Responsive image
博碩士論文 etd-0724107-160220 詳細資訊
Title page for etd-0724107-160220
論文名稱
Title
聚丁二酸二丁酯、聚丁二酸二丙酯共聚酯與混掺物之檢測分析、結晶、熔融與結晶形態
Copolymers and Blends of Poly(butylene succinate) and Poly(trimethylene succinate): Characterization, Crystallization, Melting, and Morphology
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
147
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-07-04
繳交日期
Date of Submission
2007-07-24
關鍵字
Keywords
結晶、熔融、琥珀酸、成長速率、共聚酯
Melting, Growth rate, Copolyester, Crystallization, Succinate
統計
Statistics
本論文已被瀏覽 5698 次,被下載 1589
The thesis/dissertation has been browsed 5698 times, has been downloaded 1589 times.
中文摘要
本論文探討聚丁二酸二丁酯以及其與少量聚丁二酸二丙酯共聚、混摻物。聚丁二酸二丁酯及以其為主之共聚物本質黏度介於1.62及0.97 dL/g之間;數量平均子量則在2.5x104到11.9x104 g/mol之間,其多分佈指數為1.52至3.94。以核磁共振儀之氫譜及碳譜定量共聚物之不同單體含量及亂度參數,由其單一玻璃轉換溫度及亂度參數之接近於一,可推論本文所探討之共聚物均為無規共聚物。聚丁二酸二丁酯的玻璃轉換溫度為-40.8 °C;隨著二丙酯的成分增加共聚物的玻璃轉換溫度逐漸升高而熔點降低,但在混摻物熔點降低現象較不明顯。
聚丁二酸二丁酯以及其與少量聚丁二酸二丙酯共聚、混摻物的Avrami指數介於2到3之間,推論其結晶為二維的同質成核或三維的異質成核,對聚丁二酸二丙酯、共聚及混摻物升溫可觀察到多重熔融峰。Tm1稱為退火峰,可能是由於升溫過程中熔融與再結晶相互競爭所造成。Tm2則是由主要的層版熔融所造成,並由Hoffman-Weeks線性外插法求得聚丁二酸二丁酯的平衡熔點為127.4 °C;樣品代號PBTSu95/05為125.7 °C;PBTSu90/10為120.6 °C。混摻物代號PBSu/PTSu 98/02的平衡熔點為128.6 °C;PBSu/PTSu 95/05為127.0 °C;PBSu/PTSu 90/10為125.5 °C其增厚係數( )介於0.77至0.8。
由熱重分析儀實驗測得樣品熱裂解三個特徵溫度分別為,熱裂解起始溫度(Tstart)、質量損失2%的溫度(Tloss2%)及裂解最快的溫度(Tmax)。由於PBTSu90/10較高的分子量,使其熱裂解起始溫度及質量損失2%的溫度較其他樣品有明顯不同。
將樣品於不同等溫條件下製備,由廣角X光繞射實驗所得到的繞射峰位置不隨溫度改變,但溫度增加將使繞射逐漸變得尖銳且涵蓋的面積增加,推測其升溫過程中晶格不會發生改變,其晶點(crystallite)變大且較為完美。聚丁二酸二丁酯的球晶成長速率在103 °C時為0.01 μm/sec隨著結晶溫度下降迅速增加於75 °C時為3.33 μm/sec。在增加二丙酯成份後,其球晶成長速率也會大量減少,推測其中之一原因可能於結晶過程中二丙酯阻礙了其分子鏈的疊加。將球晶成長速率以Lauritzen-Hoffman二次成核理論加以分析,採用Williams-Landel– Ferry模型可計算出聚丁二酸二丁酯由regimeII轉移到regime III的溫度為95.1 °C;PBTSu95/05和PBTSu90/10分別為84.4及77.1 °C。
本文所使用的樣品於偏光顯微鏡下觀察皆為二維且較相似於軸晶,觀察其雙折射率現象,可歸類為負光性球晶。在較大過冷度(supercooling)下結晶,可以觀察到消光環的現象。
Abstract
A small amount of poly(trimethylene succinate) (PTSu) were copolymerized or blended with poly(butylenes succinate) (PBSu) in this study. The range of intrinsic viscosity for PBSu and PBSu-enriched copolymers are between 1.62 and 0.97 dL/g; number-average molecular weights are in the range of 2.5x104 and 11.9x104 g/mol with polydispersity indices ranging from 1.52 to 3.94. Copolymer composition is calculated from 1H and 13C NMR spectra, and the distribution of BS and TS units in these copolymers are supported to be random from the evidence of a single glass transition temperature (Tg) and a randomness value close to 1.0. Tg of PBSu is -40.8 °C. The Tg values of copolymers and blends increased with TS contents. The melting temperature (Tm) and the exothermic heat of crystallization of blends were not strongly affected by blending with PTSu.
The values of Avrami exponent (n) for PBSu, copolymers and blends ranging from 2.3 to 3.1 indicate that heterogeneous nucleation with three-dimensional growth and homogeneous nucleation with two-dimensional growth might happen during the crystallization process. Multiple melting behavior was observed for PBSu, PBSu- enriched copolyesters and blends. Their peak temperatures are denoted as Tm1, Tm2 and Tm3 in order of increasing temperature. Tm1 corresponds to the melting temperature of the so-called annealing peak which might be resulted from the competition between continuous melting and re-crystallization. In contrast the peak at Tm2 is attributed to the melting of the primary crystals formed during isothermal crystallization. The peak at Tm3 may arise from the melting of re-crystallized primary crystals. Equilibrium melting temperatures were determined by the Hoffman-Weeks linear extrapolations which yield of 127.4 °C for PBS, 125.7 °C for PBTSA95/05, 120.6 °C for PBTSu90/10, 128.6 °C for PBSu/PTSu 98/02, 127.0 °C for PBSu/PTSu 95/05 and 125.5 °C for PBSu/PTSu 90/10. The thickness coefficient ( ) is located between 0.77 and 0.80.
Three characteristics temperatures of thermal degradation, defined as temperature of thermal degradation at begining (Tstart), weight losses of 2% (Tloss2%) and maximum degradation rate (Tmax), were employed to characterize the thermal stability of polyesters and blends. The Tloss2% and Tstart values of PBTSu90/10 are higher than the values of the others because of its unusually high molecular weight.
Wide-angle x-ray diffraction patterns were obtained after complete isothermal crystallization. Diffraction peaks are in the same positions, and these peaks become sharper and increase in intensity as the crystallization temperature increases. This indicates that during the heating process, only one crystal form appears and both of the crystallite size and perfect degree increase. The isothermal growth rate of PBSu spherulite increases from 0.01 μm/sec at 103 °C to 3.33 μm/sec at 75 °C. When the TS units increase, the spherulitic growth rates of PBTSu95/05 and PBTSu90/10 copolyesters decline dramatically. One of the reasons is that the incorporation of TS units into PBSu significantly inhibits the crystallization behavior of PBSu. Growth rates data were treated with Lauritzen-Hoffman secondary nucleation theory to find the regime transition. Using the Williams-Landel-Ferry (WLF) values, regime II to III transition is found at 95.1 °C for PBSu, 84.4 °C PBTSu95/05, and 77.1 °C for PBTSu 90/10. All melt-crystallized specimens formed two dimensional axial-like spherulites with negative birefringence. Extinction bands were observed when PBSu, PBSu- enriched copolymers and blends specimens were crystallized at large undercooling.
目次 Table of Contents
List of tables………………...……………………………………………………..iv
List of schemes…………….……………………………………………………….vi
List of figures…………………...………………………………………………….vi

摘要…………………………………………………………………………………xiii
Abstract………………………………………………………………………..…....xv
1 Introduction…………………………………………………………………….1
1.1 Background……………………………………………………….……..1
1.2 Factors affecting biodegradation………………………………...……..…6
1.3 Applications…………………………………………………….…….….7
1.4 Motivation……………………………………………………….….…….7

2. Literature review…………………………………………….…...…..…………...9
2.1 Crystallization kinetics analyses……………………………...……………9
2.1.1 Avrami equation…………………………………………………..9
2.1.2 Dynamic growth rate……………………………………………10
2.1.3 Regime transition analysis…………………………..………….11
2.2 Kinetics and thermodynamics of fusion…………………………………13
2.2.1 Multiple melting behaviors…………………………...….……..13
2.2.2 Hoffman-Weeks linear extrapolation………………..…………15
2.3 Fox equation……………………………………………………...………..16
2.4 Polarized light microscopy………………………………………..………16

3. Experimental…………………………………………………………………19
3.1 Materials. ……………………………………………………………19
3.2 Samples preparation………………………………………………19
3.3 Instruments……………………………………………………………20
3.4 Characterization and measurements………………………………20
3.4.1 Analyses of chemical structures…………….…………………..20
3.4.2 Measurements of molecular weights………………..………….21
3.4.3 Measurements of Tg and Tm…………………………………..21
3.4.4 Thermal stability…………………………..…………………….22
3.4.5 Wide-angle X-ray diffraction…………………………………...22
3.4.6 Crystallization kinetics and melting behaviors……….……….22
3.4.6.1 Kinetics of isothermal crystallization…………...…...22
3.4.6.2 Observation of melting behaviors by DSC……….….23
3.4.7 Crystal morphology and measurement of growth rate.............23
3.4.7.1 Isothermal growth rate…………………….………….23
3.4.7.2 Dynamic growth rate………………………………….23
3.4.8 Microscopy of PBSu and PBTSu……………………….………24
3.4.8.1 SEM microscopy…………………...……...…….…….24
3.4.8.2 AFM microscopy…………………...……...…………..24

4. Results and discussion……………………………………………...…...……….25
4.1 Intrinsic viscosity and molecular weights..………………………………25
4.2 Analyses of chemical structures…………………………………………..25
4.3 Measurements of Tg and Tm…………..……………………….………….28
4.4 Kinetics of isothermal crystallization…………………………...……….29
4.5 Melting behaviors and equilibrium melting temperature……………...31
4.6 Thermal stability……………………………...…………………………...34
4.7 Crystal structure…………………………………………………...……...34
4.8 Growth rate and regime transition…………………………...…...……..35
4.9 PLM, SEM and AFM micrographs……………………...….......………..35

5. Conclusions…………….. ………………………………………………………..39
Reference…………………………………………..………………..…………...118
參考文獻 References
1. Chandra R and Rustgi R. Biodegradable Polymers. Prog Polym Sci 1998; 23: 1273-1335.
2. Doi Y and Steiunbchel A. Biopolymers, vol. 3. WELEY-VCH Verlag GmbH. Weinheim, Germany, 2001, chapter 10.
3. Fujimaki T. Processability and properties of aliphatic polyesters, “BIONOLLE”, synthesized by polycondensation reaction. Polym Degrad Stab 1998; 59: 209-214.
4. Spanagel EW and Carothers WH. Macrocyclic Esters. Macrocyclic Esters. J Am Chem Soc 1935; 57: 929-934.
5. Horii F, Hirai A, Murayama K and Kitamaru R. Molecular Mobilities of Individual Constituent Carbons of Solid Polyesters above Tg As studied by Carbon-13 Nuclear Magnetic Resonance Spectroscopy. Macromolecules 1983; 16: 273-278.
6. Ichikawa Y, Suzuki J, Washiyama J, and Moteki Y. Strain-induced Crystal Modification in Poly(Tetramethylene Succinate). Polymer 1994; 35: 3338-3339.
7. Pranamuda H, Tokiwa Y and Tanaka H. Microbial Degradation of an Aliphatic Polyester with a High Melting Point, Poly(Tetramethylene Succinate). Appl Envir Micro 1995; 61: 1828-1832.
8. Ihn KJ, Yoo ES and Im SS. Structure and Morphology of Poly(tetramethylene succinate) crystals. Macromolecules 1995; 28: 2460-2464.
9. Miyata T and Masuko T. Crystallization Behavior of Poly(tetramethylene succinate). Polymer 1998; 39: 1399-1404.
10. Yoo ES and Im SS. Melting Behavior of Poly(butylenes succinate) During Heating Scan by DSC. J Polym Sci Part B: Polym Phys 1999; 37: 1357-1366.
11. Takiyama E, Niikura I and Hokari T. High-molecular unsaturated polyester resin. US Patent NO. 5371172, 1994.
12. Takiyama E, Fujimaki T, Seki S, Hokari T and Hatano Y. Method for manufacturing biodegradable high molecular aliphatic polyester. US Patent NO.5310782, 1994.
13. Takiyama E, Hatano Y, Fujimaki T, Seki S, Hokari T, Hosogane T and Harigai N. Method of producing a high molecular weight aliphatic polyester and film thereof. US Patent NO. 5436056, 1995.
14. Patel M, Crank M, Marscheider-Weidemann F, Schleich J, Hüsing B and Angerer G. Techno-economic Feasibility of Large-scale Production of Bio-based Polymers in Europe (PRO-BIP) ,2004.
15. Kim DY, Yim SC, Lee PC, Lee WG, Lee SY and Chang HN. Batch and Continuous Fermentation of Succinic Acid from Wood. Hydrolysate by Mannheimia succiniciproducens MBEL55E. Enzyme Microb Technol 2004; 35: 648-653.
16. Lee PC, Lee Wang, Lee SY, and Chang HN. Succinic Acid Production with Reduced By-product Formation in The Fermentation of Anaerobiospirillum succiniciproducens Using Glycerol as a Carbon Source. Biotechnol Bioeng 2001; 72:41-49.
17. Anderson C. Succinic Acid Production Using Metabolically Engineered Escherichia Coli, 2007, Department of Chemical Engineering and Geosciences.
18. Stieglitz B and Weimer P., Novel Microbial Screen for Detection of 1,4-Butanediol, Ethylene Glycol and Adipic Acid. Environ Micro 1985; 49: 593-598.
19. Carothers WH and Arvin JA. Studies on Polymerization and Ring Formation. II. Poly-esters. J Am Chem Soc 1929; 51: 2560-2570.
20. Papageorgiou G and Bikiaris DN. Biodegradability Poly(Alkylene Succinate) Blends: Thermal Behavior and Misibility Study. J Polym Sci Part A: Polym Chem 2006; 44: 584-597.
21. Chrissafis K, Paraskevopoulos KM and Bikiaris DN. Thermal Degradation Kinetics of the Biodegradable Aliphatic Polyester, Poly(propylene succinate). Polym Degrad Sta. 2006; 91: 60-68.
22. Papageorgiou G and Bikiaris DN. Crystallization and Melting Behavior of Three Biodegradable Poly(alkylene succinates). A Comparative Study. Polymer 2005 ; 46: 12081-12092.
23. Liu Y, Ranucci R, Lindblad MS and Albertsson A-C. New Biodegradable Polymer from Renewable Sources: Polyester-carbonates Based on 1,3- Propylene -co-1,4-Cyclohexanedimethylene Succinate. J Polym Sci Part A: Polym Chem 2001; 39: 2508-2519.
24. Ranucci R, Liu Y, Lindblad MS and Albertsson A-C. New Biodegradable Polymer from Renewable Sources. High Molecular Weight Poly(ester carbonate)s from Succinic Acid and 1,3-Propanediol. Macromol Rapid Commun 2000; 21: 680-684 .
25. Yoo Y, Ko MS, Han SI, Kim TY, IM S and Kim DK. Degradation and Phsical Properties of Aliphatic Copolyesters Derived from Mixed Diols. Polym J 1998; 30: 538-545.
26. Fujimoto E and Fujimaki T. Effects of Pendant Methyl Groups and Lengths of Methylene Segments in Main-Chains on Photodegradation of Alphatic Polyesters. Polym J 1999; 31: 645-650.
27. Sumner C, Sabot A, Turner K and Krause S. A Transducer Based on Enzyme- Induced Degradation of Thin Polymer Films Monitored by Surface Plasmon Resonance. Anal Chem 2000; 72: 5225-5232.
28. Sumner C, Krause S, Sabot A, Turner K and McNeil CJ. Biosensor Based on Enzyme-Catalysed Degradation of Thin Polymer Films. Biosen Bioelect 2001; 16: 709-714.
29. Traub HL, Hirt P, Herlinger H and Oppermann W. Synthesis and Properties of Fiber-grade Poly(trimethylene terephthalate). Die Angew Makromol Chem 1995; 230: 179-187.
30. Xiu ZL, Song BH, Wang ZT, Sun LH, Feng EM and Zeng AP. Optimization of Dissimilation of Glycerol to 1,3-Propanediol by Klebsiella pneumoniae in One- and Two-Stage Anaerobic Cultures. Biochem Eng J 2004; 19: 189-197.
31. Chen X, Zhang D-J, Qi W-T, Gao S-J, Xiu Z-L and Xu P. Microbial Fed-Batch Production of 1,3-Propanediol by Klebsiella pneumoniae under Micro-Aerobic Conditions. Microbiol Biotechnol 2003; 63: 143-146.
32. Hartlep H, Hussmann W, Prayitno N, Meynial-Salles I and Zeng A-P. Study of Two-Stage Processes for The Microbial Production of 1,3-Propanediol from Glucose. Appl Microbiol Biotechnol 2002; 60: 60-66.
33. Nakamura CE and Whited GM. Metabolic Engineering for The Microbial Production of 1,3-Propanediol. Curr Opin Biotechnol 2003; 14: 454-459.
34. Gross RA and Kalra B. Biodegradable Polymers for the Environment. Science 2002; 297: 803-807.
35.Neumann U, Wiege B and Warwel S. Synthesis of Hydrophobic Starch Esters by
Reaction of Starch with Various Carboxylic Acid Imidazolides. Starch/Stärke
2002; 54: 449-453.
36. Vert M, Li SM, Spenlehauer G and Guerin P. Bioresorbability and
Biocompatibility of Aliphatic Polyesters. J Mat Sci: Mat Med 1992; 3: 432-446.
37. Jeong B, Bae YH, Lee DS, and Kim SW. Biodegradable Block Copolymers as
Injectable Drug-Delivery Systems. Nature 1997; 388: 860-864.
38. Jeong B, Choi YJ, Bae YH, Zentner G and Kim SW. New Biodegradable
Polymers for Injection Drug Delivery Systems. J Cont Rele 1999; 62: 109-114.
39. Langer R. Biomaterials in Drug Delivery and Tissue Engineering: One
Laboratory’s Experience. Acc Chem Res. 2000; 33: 94-101.
40. Gogolewski S and Pennings AJ. An Artificial Skin Based on Biodegradable
Mixtures of Polylactides and Polyurethanes for Full-Thickness Skin Wound
Covering. Makromol Chem, Rapid Commun 1983; 4: 675 – 680.
41. Aburto J, Alric I, Thiebaud S, Borredon E, Bikiaris D, Prinos J and Panayiotou C.
Synthesis, Characterization, and biodegradability of Fatty-Acid of Amylose and
Starch. J Appl Polym Sci 1999; 74: 1440-1451.
42. Lenz RW and Marchessault R. Bacterial polyesters: Biosynthesis, Biodegrable
Plastics and Biotechnology. Biomacromolecules 2005; 6: 1-8.
43. Zinn M, Witholt B and Egli T. Occurrence, Synthesis and Medical Application of
Bacterial Polyhydroxyalkanoate. Adv Drug Deliv Rev 2001; 53: 5-21.
44.Okada M. Chemical Synthesis of Biodegradable Polymers. Prog Polym Sci 2002;
27: 87-133.
45. http://www.natureworksllc.com/corporate/nw_pack_home.asp
46. Papageorgiou GZ and Bikiaris DN. Synthesis and Comparative Biodegradability
studies of Three Poly(alkylene succinate)s. Polym Degrad Stab 2006; 91: 31-43.
47. Reeve MS, McCarthy SP, Downey MJ and Gross RA. Polylactide Stereochemistry
: Effect on Enzymatic Degradability. Macromolecules 1994; 27: 825-831
48. Seretoudi G, Bikiaris D and Panayiotou C. Synthesis, Characterization and
Biodegradability of Poly(Ethylene Succinate)/Poly(ε-Caprolactone) Block
Copolymers. Polymer 2002; 43: 5405-5415.
49. Mochizuki M, Mukai K, Yamada K, Ichise N, Murase S and Iwaya Y. Structural
Effects upon Enzymatic Hydrolysis of Poly(Butylenes Succinate-co-Ethylene
Succinate)s. Macromolecules 1997; 30: 7403-7407.
50. Okada M, Okada Y and Aoi K. Synthesis and Degradabilities of Polyesters from
1,4:3,6-Dianhydrohexitols and Aliphatic Dicarboxylic Acids. J Polym Sci Part A:
Polym Chem 1995; 33: 2813-2820.
51. Koyama N and Doi Y. Miscibility, Thermal properties, and Enzymatic
Degradability of Binary Blends of Poly[(R)-3-hydroxybutytic acid] with
Poly(ε-caprolactone-co-lactide). Macromolecules 1996; 29: 5843-5851.
52.Cho K, Lee J and Kwon K. Hydrolytic. Degradation Behavior of Poly(butylenes
succinate)s with Different Crystalline Morphologies. J Appl Polym Sci 2001; 79:
1025-1033.
53. Lyoo WS, Kim JH, Yoon WS, Ji BC, Choi JH, Cho J, Lee J, Yang SB and Yoo Y.
Effects of Polymer Concentration and Zone Drawing on the Structure and
Properties of Biodegradable Poly(Butylenes Succinate) Film. Polymer 2000; 41:
9055-9062.
54. Lee SH, Lee KH and Hong SK. Effect of Orientation on The Biodegradability of
Uniaxially Stretched Aliphatic Copolyester Films. J Appl Polym Sci 1997; 64:
1999-2006.
55. Song D and Sung YK. Synthesis and Characterization of Biodegradable
Poly(1,4-Butanediol Succinate). J Appl Polym Sci 1995; 56: 1381-1395.
56. Fields RD, Rodricuez F and Finn RK. Microbial Degradation of Polyesters:
Polycaprolactone Degraded by P. Pullulans. J Appl Polym Sci 1974; 18:
3571-3579.
57. Montaudo G and Rizzarelli P. Synthesis and Enzymatic Degradation of Aliphatic
Copolyesters. Polym Degrad Stab 2000; 70: 305-314.
58.Tezuka Y, Tshii N, Kasuya K-I and Mitomo H. Degradation of Poly(Ethylene
Succinate) by Mesophilic Bacteria. Polym Degrad Stab 2004; 84: 115-121.
59. Rizzarelli P, Puglisi C and Montaudo G.. Soil Burial and Enzymatic Degradation
in Solution of Aliphatic Co-Polyesters. Polym Degrad Stab 2000; 85: 855-863.
60. Hakkarainen M, Albertsson A-C and Karlsson S. Weight Losses and Molecular
Weight Changes Correlated with the Evolution of Hydroxyacids in Simulated in
vivo Degradation of Homo- and Copolymers of PLA. Polym Degra Stab 1996;
52: 283-291.
61. Li SM, Garreau H and Vert M. Structure-Property Relationships in the Case of
the Degradation of Massive Aliphatic Poly(α-hydroxy acids) in Aqueous Media.
J Mat Sci: Mat Med 1990; 1: 123-130.
62. Avrami M. Kinetics of Phase Change I General Theory. J Chem Phys 1939; 7:
1103.
63. Avrami M. Kinetics of Phase Change 3. Granulation, Phase Change, And
Microstructure. J Chem Phys 1940; 9: 177.
64. Avrami M. Kinetics of Phase Change Transformation-time Relations for Random
Distribution of Nuclei. J Chem Phys 1940; 8: 212.
65. Bodor G. Stuctural Investgation of Polymers. Eillis Horwood Pub, Chichester
England, 1991, Chapter 6.
66. Lauritzen Jr. J and Hoffman JD. Extension of Theory of Growth of Chain-folded
Polymer Crystals to Large Undercoolins. J Appl Phys 1973; 44: 4340-4362.
67. Hoffman JD, Davis GT, Laurizen Jr JI. In Treatise on Solid State Chemistry, Vol.
3, Crystalline and Noncrystalline Solids, Hannay N.B. ed, Plenum, New York,
1976, Chap. 7.
68. Chung CT and Chen M. Spherulite Growth Rate of Poly(ether ether ketone)
(PEEK). Polym Prepr. 1992; 33 :420-421.
69. Chen M and Chung CT. Analysis of Crystallization Kinetics of Poly(ether ether
ketone) by a Nonisothermal Method. J Polym Sci Part B: Polym Phys 1998; 36:
2393-2399.
70. Di Lorenzo ML , Silvestre C. Non-Isothermal Crystallization of Polymers. Prog
Polym Sci 1999; 24: 917-950.
71. Laurizen Jr J. Effect of a Finite Substrate Length upon Polymer Crystal Lamellar
Growth Rate. J Appl Phys 1973; 44: 4353-4359.
72. Hoffman JD. Role of Reptation in the rate of Crystallization of Polyethylene
Fractions from the Melt. Polymer 1982; 23: 656-670.
73. Hoffman JD. Regime III Crystallization in Melt-Crystallized Polymers: The
Variable Cluster Model of Chain Folding. Polymer 1983; 24: 3-26.
74. Frank FC. Nucleation-controlled Growth on A One-dimension Growth of Finite
Length. J Crys Grow 1974; 22: 233-236.
75. Gan Z, Abe H, Kurokawa H and Doi Y. Solid-State Microstructure, Thermal
Properties, and Crystallization of Biodegradable Poly(butylenes succinate) (PBS)
and its Copolyesters. Biomacromolecules 2001; 2: 605-613.
76. Lee Y and Porter RS. Double-Melting Behavior of Poly(ether ether Ketone).
Macromolecules 1987; 20: 1336-1341.
77. Lee Y, Porter RS, and Lin JS. On The Double-melting Behavior of Poly(ether
ether ketone). Macromolecules 1989; 22: 1756-1760.
78. Hsiao BS, Gardner KH and Wu DQ. Time-Resolved X-Ray Study of Poly(aryl
ether ether ketone) Crystallization and Melting Behavior: 1. Crystalization.
Polymer 1993; 34: 3986-3996.
79. Wang Z-G, Hsiao BS, Sauer BB and Kampert WG.. The Nature of Secondary
Crystallization in Poly(ethylene terephthalate). Polymer 1999; 40 : 4615-4627.
80. Krüeger N and Zachmann HG.. Investigation of the Melting Behavior of Poly(aryl
ether ketones) by Simultaneous Measurements of SAXS and WAXS Employing
Synchrotron Radiation. Macromolecules 1993; 26: 5202-5208.
81. Yasuniwa M, Tsubakihara S, Satou T and Iura K. Multiple Melting Behavior of
Poly(butylenes succinate). II.Thermal Analysis of Isothermal Crystallization and
Melting Process. J Polym Sci Part B: Polym Phys 2005; 43: 2039-2047.
82. Chung JS and Cebe P. Melting Behavior of Poly(phenylene sulfide). 2. Multiple
Stage Melt Crystallization. Polymer 1992; 33: 2325-2333.
83. Janimak JJ, Cheng SZD and Zhang A. Isotacticity Effect on Crystallization and
Melting in Polypropylene Fraction :3 Overall Crystallization and Melting
Behavior. Polymer 1992; 33: 728-735.
84. Wei CL, Chen M and Yu FE. Temperature Modulated DSC and DSC Studies on
the Origin of Double Melting Peaks in Poly(ether ether ketone). Polymer 2003;
44: 8185-8193.
85. Hoffman JD and Weeks JJ. Melting Process and the Equilibrium Melting
Temperature of Polychlorotrifluoroethylene. J Res Nat Bur St 1960; 64A: 73.
86. Fox TG.. Influence of Diluent and of Copolymer Composition on the Glass
Temperature of a Polymer System. Bull Am Phys Soc. 1956; 1: 123.
87. Neese WD, Introduction to Optical Mineralogy 2nd , Oxford University Press
Inc.,New York 1991, Chap. 2.
88. Backson SCE, Kenwright AM and Richards RW. A 13C NMR Study of
Transesterification in Mixtures of Poly(ethylene terephthalate) and Poly(butylenes
terephthalate). Polymer 1995; 36: 1991-1998.
89. Gedde UW. Polymer Physics. Chapman & Hall, London,1996.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code