試驗 30
3-1-1 實驗方法與結果 30
3-1-2 有限元素分析 33
3-2 錫球推力試驗分析 51
3-2-1 實驗方法與結果 51
3-2-2 有限元素分析 53
3-3 錫-銀-銅與錫-鉛錫球疲勞壽命公式 71
3-3-1 等溫低循環疲勞實驗 71
3-3-2 錫-銀-銅錫球之 Coffin-Manson 關係式 95
3-3-3 錫-鉛錫球之Coffin-Manson 關係式 97
3-3-4 錫-銀-銅與錫-鉛疲勞壽命之比較 98
第四章 錫球疲勞壽命預測 103
4-1 模型特性 103
4-1-1 電子封裝—BGA 形式之 CSP 103
4-1-2 光電封裝—VCSEL 構件 104
4-2 銲錫疲勞壽命預估 106
4-2-1 電子封裝之銲錫疲勞壽命預估 106
4-2-2 光電封裝之銲錫疲勞壽命預估 107
4-3 不同疲勞壽命預估公式之比較 109
第五章 結論 128
5-1 結論 128
5-2 未來展望 130
參考文獻 131
附錄A 等溫低循環疲勞實驗之疲勞壽命 136
參考文獻 References
[1]劉漢誠,1997,球腳格狀陣列封裝技術,鴻海精密工業,台北。
[2]蕭傳議,2003,“IC載板產業 後年將攀新高峰”,經濟日報2003年12月7日。
[3]陳玲蓉,2004,“電子零組件市場景氣與產業趨勢”,工業材料雜誌,207期,pp.78-84。
[4]蘇宗麟,2002,“Sn-3.5Ag/Ag厚膜銲錫球格陣列構裝界面反應研究”,國立台灣大學材料科學與工程所博士論文。
[5]Desai, Chandra S., Whitenack, Russell, 2001, “Review of Models and the Disturbed State Concept for Thermomechanical Analysis in Electronic Packaging,” ASME Journal of Electronic Packaging, 123, pp.19-33.
[6]Frear, D., Morgan, H., Burchett, S., Lau, J., 1994, The Mechanics of Solder Alloy Interconnects, Van Nostrand Reinhold, New York, USA, pp.199-313.
[7]Engelmaier, W., 1983, “Fatigue Life of Leadless Chip Carrier Solder Joints During Power Cycling,” IEEE Trans. Components, Hybrids, Manufact. Technol., 6, pp. 52-57.
[8]Solomon, H. D., 1986, “Fatigue of 60/40 Solder,” IEEE Trans. Components, Hybrids, Manufact. Technol., 9, pp. 423-432.
[9]Solomon, H. D., 1989, “Strain-Life Behavior in 60/40 Solder,” ASME Journal of Electronic Packaging, 111, pp.75-82.
[10]Solomon, H. D., 1989, “Low Cycle Fatigue of Surface mounted Chip Carrier/Printed Wiring Board Joints,” 1989 IEEE Electronic Components Conference, pp.277-292.
[11]Solomon, H. D., 1991, “Low Cycle Fatigue of Sn96 Solder With Reference to Eutectic Solder and a High Pb Solder,” ASME Journal of Electronic Packaging, 113, pp.102-108.
[12]Solomon, H. D., 1991, “The Solder Joint Fatigue Life Acceleration Factor,” ASME Journal of Electronic Packaging, 113, pp.102-108.
[13]Solomon, H. D., 1995, “Energy Approach to the Fatigue of 60/40 Solder:Part I - Influence of Temperature and Cycle Frequency,” Journal of Electronic Packaging, 117, pp.130-135.
[14]Guo, Q., Cutiongco, E. C., Keer, L. M., Fine, M. E., 1992, “Thermomechanical Fatigue Life Prediction of 63Sn/37Pb Solder,” Journal of Electronic Packaging, 114, pp.145-151.
[15]Lau, J. H., Chong, D. Y. R., 2001, “Flip Chip on Board Solder Joint Reliability Analysis Using 2-D and 3-D FEA Models,” IEEE Transactions on Advanced Packaging, 24, No. 4, pp. 499-506.
[16]Schubert, A., Dudek, R., Auerswald, E., Gollhardt, A., Michel, B., Reichl, H., 2003, “Fatigue Life Models for SnAgCu and SnPb Solder Jints Evaluated by Experiments and Simulation,” 2003 IEEE Electronic Components and Technology Conference, pp.603-610.
[17]Park, T. S., Lee, S. B., 2002, “Isothermal Low Cycle Fatigue Tests of Sn/3.5Ag/0.75Cu and 63Sn/37Pb Solder Joints under Mixed-Mode Loading Cases,” 2002 IEEE Electronic Component and Technology Conference, pp. 979-984.
[18]Zhao, X. J., Zhang, G. Q., Caers, J. F. J. M., Ernst, L. J., 2003, “Solders Fatigue Prediction Using Interfacial Boundary Volume Criterion,” ASME Journal of Electronic Packaging, 125, pp.582-588.
[19]JEDEC Solid State Technology Association, 2000, “Test Method for BGA Ball Shear,” JESD22-B117, JEDEC Solid State Technology Association, Arlington, VA.
[20]Coyle, R. J., Solan, P. P., 2000, “The Influence of Test Parameters and Package Design Features on Ball Shear Test Requirements,” Proceedings of the 26th IEEE International Electronics Manufacturing Symposium, Santa Clara, CA, pp.168-177.
[21]Huang, Xingjia, Lee, S. W. Ricky, Yan, Chien Chun, Hui, Sam, 2001, “Characterization and Analysis on the Solder Ball Shear Testing Conditions,” 2001 IEEE Electronic Components and Technology Conference, 51, pp.1065-1071.
[22]Coyle, R. J., Serafino, A. J., 2002, “Ball Shear versus Ball Pull Test Methods for Evaluating Interfacial Failures in Area Array Packages,”Proceedings of the 27th IEEE International Electronics Manufacturing Symposium, pp.200-205.
[23]Huang, Xingjia, Lee, S. W. Ricky, Yan, Chien Chun, 2002, “Experimental Investigation on the Progressive Failure Mechanism of Solder Balls During Ball Shear Test,” Proceedings 52st Electronic Components &Technology Conference(ECTC), pp.968-973.
[24]Brakke, K., 2003, Surface Evolver Manual, Version 2.20, The Geometry Center, University of Minnesota.
[25]MARC Analysis Research Corporation, 1992, MARC Analysis Reaearch Corporation ,Vol. A, MARC Analysis Research Corporation.
[26]許益誠,1998,“積體電路組件焊域之應力分析”,國立中山大學機械工程研究所碩士論文。
[27]Ellison, G. N., 1989, Thermal Computations for Electronic Equipment , R.E.Krieger Publishing Co.Malabar, FL.pp.31-48.
[28]Fan, S. H., Chan, Y. C., Lai, J. K. L., 2001, “Fatigue Lifetimes of PBGA Solder Joints Reflowed at Different Conveyor Speeds,” ASME Journal of Electronic Packaging, 123, pp.290-294.
[29]Lee, W. W., Nguyen, L. T., Selvaduray, G. S., 2000, “Solder Joint Fatigue Models: Review and Applicability to Chip Scale Package,” Microelectronics Reliability, 40, pp. 231-244.
[30]劉安展,2003,“熱膨脹係數匹配誤差對光電封裝中錫球可靠度之影響”,國立中山大學機械工程研究所碩士論文。
[31]Lau, J. H., Pao, Y. H., 1997, Solder Joint Reliability of BGA, CSP, Flip Chip, and Fine Pitch SMT Assemblies, McGraw-Hill, New York, USA.
[32]Schubert, A., Dudek, R., Walter, H., Jung , E., Gollhardt, A., Michel, B., Reichl, H., 2002, “Reliability Assessment of Flip-Chip Assemblies with Lead-free Solder Joints,” 2002 IEEE Electronic Component and Technology Conference, pp. 1246-1255.
[33]Tan, Q., Lee, Y. C., 1996, “Soldering Technology for Optoelectronic Packaging,” 1996 IEEE Electronic Component and Technology Conference, pp. 26-36.
[34]Solomon, H. D., 1996, “Energy Approach to the Fatigue of 60/40 Solder:Part II - Influence of Hold Time and Asymmetric Loading”, Journal of Electronic Packaging, 118, pp.67-71.
[35]Montgomery, D. C., Runger, G. C., Hubele, N. F., 2002, Engineering Statistics, WILEY, New York, USA, pp.261-274.
[36]許兆民,2001,“面射形雷射二極體之應力與位移分析”,國立中山大學機械工程研究所碩士論文。
[37]Pang, J. H. L., Tan, T.-I., 1998, “Thermo-Mechanical Analysis of Solder Joint Fatigue and Creep in a Flip Chip on Board Package Subjected to Temperature Cycling Loading,” 1998 Electronic Components and Technology Conference, pp. 878-883.
[38]蕭勝中,2001,“錫球承受熱循環與老化試驗時之殘留應力變化”,國立中山大學機械工程研究所碩士論文。
[39]Lau, J. H., 1993, Thermal Stress and Strain in Microelectronics Packaging, Van Nostrand Reinhold, New York, USA., pp. 518-528.
[40]陳信文,2004,“無鉛銲料的基礎性質(四)機械性質與電遷移效應”,電子與材料雜誌,21期,pp.124-142。
[41]劉立晟,2003,“覆晶錫球陣列封裝之無鉛錫球接點可靠度測試”,國立中山大學機械工程研究所碩士論文。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.16.81.94
論文開放下載的時間是 校外不公開

Your IP address is 3.16.81.94
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code