Responsive image
博碩士論文 etd-0724107-163540 詳細資訊
Title page for etd-0724107-163540
論文名稱
Title
不同熟化方式之假牙樹脂的形態與機械性質之關係
Correlation between morphology and mechanical properties of denture resins cured by different methods
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
120
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-07-05
繳交日期
Date of Submission
2007-07-24
關鍵字
Keywords
溫度上升、硬度、樹脂、形態、斷裂強度、轉換度
resin, temperature rise, fracture strength, hardness, morphology, degree of conversion
統計
Statistics
本論文已被瀏覽 5651 次,被下載 4401
The thesis/dissertation has been browsed 5651 times, has been downloaded 4401 times.
中文摘要
本論文包含兩部分。第一部份,藉由70 °C水浴或微波爐熟化四種假牙基底材料。Pressure vent polymerizing Meta-cera (PVPM)法使用Y-Z 包埋盒,在微波500瓦數下聚合樹脂,樣品冷卻方式分為兩種。另外,使用GC FRP包埋盒,分別在微波85,255,及595瓦三種不同瓦數下聚合樹脂。每組條件皆聚合6塊試件。觀測每一塊試件之貼合性、空孔性及斷裂強度。添加韌性成分之Optilon-399樹脂染色後,使用穿透式電子顯微鏡觀察聚合環境對內部形態之影響。結果顯示Optilon-399在聚合後會有含富橡膠相的分散相產生。大部分含富橡膠相的分散相其直徑在210 nm至1440 nm之間,另一小球形區域的分散相,直徑約為80∼100 nm。將穿透式電子顯微鏡所拍攝出來影像中之分散相作統計,並以one-way analysis of variance (ANOVA)分析比較。以水浴聚合樣品其分散相之平均直徑456 ±131 nm為最大,而微波法595瓦所聚合樣品之分散相之平均直徑與水浴法相似,無顯著的差異。其餘四種聚合方式之樣品其分散相之平均直徑(408~442 nm)則明顯較小。不同微波瓦數所聚合的樣品,其分散相之統計結果也不同。微波聚合85瓦、255瓦及595瓦,其分散相之平均直徑分別為408、432、454 nm,隨瓦數的提高而變大,分散相之平均數量分別為35.7、 34.1、32.1,隨瓦數的提高而減少。然而,微波法595瓦所聚合樣品有空孔的問題,微波法85瓦所聚合樣品有貼合性的問題。因此,微波法255瓦所聚合樣品具有較高的斷裂強度(388 kgf對354或369 kgf)。兩種PVPM法之分散相之平均直徑(440對442 nm)及分散相之平均數量(32.9)結果相似。PVPM法所聚合樣品具有最佳的貼合性且無空孔,故其斷裂強度(395和381 kgf)相較水浴所聚合之樣品(284 kgf)高。從本研究結果,建議使用桌上冷卻之PVPM法來聚合假牙基底。
第二部份是以藍色發光二極體固化燈聚合牙齒填補劑之研究。五種不同品牌之光聚合複合樹脂(Premisa, Esthet-X micro matrix restorative, Z100 Restorative, Filtek Z250 and Filtek Z350) 搭配不同模式之藍色發光二極體固化燈聚合:control模式-以強度500 mW/cm2的光照射20秒;pulse cure模式-以強度500 mW/cm2的光照射10秒後,停滯10秒,接著再以強度500 mW/cm2的光照射10秒;soft-start (ramp) 模式-先以強度600 mW/cm2的光照射10秒後,接著再以強度1400 mW/cm2的光照射10秒;turbo (high) 模式-以強度1400 mW/cm2的光照射10秒。每組條件皆聚合6塊試件。量測每一個試件在光聚合時之溫度變化,測量時間為60秒。量測每一個試件其頂部及底部之維式硬度值(Vicker’s hardness)。將所量測的試件上升溫度及其硬度值作統計並以two-way ANOVA分析之。Soft-Start模式聚合樹脂所上升之溫度7.70±0.77 °C明顯高於其他三種模式(P<0.05)。Pulse cure模式聚合樹脂所上升之溫度4.49±0.84 °C為最低(P<0.05)。Control與turbo模式聚合樹脂所上升之溫度差不多(P>0.05)。比較五種樹脂,以Z350聚合時所上升之溫度7.04±1.10 °C明顯高於其他種類的樹脂(P<0.05),除了Premise對Z100外,其他四種樹脂彼此間的溫度上升差異性不大,平均值約為5.3 °C。樹脂頂部及底部硬度主要受樹脂種類的影響(P<0.05),發光二極體燈的光照模式則無顯著性之影響(P>0.05)。Z100材料硬度值(頂部181.6±8.9 kgf/mm2,底部149.1±6.0 kgf/mm2)最高(P<0.05),其次依序為Z250、Esthet-X、 Premise及Z350。另外,在恆溫165 oC加熱聚合三小時焓,溫度上升幅度最高(7 °C)的Z350是由於其有最高放熱焓(- 61 J/g)之緣故。材料聚合時上升之溫度的趨勢,也可以由微差掃瞄卡儀所量測之放熱值解釋之。樹脂照光聚合後之轉換度也可以由微差掃瞄卡儀量測。每一種光照模式皆可使Z100完全的轉換。由高轉換度及高硬度的觀點來看,建議使用材料Z100,搭配溫度上升幅度僅4.65 °C的pulse cure模式。
Abstract
This thesis contains two parts. In the first part, four kinds of dental baseplates were obtained after curing at 70 °C in water bath or curing in microwave oven. Pressure vent polymerizing Meta-cera (PVPM) methods were performed at 500 watts using Y-Z flask, then the specimens in the flasks were cooled in two different ways. Additionally, the samples in GC FRP flask were separately cured by three different microwave-energy powers: 85, 255 or 595 watts. Each of these curing conditions has six specimens. Adaptation, porosity, and fracture strength of these specimens were evaluated. Optilon-399, a rubber-toughed dental baseplate, was chosen to study the effect of curing conditions on the morphology of the stained specimens using transmission electron microscope (TEM). The results indicate that dispersed rubber- enriched phase is observed. Most of the dispersed phase has a mean-diameter ranging from 210 to 1440 nm and smaller domains have a mean-diameter of 80-100 nm. These dispersed domains observed in TEM micrographs are statistically analyzed and compared using one-way analysis of variance (ANOVA) method. The specimens cured in water bath (reference) have the largest mean-diameter, 456 ± 131 nm, for the dispersed phase. There is no significant difference in mean-diameters between the reference method and 595-watts method. Mean-diameters of the specimens (408~442 nm) cured by the other four methods are significantly less than that of the reference method. Differences are also found among three different microwave-energy powers. Mean-diameter increases from 408 to 432 to 454 nm and the number of domains drops from 35.7 to 34.1 to 32.1 per TEM micrograph when microwave-energy power increases from 85 to 255 to 595 watts. However, 595-watts specimens have the problem of porosity and 85-watts specimens have the highest adaptation discrepancy. Therefore, 255-watts specimens have a relatively high fracture strength (388 kgf versus 354 or 369 kgf). There is no difference in mean-diameter (440 versus 442 nm) and the number of domains (32.9 per TEM micrograph) between PVPM systems. Low adaptation discrepancy and no porosity result in a higher fracture strength (395 and 381 kgf) compared with the reference method (284kgf). From this study, PVPM method in a bench cooled type is suggested to prepare dental baseplates.
In the second part, restorative materials for tooth were polymerized and cured using a blue light emitting diode (LED) unit. Five kinds of light-curing hybrid composite resins (Premisa, Esthet-X micro matrix restorative, Z100 Restorative, Filtek Z250 and Filtek Z350) were processed by four different operating modes of LED as follows: control mode- 500 mW/cm2 for 20 s; pulse cure mode - 500 mW/cm2 for 10s, 0 mW/cm2 for 10s, then 500 mW/cm2 for the next 10 s; soft-start (ramp) mode- initially 600 mW/cm2 for 10 s, then jump to 1400 mW/cm2 for 10 s; turbo (high) mode-1400 mW/cm2 for 10 s. Each of light-curing dental materials and LED operating modes has six specimens. Temperature variation of resins in a period of 60 s was measured during and after activating the light. Vicker’s hardness of both top and bottom sides of specimens after curing was measured. Both temperature rise and hardness of specimens are statistically analyzed and compared using two-way ANOVA method. Soft-start mode induced an average temperature rise of 7.70 ± 0.77 °C which is significantly (P<0.05) higher than the other three modes. Pulse cure mode yielded average 4.49 ± 0.84 °C rise which is lowest (P<0.05). There is no difference in temperature rise between control and turbo modes (P>0.05). Comparing five dental materials, Z350 had an average temperature rise of 7.04 ± 1.10°C that is the highest and significantly different from the other materials (P<0.05). Average temperature rise of the other materials was about 5.3 °C without significant difference, except Premise versus Z100. Both top and bottom sides’ hardness of the cured specimens are determined by dental materials (P<0.05), not by LED operating modes (P>0.05). Z100 has the highest hardness (top: 181.6±8.9kgf/mm2, bottom: 149.1±6.0 kgf/mm2). Hardness decreases in the order of Z250, Esthet-X, Premise, Z350. Additionally, the results of isothermal polymerization and curing of resins at 165 °C for 3 hr indicate that the high temperature rise (7 °C) of Z350 resins is due to the high exothermic enthalpy (- 61 J/g). The trend of temperature rise of other dental materials can also be explained from the exothermic value which is measured using differential scanning calorimeter (DSC). Degree of polymerization conversion of resins after light-curing was also evaluated using DSC. Z100 specimens yielded the complete conversion (100%) for all of LED operating modes. From the viewpoints of complete conversion and high hardness, it is suggested to process Z100 specimens in a pulse cured mode because the temperature rise is only 4.65 °C.
目次 Table of Contents
目錄 ..............................................................Ι
表目錄 ........................................................... Ⅳ
圖目錄 ............................................................Ⅵ
摘要 ..............................................................Ⅷ
英文摘要 ..........................................................Ⅹ
Part Ⅰ 假牙基底樹脂之研究 .........................................1
第一章 基本理論 .................................................1
1.1 前言 ......................................................1
1.2 聚甲基丙烯酸甲酯 ..........................................1
1.3 聚甲基丙烯酸甲酯型假牙樹脂之主要成分.......................3
1.4義齒基底製作過程............................................4
第二章 試片熟化聚合及斷裂強度試驗................................9
2.1 前言.......................................................9
2.2文獻回顧....................................................9
2.2.1 微波聚合................................................9
2.2.2 橫向強度...............................................11
2.3 實驗材料...................................................12
2.4 實驗儀器..................................................12
2.5 試片熟化方式..............................................12
2.5.1 傳統水浴聚合試片......................................13
2.5.2 微波聚合試片..........................................13
2.5.3 持續加壓注入聚合系統試片..............................13
2.6斷裂強度測試...............................................14
2.7實驗結果...................................................14
2.8結論.......................................................15
第三章 形態觀察 ................................................20
3.1 前言.......................................................20
3.2 文獻回顧...................................................20
3.2.1貼合度.................................................20
3.2.2多孔姓.................................................21
3.2.3形態觀察...............................................22
3.3 實驗材料...................................................23
3.4 實驗儀器...................................................23
3.5 貼合度測試.................................................23
3.6 假牙基底表面及破斷面的觀察................................ 24
3.7穿透式電子顯微鏡的試片製作及實驗...........................24
第四章 實驗結果 ................................................27
4.1 假牙基底之貼合性.........................................27
4.2假牙基底表面及破斷面的空孔.................................27
4.3 樹脂內部顯微形態..........................................27
4.4 樹脂內部不同位置形態觀察...................................30
第五章 討論.....................................................54
5.1 貼合性..................................................... 4
5.2 多孔性.................................................... 54
5.3橡膠相的運動與形態.........................................56
5.4樹脂內部不同位置形態觀察...................................57
5.5韌性區域大小,假牙基底之貼合度與空孔多寡對斷裂強度的影響....58
第六章 結論.....................................................63
參考文獻........................................................65
Part Ⅱ 牙齒填補劑.................................................65
第七章 基本理論.................................................68
7.1 前言......................................................68
7.2 牙齒結構..................................................70
7.3 光聚合複合樹脂材料之主要成分..............................71
7.4 文獻回顧..................................................72
7.4.1溫度...................................................72
7.4.2 表面硬度...............................................74
7.4.3 轉換度.................................................75
第八章 實驗.....................................................78
8.1 前言......................................................78
8.2 實驗材料..................................................78
8.3 實驗儀器..................................................78
8.4 試片聚合與溫度量測........................................79
8.5 硬度測試..................................................80
8.6 轉換度量測................................................81
第九章 實驗結果與討論...........................................87
9.1 溫度......................................................87
9.2 表面硬度..................................................88
9.3 轉換度....................................................88
第十章 結論....................................................102
參考文獻.......................................................104
參考文獻 References
參考文獻 1
1.RD Phoenix, Denture base materials, Dent Clin North Am, 1996, 40, 113-120.
2.G Odian. , Principles of polymerization. 4th﹐Wiley Interscience﹐New York, 1991, 29-32.
3.RW Phillips, Past, present, and future composite resin systems, Dent Clin Nortth Am, 1981, 25, 209-218.
4.EC Combe, AA Grant, Notes on dental materials, 6th, Churchill Livingstone, New York, 1992.
5.J.W. Nicholson, The Chemistry of Medical and Dental Matericals, Royal Society of Chemistry, 2002, 41-44
6.G Mutlu, R Huggett, A Harrison, JW Goodwin, RW Hughes, Rheology of acrylic denture base polymers, Dert Mater, 1990,6, 288-293.
7.D Al-Doori, R Huggett, JF Bates, SC Brooks, A comparison of denture base acrylic resins polymerized by microwave irradiation, Dent Mater, 1988, 4, 25-32.
8.UR Darbar, R Huggett, A Harrison, Denture fracture –a survey, J Br Dent, 1994,176, 342-345.
9.M Nishii, Studies on the curing of denture base resins with microwave irradiation: with particular reference to heat-curing resins, J Osaka Dent Univ, 1968, 2, 23-40.
10.H Kimura, F Teraoka, H Ohnishi, T Saito, Y M, Applications of microwave for dental technique (part 1) : dough-forming and curing of acrylic resins, J Osaka Dent Univ, 1983, 23, 43-49.
11.H Kimura, F Teraoka, T Saito, Applications of microwave for dental technique (part 2) : adaptability of cured acrylic resins, J Osaka Dent Univ, 1984, 24, 21-29.
12.ET Thostenson, TW Chou, Microwave processing: fundamentals and applications, Compos Part A-Appl S, 1999, 30, 1055-1071.
13.WJ Hayden, Flexural strength of microwave-cured denture baseplates, Gen Dent, 1986, 34, 367-371.
14.PV Reitz, JL Sanders, B Levin, The curing of denture acrylic resins by microwave energy. Physical properties, Quint Int, 1985, 8, 547-551.
15.SR Shlosberg, CJ Goodacre, CA Munoz, BK Moore, RJ Schnell, Microwave energy polymerization of poly(methyl methacrylate) denture base resin., Int J Prosthodont, 1989, 2, 453-458.
16.SG Ilbay, S Guvener, HN Alkumru, Processing dentures using a microwave technique, J Oral Rehabil, 1994, 21, 103-109.
17.E Al-Hanbali, JP Kelleway, JA Howlett, Acrylic denture distortion following double processing with microwave or heat, J Dent, 1991, 19, 176-180.
18.MW Nelson, KR Kotwal, SR Sevedge, Changes in vertical dimension of occlusion in conventional and microwave processing of complete dentures, J Prosthet Dent, 1991, 65, 306-308.
19.SS Nogueira, RE Ogle, EL Davis, Comparison of accuracy between compression and injection molded complete dentures, J Prosthet Dent, 1999, 82, 291-300.
20.JL Sanders, B Levin, PV Reitz, The curing in denture acrylic resins cured by microwave energy, Quint Int, 1987, 18, 453-456.
21.JP De-Clerck, Microwave polymerization of acrylic resins used in dental prostheses, J Prosthet Dent, 1987, 57, 650-658.
22.CB Bucknall, Toughened Plastics, Appl Sci Pub, London, 1977.
23.RG Hill, JF Bates, TT Lewis, N Rees, Fracture toughness of acrylic denture base, Biomaterials, 1983, 4, 112-120.
24.LT Smith, JM Powers, D Ladd, Mechanical properties of new denture resin polymerized by visible light, heat, and microwave energy, Int J Prosthodont, 1992, 5, 315-320.
25.David B. Williams, C. Barry Carter, Transmission Electron Microscopy: A Textbook for Materials Science﹐Springer﹐New York, 1996, 167-168.
26.JL Sanders, B Levin, PV Reitz, Comparison of the adaptation of acrylic resin cured by microwave energy and conventional water bath, Quint Int, 1991, 22, 181-186.
27.JA Brydson, Rubbery Materials and their Compounds, Springer, New York, 1988, 9-10.
28.RA Rodford, Further development and evaluation of high impact strength denture base materials, J Dent, 1900, 18, 151-157.
29.RA Rodford, The development of high impact strength denture-base materials, J Dent, 1986, 14, 214-217.
30.CP Lai, MH Tsai, M Chen, HS Chang, HH Tay, Morphology and properties of denture acrylic resins cured by microwave energy and conventional water bath, Dent Mater, 2004, 20, 133-141.
31.LH Sperling, Introduction to Physical Polymer Science, 4th, Wiley Interscience﹐New York, 1992, 480-482;491-494.
32.CK Riew, Rubber-Toughened Plastics, ACS, Washington, D.C, 1989, no 222.
33.CK Riew, JK Gillham, Rubber-Modified Thermoset Resins. ACS, Washington, D.C, 1984, no 208.
34.S. Ge&acute;hant, R. Schirrer﹐Multiple light scattering and cavitation in two phase tough ﹐J Polym Sci Part B Polym Phy , 1999, 37, 113-126.
35.SY Hobbs, The effect of rubber particle size on the impact properties of high impact polystyrene (HIPS) blends, Polym Eng Sci, 1986, 26, 74-81.
36.AM Donald, EJ Kramer, Craze initiation and growth in high-impact polystyrene, J Appl Polym Sci, 1982, 27, 3729-3741.
37.JD Moore, An electron microscope study of the microstructure of some rubber-reinforced polystyrene, Polymer, 1971, 12, 478-486.
38.JN Sultan, FJ McGarry, Effect of rubber particle size on deformation mechanisms in glassy epoxy, Polym Eng Sci, 1978, 13, 29-34.
39.SC Kunz, JA Sayre, RA Assink, Morphology and toughness characterization of epoxy resins modified with amine and carboxyl terminated rubbers, Polymer, 1982, 23, 1897-1906.
40.C Wrotecki﹐P Heim﹐P Gaillard﹐Rubber toughening of poly(methyl methacrylate). part 1:effect of the size and hard layer composition of the rubber particles﹐Polym Eng Sci, 1991, 31, 213-217.
參考文獻2
1.K Honda, Incandescent lamps. In: Lighting Association, editor. The lighting handbook, Tokyo: Ohmu-sha, 1994, 129-134.
2.Z Tarle , A Meniga, A Kne&#382;evi&#263;, J &#352;utalo, M Risti&#263;, G Pichler, Composite conversion and temperature rise using a conventional, plasma arc, and an experimental blue LED curing unit, J Oral Rehabil , 2002, 29, 662–667.
3.RW Mills, KD Jandt, SH Asworth, Dental composite depth of cure with halogen and blue light emitting diode (LED)technology, Br Dent J, 1999, 186, 388–391.
4.WF Caughman, FA Rueggeberg, Shedding new light on composite polymerization, Oper Dent, 2002, 27, 636–638.
5.鄭信忠, 一口好牙:0∼99歲的保健牙典, 臺市文化, 2004.
6.DF Williams, Medical and dental material, RW Cahn, P Haasen, EJ Kramer, Material science and technology vol. 14, VCH , Weinheim, 1992, 209-258.
7.A Herv&aacute;s-Garc&iacute;a, MA Mart&iacute;nez-Lozano, J Cabanes-Vila, A Barjau-Escribano, P Fos-Galve. Composite resins. A review of the materials and clinical indications, Med Oral Patol Oral Cir Bucal, 2006, 11, E215-E220.
8.M Pohto, A Scheinin, Vital microscopy of the pulp in the rat incisor. Ⅶ.Reactions to silicate cements, Acta Odontol Scand, 1958, 31, 548-558.
9.L Zach, G Cohen, Pulp response to externally applied heat, Oral Surg Oral Med Oral Pathol, 1965, 19, 515-530.
10.P Baldissara, S Catapano, R Scotti, Clinical and histological evaluation of thermal injury thresholds in human teeth: apreliminary study, J Oral Rehabil, 1997, 25, 435-440.
11.S Masutaini, JC Setcos, RJ Schnell, RW Phillips, Temperature rise during polymerization of visible light-activated composite resins, Dent Mater, 1988, 4, 174-178.
12.M Hannig, B Bott, In-vitro pulp chamber temperature rise during composite resin polymerization with various light-curing sources, Dent Mater, 1999, 15, 275-281.
13.S Bouillaguet , G Caillot , J Forchelet, M Cattani-Lorente, JC Wataha, Krejci I, Thermal risks from LED- and high-intensity QTH-curing units during polymerization of dental resins, J Biomed Mater Res Part B: Appl Biomater, 2005, 72B, 260-267.
14.AC Shortall, E Harrington, Temperature rise during polymerization of light-activated resin composites, J Oral Rehabil, 1998, 25, 908–913.
15.AUJ Yap, MS Soh, Thermal emission by different light-curing units, Oper Dent, 2003, 28, 260–266.
16.AC Shortall, HJ Wilson, E Harrington, Depth of cure of radiation-activated composite restoratives-influence of shade and opacity, J Oral Rehabil, 1995, 52, 626-631.
17.LC Sobrinho, MF de Goes, S Consani, MAC Sinhoreti, JC Knowles, Correlation between light intensity and exposure time on the hardness of composite resin, J Mater Sci-Mater M, 2000, 11, 361-364.
18.A Uhl, RW Mills, KD Jandt, Photoinitiator dependent composite depth of cure Knoop hardness with halogen and LED light curing units, Biomaterials, 2003, 24, 1787-1795.
19.PCL Tsai, IA Meyers, LJ Walsh, Depth of cure and surface microhardness of composite resin cured with blue LED curing lights, Dent Mater, 2004, 20,364-369.
20.LF Schneider, S Consani, L Correr-Sobrinho, AB Correr, MA Sinhoreti, Halogen and Led light curing of composite: temperature increase and Knoop hardness, Clin Oral Invest, 2006, 10, 66-71.
21.JM Antonucci, EE Toth, Extent of polymerization of dental resins by differential scanning calorimetry, J Dent Res, 1983, 62, 121-125.
22.JF McCabe, Cure performance of light-activated composites by differential thermal analysis (DTA), Dent Mater, 1985, 1, 231-234.
23.JK Lee, JY Choi, BS Lim, YK LEE, RL Sakaguchi, Change of properties during storage of a UDMA/TEGDMA dental resin, J Biomed Mater Res B, 2003, 62B, 216-221.
24.N Emami, K–J S&ouml;derholm, Influence of light-curing procedures and photo-initiator/co-initiator composition on the degree of conversion of light-curing resins, J Mater Sci : Mater in Medicine, 2005, 16, 47-52.
25.K Hinoura, Y Akiyama, M Miyazaki, T Kuroda, H Onose, Influence of irradiation sequence on dentin bond of resin inlays, Oper Dent, 1995, 20, 30-33.
26.MR Bouschicher, FA Rueggeberg, DB Boyer, Effect of stepped light intensity on polymerization force and conversion in a photoactivated composite, J Esthet Dent, 2000,12, 23-32.
27.YH Kwon, GH Jeon, CM Jang, HJ Seol, HI Kim, Evaluation of polymerization of light-curing hybrid composite resins, J Biomed Mater Res B, 2006, 76B, 106-133.
28.IE Ruter, H Oysaed, Conversion in different depths of ultraviolet and visible light activated composite materials, Acta Odontol Scand, 1982, 40, 179-192.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code