Responsive image
博碩士論文 etd-0724106-202016 詳細資訊
Title page for etd-0724106-202016
論文名稱
Title
受外界機械應力下65奈米金氧半場效電晶體之電性分析與熱載子效應研究
Investigation on electrical analysis and hot carrier effect of 65nm MOSFETs under External Mechanical Stress
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
91
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-07-14
繳交日期
Date of Submission
2006-07-24
關鍵字
Keywords
場效電晶體、熱載子效應、65奈米
strain, MOSFETs, 65nm, hot carrier effect
統計
Statistics
本論文已被瀏覽 5655 次,被下載 0
The thesis/dissertation has been browsed 5655 times, has been downloaded 0 times.
中文摘要
現今的半導體製程技術已正式跨進奈米領域,隨著尺寸不斷微縮,面積相同的晶片卻擁有更多的電晶體數量,進而提昇其工作頻率及性能。但微影技術已經接近瓶頸,所以我們必須另外尋找能夠提升電晶體效能的方法,應變矽就是目前的研究重心。在此論文裡,我們深入探討當N型金氧半場效電晶體的通道受到應變時,其電性特性與熱載子效應。
為了讓通道產生應變,我們選擇利用外界機械應力來彎曲矽基板,此時通道將受到單軸張應力而產生應變。利用此方法,我們成功提高NMOS的汲極電流與載子遷移率,提升幅度分別為22%與30%。
另外,在熱載子效應方面,藉由外界機械應力來彎曲矽基板,我們可以瞭解熱載子效應對應變矽的影響。隨著曲率越大,基板電流有明顯上升的趨勢,對此我們也提出了一套解釋的方法,來驗證我們實驗的結果。
Abstract
Semiconductor technology has already got into nanometer scale. As the dimension keeping scaling down, we can get more transistor in the same area, and furthermore the frequency and performance are also enhanced. But nowadays the development of the lithography technology has come to the neck; we must find another way to improve the performance of transistor. In this study, we fully discuss the electrical characteristics and the hot carrier effect as the channel of the N-MOSFETs being strained.
In order to strain the channel, silicon substrate is bent by applying external mechanical stress, the lattice of channel will be strained after applying uniaxial tensile stress. Therefore, we successfully improve drain current and carrier mobility of NMOS, and the increasing rates are 22% and 30% respectively.
In addition, we can understand the influence of hot carrier effect on strain silicon by bending silicon substrate with external mechanical stress. With the increase of curvature, substrate current goes up. We offer an explanation to verify this result.
目次 Table of Contents
目錄.....................................................Ⅰ
表目錄...................................................Ⅳ
圖目錄...................................................Ⅴ
中文摘要.................................................Ⅸ
英文摘要................................................ Ⅹ

第一章 緒論

1-1. 半導體元件的基礎結構...............................1
1-2. 研究動機...........................................2
1-3. 文獻回顧...........................................4
1-4. 本文結構...........................................6

第二章 理論基礎

2-1. 張力應變對矽之影響.................................8
2-2. 熱載子效應........................................10
2-3. 金氧半場效電晶體...................................11
2-2-1. 概述.........................................11
2-2-1. 基本元件特性.................................12
2-2-3. 線性區與飽和區...............................13

第三章 實驗儀器與參數粹取

3-1. 實驗步驟..........................................15
3-1-1. 實驗前準備...................................15
3-1-2. Sample研磨...................................15
3-1-3. 量測設定.....................................16
3-2. 參數萃取..........................................18
3-3. 實驗儀器..........................................20
3-3-1. 研磨機台.....................................20
3-3-2. 量測機台.....................................20

第四章 結果與討論

4-1. 彎曲對電性的影響..................................22
4-2. 彎曲對熱載子效應的影響............................23
4-2-1 現象探討......................................24
4-3.彎曲對汲極導致能障下降(DIBL)和基板偏壓效應的 影響.............................................. 28
4-3-1 汲極導致能障下降(DIBL) ........................ 29
4-3-2 基板偏壓效應...................................29
4-4.低溫效應...........................................30

第五章 結論與未來展望

5-1. 結論..............................................31
5-2. 未來展望..........................................32

參考文獻.................................................68
參考文獻 References
[1] J. Welser, J. L. Hoyt, and J. F. Gibbons, “Electron
mobility enhancement in strained-Si N-type metal-oxide-
semiconductors field-effect transistors”, IEEE Electron Device Lett., vol.15, pp.100-102, Feb.1994.

[2] A. Lochtefeld and D. A. Antoniadis, “Investigation the relationship between electron mobility and velocity in deeply scaled NMOS via mechanical stress”, IEEE Electron Device Lett., vol.22, pp.591-593, Aug.2001.

[3] D. K. Nayak and S. K. Chun, “Low-field hole mobility of strained-Si on (100) Si1-xGex substrate”, Appl. Lett., vol.64, pp.2514-2516, 1994.

[4] S. Takagi, J. L. Hoyt, J. J. Welser, and J. F. Gibbons,
”Comparative study, of phononlimited mobility of two-
dimensional electrons in strained and unstrained-Si metal-
oxide-semiconductor field-effect transistors”, J. Appl, Phys., vol.80, pp. 1567-1577, 1996.

[5] E. A. Fitzgerald, “Dislocations in strained-layer
epitaxy : Theory, experiments, and applications”, Mater. Sci. Rep., vol.7, pp.88-142, 1991.

[6] E. A. Fitzgerald, Y. H. Xie, D. Monroe, G. P. Watson, J. M. Kuo, and P. J. Silverman, “Defect control in relaxed, graded GeSi/Si”, Mater. Sci. Forum, vol.143-147, pp.471-481, 1994.

[7] E. A. Fitzgerald, Y.-H. Xie, D. Monroe, P. J. Silverman, J. M. Kuo, A. R. Kortan, F. A. Thiel, and B. E. Weir, “Relaxed GexSi1-x structures for Ⅲ-Ⅴ integration with Si and high mobility two dimensional electron gases in Si”, J. Vac. Sci. Technol. B, Microelectron. Process. Phenom., vol.10, pp.1807-1819, 1992.
[8] M. L. Lee and E. A. Fitzgerald, “Hole mobility enhance-
ment in nanometer-scale strained-silicon heterostructures grown on Ge-rich relaxed Si1-xGex “, J. Appl. Phys., vol.94, pp.2590-2596, 2003.

[9] K. Rim et al., “Strained-Si NMOSFETs for high-performance
CMOS technology”, in Symp. VLSI Tech. Dig., pp.59-60, 2001.

[10] K. Rim et al., “Characteristics and device design of sub-100-nm strained-Si N- and PMOSFETs”, in Symp. VLSI Tech. Dig., pp.98-99, 2002.

[11] K. Rim et al., “Fabrication and mobility characteristics of ultra-thin strained-Si directly on insulator(SSDOI) MOSFETs”, in IEDM Tech. Dig., pp.49-52, 2003.

[12] K. Rim, J. Welser, J. L. Hoyt, and J. F. Gibbons, “Enhanced hole mobilities in surface-channel strained-Si pMOSFETs”, in IEDM Tech. Dig., pp.517-520, 1995.

[13] C. K. Maiti, L. K. Bera, S. S. Dey, D. K. Nayak, and N. B. Chakrabarti, “Hole mobility enhancement in strained-Si pMOSFETs under high vertical field”, Solid State Electron., vol.41, pp.1863-1869, 1997.

[14] J. L. Hoyt, H. M. Nayfeh, S. Eguchi, I. Aberg, G. Xia, T. Drake, E. A. Fitzgerald, and D. A. Antoniadis, “strained silicon MOSFET technology”, in IEDM Tech. Dig., pp.23-26, 2002.

[15] M. L. Lee, C. W. Leitz, C. Zhiyuan, A. J. Pitera, G. Taraschi, D. A. Antoniadis, and E. A. Fitzgerald, “Strained Ge channel p-type MOSFETs fabricated on Si1-xGex/Si virtual substrate. Materials issues in novel Si-base technology”, in Proc. MRS Symp., vol.686, pp.39-43, 2002.

[16] S. Ito et al., “Mechanical stress effect of etch-stop nitride and its impact on deep submicrometer transistor design”, in IEDM Tech. Dig., pp.247-250, 2000.

[17] A. Shimizuet al., “Local mechanical-stress control(LMC)
: A new technique for CMOS-performance enhancement”, in IEDM Tech. Dig., pp.433-436, 2001.

[18] A. Steegen et al., “Silicide induced pattern design and orientation dependent transconductance in MOS transistors”, in IEDM tech. Dig., pp.497-500, 1999.

[19] S. Pidin, T. Mori, R. Nakamura, T. Saiki, R. Tanabe,S. Satoh, M. Kasw, K. Hashimoto, and T. Sugii, “MOSFET current drive optimization using silicon nitride capping layer for 65-nm technology node”, in Symp. VLSI Tech. Dig., pp.54-55, 2004.

[20] C. S. Smith, “Piezoresistance effect in germanium and silicon”, Phys. Rev., vol.94, pp.42-49, 1954.

[21] B. Kloeck and N. F. de Rooij, “Mechanical Sensors”, in Semiconductor Sensors, S. M. Sze,Ed. New York:Wiley, 1994.

[22] S. E. Thompson et al., “A logic nanotechnology featuring strained silicon”, IEEE Electron Device Lett., vol.25, pp.191-193, Mar.2004.

[23] G. Scott, J. Lutze, M. Robin, F. Nouri, and M. Manley, “NMOS drive current reduction cause by layout and trench isolation stress”, in IEDM tech. Dig., pp.827-830, 1999.

[24] Y. G. Wang, D. B. Scott, J. Wu, J. L. Waller, J. Hu, K. Liu, and V. Ukraintsev, “Effect of uniaxial mechanical stress on drive current of 0.13μm MOSFETs”, in IEEE Transactions on Electron Device, vol.50, pp.529-531, Feb.2003.
[25] S. Maikap et al., “Mechanically strained strained-Si NMOSFETs”, in IEEE Electron Device Lett., vol.25, pp.40-42, Jan.2004.

[26] C. Gallon et al., “Electrical analysis of external mechanical stress effects in short channel MOSFETs on (001) silicon”, in Solid-State Electronics, pp.561-566, 2004.

[27] Wei Zhao et al., “Partially depleted SOI MOSFETs under uniaxial tensile strain”, in IEEE Transactions on Electron Device, vol.51, pp.317-323, Mar.2004.

[28] Shin-ichi et al., “Sub-band structure engineering for advanced CMOS channels”, in Solid-State Electronics, pp.284-69, 2005.

[29] Takagi S, Koga J, Toriumi A. Tech Dig IEDM 1997:219.

[30] Takagi S, Hoyt JL, Welser JJ, Gibbons JF. J Appl Phys 1996;80:1567.

[31] Nakatsuji H, Kamakura Y, Taniguchi K. IEDM Tech Dig 2002:727.

[32] Fischetti MV, Ren Z, Solomon PM, Yang M, Rim K. J Appl Phys 2003;94:1079.

[33] E. H. Nicollian, A. Goetzberger, and C. N. Berglund, “Avalanche injection currents and charging phenomena in thermal SiOX:” Appl. Pkys. Lett., vol. 15, no. 6, p. 174, 1969.

[34] E. H. Nicollian and C. N. Berglund, “Avalanche injection of electrons into insulating Si02 using MOS structures,”J. Appl. Phys., vol. 41, no. 7, p. 3052, 1970.

[35] G. Hu and W. C. Johnson, “Relationship between trapped holes and interface states in MOS capacitors,” Appl. Phys. Lett., vol. 36, no. 7, p. 590, 1980.

[36] M. Shatzkes and M. Av-Ron, “Impact ionization and positive charge in thin Si02 films,” J. Appl. Phys., vol. 47, no. 7, p. 3 192,1976.

[37] D. J. DiMaria, Z. A. Weinberg, and J. M. Aitken, “Location of positive charges in Si02 films on Si generated by vuv photons, X-rays, and high-field stressing,” J. Appl. Phys., vol. 48, no, 3, p. 898, 1977.


[38] R. J. Powell, “Hole photocurrents and electron tunnel injection induced by trapped holes in Si02 films,” J. Appl. Phys., vol. 46, no. 10, p. 4557, 1975.

[39] T. H. Ning and H. N. Yu, “Optically induced injection of hot electrons into Si02,” J. Appl. Phys., vol. 45, no. 12, p. 5373, 1974.

[40] M. H. Woods and R. Williams, “Hole traps in silicon dioxide,” J. Appl. Phys., vol. 47, no. 3, p. 1082, 1976.

[41] D. R. Young, E. A. Irene, D. J. DiMaria and R. F. DeKeersmaecer, “Electron Trapping in SiO2 at 295 and 77°K,” J. Appl. Phy,;., vol. 50, no. 10, p. 6366, 1979.

[42] J. F. Verwey, “Hole currents in thermally grown SiO2,” J. Appl. Phys., vol. 43, no. 5, p. 2273, 1972.
[43] J. F. Verwey, “Nonavalanche injection of hot carriers into SiO2 ,” J. Appl. Phys.,vol.44, no.6, p. 2681, 1973.

[44] KWOK K.NG and GEOFFREY W. TAYLOR “Effects of Hot-Carrier Trapping in n- and p-Channel MOSFET’s” IEEE TRANSACTIONS ON ECLECTRON DEVICES, VOL.ED-30, NO.8, AUGUST 1983

[45] J. E. Lilienield, U.S. Patent 1,745,175, 1930.

[46] O. Heil, British Patent 439,457, 1935.

[47] W. Shockley and G. L. Pearson, “Modulation of conductance of thin films of semiconductors by surface changes”, Phys. Rev, 74, 232, 1948.

[48] D. Kahng and M. M. Atalla, “Silicon-silicon dioxide field induce surface devices”, IRE Solid-State Device Res. Conf., Carnegie Institute of Technology, Pittsburgh, Pa.,1960. D. Kahng, “A historical perspective on the development of MOS transistors and related device”, IEEE Tran. Electron Device, ED-23, 655, 1976.

[49] H. K. J. Ihantola, “Design Theory of a surface field-effect transistor”, Stanford Electron. Lab. Tech. Rep. NO. 1661-1, 1961.

[50] H. K. J. Ihantola and J. L. Moll, “Design Theory of a surface field-effect transistor”, Solid State Electron., 7, 426, 1964.

[51] C. T. Sah, “Characteristics of metal-oxide-
semiconductor transistor”, IEEE Tran. Electron Device, ED-11, 324, 1964.

[52] S. R. Hotstein and F. P. Heiman, “The silicon insulated-gate field-effect transistor”, Proc. IEEE, 51, 1190, 1963.

[53] J. T. Wallmark and H. Johnson. Field Effect Transistors, Physics, Technology, and Applications, Prentice-Hall. Englewood Clffs, N. J., 1966.

[54] P. Richman, MOSFET`s and Integrated Circuits, Wiley, New York, 1973.

[55] J. R. Brews, “Physics of the MOS transistor”, in D. Kahng, Ed., Applied Solid State, Suppl. 2A. Academic, New York, 1981.

[56] L. L. Chang and H. N. Yu, “The germanium insulate-gate field-effect transistor(FET)”, Prob. IEEE, 53, 316,1965.

[57] C. W. Wilmsen and S. Szpak, “MOS processing for Ⅲ-Ⅴ compound semiconductors : overview and bibliography”, Thin Solid Film, 46, 17, 1977.

[58] “Looking ahead to the Year 2000. Technology”, Electronics, 53.(9)530, 1980.

[59] G. Moore, “VLSI : some fundamental challenges”, IEEE Spectrum, 16(4)30, 1980.

[60] Toshifumi Irisawa, Toshinori Numata, Naoharu Sugiyama and Shin-ichi Takagi, “On the origin of increase in substrate current and impact ionization efficiency in strained-Si n- and p-MOSFETs”, IEEE TRANSACTIONS ON ECLECTRON DEVICES, VOL.52, NO.5, May 2005

[61] R.C.Alig, S.Bloom and C.W.Struck, “Scattering by ionization and phini emission in semiconductor”, physical review B, vol.22, num.12, December 1980

[62] 施敏原著,黃調元譯, ”半導體元件物理與製作技術第二版”,國立交通大學出版社,民國九十二年。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.235.154.65
論文開放下載的時間是 校外不公開

Your IP address is 3.235.154.65
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code