Responsive image
博碩士論文 etd-0724107-202508 詳細資訊
Title page for etd-0724107-202508
論文名稱
Title
脈衝雷射點銲不鏽鋼薄板之研究
Study of pulsed laser welding on stainless steel thin sheet
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
173
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-06-28
繳交日期
Date of Submission
2007-07-24
關鍵字
Keywords
高速照相、數值分析、入射角、溫度量測、脈衝雷射點銲
pulse laser welding, incident angle, high-speed camera, temperature measurement, numerical analysis
統計
Statistics
本論文已被瀏覽 5658 次,被下載 20
The thesis/dissertation has been browsed 5658 times, has been downloaded 20 times.
中文摘要
本文同時以數值與實驗方法探討脈衝雷射點銲不鏽鋼薄板時,銲點溫度的變化及不同雷射操作參數對銲點尺寸大小、形狀、縱橫比的影響。在數值分析方面,將雷射能量視為三維的高斯熱源分佈並求得點銲過程中,銲點的溫度變化及點銲完成後,銲點的大小。本研究主要的參數計有雷射能量、雷射脈衝時間、雷射入射角等。在實驗方面,主要分三部分,首先利用金相方法量測點銲完成後,銲點的大小,並與數值結果作比對。接下來,使用高速照相機紀錄點銲過程中,銲點的動態變化。最後,建立一套紅外線溫度量測系統,以觀測點銲過程中溫度的變化。由結果可證明利用提出的熱源模式所得到數值結果與實驗結果相當吻合。本研究得知,銲點的尺寸大小與雷射能量、雷射脈衝時間、雷射入射角等有很大的相關性。
Abstract
Laser spot welding on a stainless steel plate was investigated numerically and experimentally. A numerical method was applied to predict the dimensions of fusion zone and temperature distribution in the welding process. In the numerical approach, a three-dimensional heat source equation is used to model laser beam intensity distribution, which is assumed to be a Gaussian distribution in the radial direction and exponential decay in the penetration direction. The parameters of the pulsed Nd:YAG laser spot welding include pulse energy, pulse duration, and incident angles of laser beam. Experiments were also conducted in the study. The characteristic lengths of welded spot were measured by metallographic method, and then, the dynamical behavior of the laser welding process was visualized by a high-speed video camera. Finally, the temperature variations during the laser-spot welding process were measured by an infrared pyrometer system. It is demonstrated that the numerical results by proposed model agree well with experimental observations in predicting the characteristic lengths of welded spots. From this study, it is found that weld dimensions is a strong function of incident angles of laser beam, laser energy, and pulse duration time.
目次 Table of Contents
CONTENTS ………………………………i
LIST OF TABLES …………………………iv
LIST OF FIGURES………………………v
NOMENCLATURE ………………………xii
摘要………………………………………xv
ABSTRACT ……………………………xvi
CHAPTER 1 INTRODUCTION………1
1.1Background ………………1
1.2Literature Review ………2
1.3Motivations and Objectives ………11
CHAPTER 2 NUMBERICAL ANALYSIS …14
2.1Model for Thermal Analysis.…………14
2.2Mathematical Description of the Model…15
2.3Governing Equation Validation in the Micro-Scale Problem…16
2.4Heat Source Distribution………………17
2.5Effective Focal Radius…………………18
2.6Effective Penetration Depth……………19
2.7 Grid Independent and Time Step Setting in Vertical Welding…20
2.7.1 Grid Independent Test……………20
2.7.2 Time Step Setting…………………22
2.8Model Validation in Vertical Welding……22
CHAPTER 3 EXPERIMENTAL APPARATUS………39
3.1Laser Welding System ……………………39
3.1.1 Laser Source ………………………39
3.1.2 Workstation for Laser Welding.……40
3.1.3 The Power Detector and Meter………41
3.1.4 Metallographic Method Applications of Welded Spot… 42
3.2 Digital High-Speed Camera………………42
3.3 Infrared Pyrometry…………………………43
3.3.1 Infrared (IR) Pyrometer……………… 43
3.3.2 Basic Theory of Pyrometry……………43
3.3.3 Components of IR Pyrometer………46
3.3.4 Pyrometer Design…………………48
3.3.5 Calibration of IR Pyrometer System……49
CHAPTER 4 RESULTS AND DISCUSSION…65
4.1Computational Results and Discussion…65
4.1.1 Three-Dimension Thermal Analysis Model…65
4.1.2 The Characteristic Lengths of Welded Spot…65
4.1.3 Influence of Laser Energy on Size and Aspect Ratio of Welded Spot…………65
4.1.4 Influence of Laser Incident Angle on Size and Aspect Ratio of Welded Spot……………………67
4.1.5 Influence of Laser Pulse Duration Time on Size and Aspect Ratio of Welded spot…68
4.1.6 Volume Analysis of Welded Spot…………69
4.1.7 Summary………………………70
4.2 Experimental Results and Discussion………71
4.2.1 Environments and Laser Parameters……72
4.2.2 Influence of Laser Energy and Laser Incident Angle on Size of Welded Spot……………………72
4.2.3 Shape and Aspect Ratio of Welded Spot …74
4.2.4 Volume Analysis of Welded Spot…………76
4.2.5 Comparisons with Numerical Results…77
4.2.6 Summary……………………………77
4.3 Visualization of Laser-Induced Plume Processing in Pulsed Laser Welding………………………78
4.3.1 Environments and Laser Parameters…… 79
4.3.2 Influence of Laser Energy on Size of Plume, Plume Sustained Time, and Solidification Time of Weld Pool...79
4.3.3 Influence of Laser Pulse Duration Time on Size of Plume, Plume Sustained Time, and Solidification Time of Weld Pool……81
4.3.4 Summary…………82
4.4 Temperature Measurements During Pulsed Laser Welding …82
4.4.1Environments and Laser Parameters……… 82
4.4.2Influence of Laser Energy and Pulse Duration Time on Plume Sustained Time………………83
4.4.3Measured Temperature Variations Compared with Numerical Result…………………………85
4.4.4Surface Temperature Measurements at Different Laser Operating Parameters and Aiming Position…87
4.4.5 Summary…………………………88
CHAPTER 5 CONCLUSIONS AND FUTURE WORK…145
5.1 Conclusions…………………………145
5.2 Future Work…………………………146
REFERENCES …………………………148
參考文獻 References
1. Baik, S. H., Park, S. K., Kim, C. J. and Kim, S. Y., 2001, “Holographic Visualization of Laser-Induced Plume in Pulsed Laser Welding,” Optics and Laser Technology, Vol. 33, pp. 67-70.
2. Bobel, F. G., Moller, H., Wowchak, A., Hertl, B., Van Hove, J., Chow, L. A. and Chow, P. P., 1994, “Pyrometric Interferometry for Real Time Molecular Beam Epitaxy Process Monitoring,” Journal of Vacuum Science and Technology B 12, 2, pp. 1207-1210.
3. Brown, S. and Song, H., 1992, “Finite Element Simulation of Welding of Large Structures,” Journal of Engineering for Industry, Vol. 114, pp. 441-451.
4. Bruggemann, G., Mahrle, A. and Benziger, T., 2000, “Comparison of Experimental Determined and Numerical Simulated Temperature Fields for Quality Assurance at Laser Beam Welding of Steels and Aluminium Alloyings,” NDT&E International, Vol. 33, pp. 453-463.
5. Chang, W. S. and Na, S. J., 2001, “Prediction of Laser-Spot-Weld Shape by Numerical Analysis and Neural Network,” Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, Vol. 32B, pp. 723-731.
6. Chang, W. S. and Na, S. J., 2002, “A Study on the Prediction of the Laser Weld Shape with Varying Heat Source Equations and the Thermal Distortion of a Small Structure in Micro-Joining,” Journal of Materials Processing Technology, Vol. 120, pp. 208-214.
7. Chang, W. S. and Na, S. J., 2002, “A Study on Heat Source Equations for the Prediction of Weld Shape and the Thermal Deformation in Laser Microwelding,” Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, Vol. 33B: 757-764.
8. Chang, W. S. and Na, S. J., 2003, “Thermomechanical Analyses of Laser Precision Joining for Optoelectronic Components,” IEEE Transactions on Components and Packaging Technologies, Vol. 26, pp. 349-358.
9. Cheng, P. J. and Lin, S. C., 2000, “An Analytical Model for the Temperature Field in the Laser Forming of Sheet Metal,” Journal of Materials Processing Technology, Vol. 101, pp. 260-267.
10. Cheng, W. H., Wang, W. H. and Chen, J. C., 1996, “Defect Formation Mechanisms in Laser Welding Techniques for Semiconductor Laser Packaging,” IEEE Transactions on Components, Packaging, and Manufacturing Technology Part B: Advanced Packaging, Vol. 19, pp. 764-769.
11. Cline, H. E. and Anthony, T. R., 1977, “Heat Treating and Melting Material with a Scanning Laser or Electron Beam,” Journal of Applied Physics, Vol. 48, pp. 3895-3900.
12. Doong, J. L., Wu, C. S. and Hwang, J. R., 1991, “Infrared Temperature Sensing of Laser Welding,” International Journal of Machine Tools and Manufacture, Vol. 31, pp. 607-616.
13. Frewin, M. R. and Scott, D. A., 1999, “Finite Element Model of Pulsed Laser Welding,” Welding journal, Vol. 78, pp. 15s-22s.
14. Han, W. J., Byeon, J. G. and Park, K. S., 2001, “Welding Characteristics of the Inconel Plate Using a Pulsed Nd:YAG Laser Beam,” Journal of Materials Processing Technology, Vol. 113, pp. 234-237.
15. Ignatiev, M. B., Smurov, I. Y., Flamant, G., Senchenko, V. N. and Dozhdikov, V., 1997, “Two-Dimensional Resolution Pyrometer for Real-Time Monitoring of Temperature Image in Laser Materials Processing,” Applied Surface Science, Vol. 109-110, pp. 498-508.
16. Ignatiev, M. B., Smurov, I. Y., Flamant, G. and Senchenko, V. N., 1996, “Surface Temperature Measurements During Pulsed Laser Action on Metallic and Ceramic Materials,” Applied Surface Science, Vol. 96-98, pp. 505-512.
17. Incropera, F. P. and DeWitt, D. P., 1996, “Introduction to Heat Transfer,” John Wiley & Sons, New York.
18. Kang, D. H., Son, K. J. and Yang, Y. S., 2001, “Analysis of Laser Weldment Distortion in the EDFA LD Pump Packaging,” Finite Elements in Analysis and Design, Vol. 37, pp. 749-760.
19. Kaplan, A., 1994, “A Model of Deep Penetration Laser Welding Based on Calculation of the Keyhole Profile,” Journal of Physics D: Applied Physics, Vol. 27, pp. 1805-1814.
20. Kreith, F. and Bohn, M. S., 1993 “Principles of Heat Transfer,” West Publishing Company.
21. Kuang, J. H., Sheen, M. T., Wang, S. C., Wang, G. L. and Cheng, W. H., 2001, “Post-Weld-Shift in Dual-in-Line Laser Package,” IEEE Transactions on Advanced Packaging, Vol. 24, pp. 81-85.
22. Labudovic, M. and Burka, M., 2003, “Finite Element Analysis of Post-Weld Shift During Fiber Pigtail of 980 nm Pump Lasers,” IEEE Transactions on Advanced Packaging, Vol. 26, pp. 41-46.
23. Li, L., 2000, “The Advances and Characteristics of High-Power Diode Laser Materials Processing,” Optics and Lasers in Engineering, Vol. 34, pp. 231-253.
24. Li, L. and Dewhurst, R., 1999, “Chewing Gum Removal by Lasers,” UK Patent Application, GB9926638.9.
25. Li, Z., Gobbi, S. L., Norris, I., Zolotovsky, S. and Richter, K. H., 1997, “Laser Welding Techniques for Titanium Alloy Sheet,” Journal of Materials Processing Technology, Vol. 65, pp. 203-208.
26. Lin, J. M. and Liu, C. Y., 2001, “Measurement of Cutting Tool Temperature by An Infrared Pyrometer,” Measurement Science and Technology, Vol. 12, pp. 1243-1249.
27. Matsunawa, A., Kim, J. D., Seto, N., Mizutani, M. and Katayama, S., 1998, “Dynamics of Keyhole and Molten Pool in Laser Welding,” Journal of Laser Applications, Vol. 10, pp.247-254.
28. Mazumder, J. and Steen, W. M., 1980, “Heat Transfer Model for CW Laser Material Processing,” Journal of Applied Physics, Vol. 51, pp. 941-947.
29. Mueller, R., 1994, “A Model for Predicting Keyhole and Fusion Zone Depths in Blind Keyhole Welding,” In Processing ICALEO 94 (Orlando, FL: Laser Institute of America), pp. 509-518.
30. Narikito, T., Miura, H., Fujinaga, S., Ohmori, A. and Inoue, K., 1998, “Plume Behavious During Welding with Two Nd:YAG Laser Beams Combined.,” Journal of Physics D: Applied Physics, Vol. 31, pp. 2331-2337.
31. Neto, O. O. D. and Lima, C. A. S., 1994, “Nonlinear Three-Dimensional Temperature Profiles in Pulsed Laser Heated Solids,” Journal of Physics D: Applied Physics, Vol. 27, pp. 1795-1804.
32. Patankar, S. V., 1980, “Numerical Heat Transfer and Fluid Flow,” Washington, New York.
33. Reed, C. B., Natesan, K., Xu, Z. and Smith, D. L., 2000, “The Effect of Laser Welding Process Parameters on the Mechanical and Microstructural Properties of V-4Cr-4Ti Structural Materials,” Journal of Nuclear Materials, Vol. 283-287, pp. 1206-1209.
34. Robert, A. and Debroy, T., 2001, “Geometry of Laser Spot Welds from Dimensionless Numbers,” Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, Vol. 32B, pp. 941-947.
35. Saggese, S. J., Harrington, J. A. and Sigel, G. H., 1991, “Hollow Sapphire Waveguides for Remote Radiometric Temperature Measurements,” Electronics Letters, Vol. 27, pp. 707-709.
36. Schafer, B. and Bostanjoglo, O., 1993, “Tracing Fast Changing Temperature on Laser-Pulsed Metal Surfaces by Micropyrometry,” Rev. Sci. Instrum, Vol. 64, pp. 3598-3601.
37. Semak, V., Damkroger, B. and Kempka, S., 1999, “Temporal Evolution of the Temperature Field in the Beam Interaction Zone During Laser Material Processing,” Journal of Physics D: Applied Physics, Vol. 32, pp. 1819-1825.
38. Semak, V. and Matsunawa, A., 1997, “Role of Beam Absorption in Plasma During Laser Welding,” Journal of Physics D: Applied Physics, Vol. 30, pp. 2541-2552.
39. Sonti, N. and Amateau, M. F., 1989, “Finite-Element Modeling of Heat Flow in Deep-Penetration Laser Welds in Aluminum Alloys,” Numerical Heat transfer, Part A, Vol. 16, pp. 351-370.
40. Steen, W. M., 1991, “Laser Material Processing,” Springer, Berlin, Germany.
41. Szymanski, Z., Kurzyna, J. and Kalita, W., 1997, “The Spectroscopy of the Plasma Plume Induced During Laser Welding of Stainless Steel and Titanium,” Journal of Physics D: Applied Physics, Vol. 30, pp. 3153-3162.
42. Tamma, K. K. and Zhou, X., 1998, “Macroscale and Microscale Thermal Transport and Thermo-Mechanical Interactions: Some Noteworthy Perspectives,” Journal of Thermal Stress, Vol. 21, pp.405-449.
43. Tzeng, Y. F., 2000, “Effects of Operating Parameters on Surface Quality for the Pulsed Laser Welding of Zinc-Coated Steel,” Journal of Materials Processing Technology, Vol. 100, pp. 163-170.
44. Tzeng, Y. F., 2000, “Parametric Analysis of the Pulsed Nd:YAG Laser Seam-Welding Process,” Journal of Materials Processing Technology, Vol. 102, pp. 40-47.
45. Wang, S. C., Chang, H. L., Wang, C., Wang, C. M. and Liaw, J. W., 1999, “Post-Weld-Shift in Semiconductor Laser Package,” Electronic Components and Technology Conference, Proceedings, 49th, pp. 1159-1163.
46. Wei, P. S. and Ho, J. Y., 1990, “Energy Considerations in High-Energy Beam Drilling,” International Journal of Heat and Mass Transfer, Vol. 33, pp. 2207-2217.
47. Wheeler, D. R., Jone, J. W. R. and Pepper, S. V., 1988, “Surface Temperature Determination in Surface Analytic Systems by Infrared Optical Pyrometry,” Journal of Vacuum Science and Technology A 6, 6, pp. 3166-3168.
48. Zacharia, T., David, S. A., Vitek, J. M. and Debroy, T., 1989, “Weld Pool Development During GTA and Laser Beam Welding of Type 304 Stainless Steel Part I. Theoretical Analysis,” Welding journal, Vol. 68, pp. 499s-509s.
49. Zacharia, T., David, S. A., Vitek, J. M. and Debroy, T., 1989, “Heat Transfer During Nd:YAG Pulsed Laser Welding and Its Effect on Solidification Structure of Austenitic Stainless Steels,” Metallurgical Transactions A, Vol. 20A, pp. 957-967.
50. Zacharia, T., David, S. A., Vitek, J. M. and Debroy, T., 1989, “Weld Pool Development During GTA and Laser Beam Welding of Type 304 Stainless Steel Part II. Experimental Correlation,” Welding journal, Vol. 68, pp. 510s-519s.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.133.156.156
論文開放下載的時間是 校外不公開

Your IP address is 3.133.156.156
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code