Responsive image
博碩士論文 etd-0724107-215451 詳細資訊
Title page for etd-0724107-215451
論文名稱
Title
黃金薄膜與聚甲基丙烯酸甲酯之介面機械性質研究
Study of the Interface Mechanical Properties between Thin-Film Au and Poly(Methyl Methacrylate)
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
118
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-06-27
繳交日期
Date of Submission
2007-07-24
關鍵字
Keywords
機械性質、奈米壓痕、奈米薄膜、PMMA側基
mechanical property, nanoindentation, PMMA side group, nano-thin film
統計
Statistics
本論文已被瀏覽 5682 次,被下載 3248
The thesis/dissertation has been browsed 5682 times, has been downloaded 3248 times.
中文摘要
異質材料的介面性質除了半導體-金屬介面的研究外,有機-無機材料介面之物理現象是較少被探究的問題,因此近年來有機與無機介面之探討正成為奈米研究的嶄新領域。由於黃金具有良好的光學及機械性質且可被用於奈米光學、機械及電子等前瞻性的應用。聚甲基丙烯酸甲酯(Polymethyl Methacrylate, PMMA)依側基的排列方式可分為同排PMMA(I-PMMA)、對排PMMA(S-PMMA)和雜排PMMA(A-PMMA),其性質隨著側基排列結構的不同而有所差異。因此本研究利用分子動力學模擬與奈米壓痕試驗分析奈米尺度下壓痕變形的行為,並探討黃金薄膜分別與I-PMMA、S-PMMA 及A-PMMA介面的奈米效應。使用濺鍍製程製作不同厚度的黃金奈米薄膜,並將PMMA的立體異構物利用旋轉塗怖法沉積於黃金薄膜上形成PMMA-based薄膜元件。利用掃描式電子顯微鏡與X光繞射儀對試片進行薄膜特性分析,使用奈米壓痕系統量測其硬度、彈性模數與材料介面性質等奈米機械性質,藉由連續剛性量測法分析黏彈性材料在奈米尺度下的時依材料性質,探討壓痕速率對其機械性質的影響。而隨著PMMA側基排列結構的不同會造成機械性質有所差異,且PMMA-based薄膜元件之硬度會隨著壓痕速率的提升而增加,但對彈性模數值並沒有顯著的差異,對於三種立體異構物之PMMA薄膜的材料性質於界面區域皆呈現上升的趨勢。
Abstract
The existing researches on interface properties between heterology materials mainly focus on semiconductor-metal and dielectric materials, but little on organic-inorganic ones. In recent years, the nanometer scale phenomena of interfaces between organic-inorganic is gaining a lot of attentions and becoming new frontier regions of nano-related research. Since gold exhibits excellent optical, electrical and mechanical properties, which can be applied to nano-optics, mechanics and electronics. Therefore this study aims to investigate the deformation behavior of nanaoindentation using molecular dynamics simulation and nanoindentation experiments. The nano-effect of mechanical properties between the interface of gold and heterologous Polymethyl Methacrylate (PMMA) with different side groups; i.e., Isotactic-PMMA, Syndiotactic-PMMA and Atactic-PMMA, are explored, respectively. The molecular structures of those side groups of the different PMMAs are identified and characterized. Those PMMA isomer thin films are prepared using spin-coater to deposit the different side groups of PMMA upon Au thin film. Sputter technique is used to form gold thin film with different thickness. The morphology on the surface of samples is characterized by using scanning electron microscopy (SEM) and X-ray diffraction (XRD). The indenter equipment is applied to realize the interface mechanical properties. The time-dependent properties of viscoelastic materials in nanoscale are measured using continuous stiffness measurement (CSM) nanoindentation technique. The effects of displacement rates on the hardness and modulus behavior of PMMA-based are investigated by nanoindentation. The mechanical properties are correlated with the side groups of the PMMA. The hardness of the PMMA-based increases with the raising displacement rate of the Berkovich tip. On the other hand, the modulus of the variation PMMA-based with the varied displacement rate of the Berkovich tip is not significant. The nanoindentation test shows different constituents in nanocomposite systems with a stronger material properties of the interface region than the matrix in each material.
目次 Table of Contents
目錄 I
圖目錄 V
表目錄 VIII
符號說明 IX
中文摘要 XIV
英文摘要 XV
第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 2
1-3 研究動機與目的 5
1-4 本文架構 6
第二章 分子動力學理論與數值模擬方法 7
2-1 運動方程式 7
2-2 積分法則 7
2-3 勢能函數 8
2-3-1 PMMA分子間之作用勢能 8
2-3-2金原子間之作用勢能 12
2-3-3 PMMA與金原子間之作用勢能 13
2-4 時間步階選取 14
2-5 溫度修正 15
2-5-1 Rescaling方法 16
2-5-2 Nosé-Hoover方法 16
2-6 週期性邊界之處理 18
2-7 鄰近原子表列數值方法 19
2-7-1截斷半徑法 19
2-7-2 Verlet List表列法 20
2-7-3 Cell Link表列法 21
2-7-4 Verlet List表列結合Cell Link表列法 22
2-8 物理參數與無因次化 23
2-9 模擬流程 25
第三章 奈米壓痕試驗理論 26
3-1 奈米壓痕試驗 26
3-1-1 奈米壓痕試驗之硬度與彈性模數理論 27
3-2 動態壓痕試驗 32
3-2-1 動態壓痕之原理 33
3-2-2 黏彈性材料之複合模數建立 35
3-3 薄膜沉積技術 37
3-3-1 金屬沉積製程原理 37
3-3-2 薄膜濺鍍系統之原理 37
3-4 薄膜分析儀器之基本原理 40
3-4-1 掃描式電子顯微鏡 40
3-4-2 X光繞射儀 41
第四章 實驗方法與步驟 43
4-1 實驗流程 43
4-2 實驗材料 44
4-3 實驗分析儀器 46
4-3-1 奈米壓痕量測系統 46
4-3-2 場發射掃描式電子顯微鏡 47
4-3-3 X光繞射儀 47
4-3-4 表面粗度儀 47
4-4 PMMA-based薄膜元件製作 51
4-4-1 矽基板表面清洗程序 51
4-4-2 金薄膜濺鍍製程 52
4-4-3 PMMA薄膜之製備 52
第五章 結果與討論 55
5-1 分子動力學模擬奈米壓痕分析 55
5-2 薄膜元件特性分析與鑑定 58
5-2-1 薄膜表面特性分析 58
5-2-2 X光繞射特性分析 61
5-3 奈米壓痕試驗分析 65
5-3-1 矽基板之機械性質分析 65
5-3-2 金薄膜之壓痕探討 68
5-3-3 PMMA-based薄膜元件之機械性質分析 71
5-3-4 三維殘留壓痕形貌掃描 82
第六章 結論 86
6-1 奈米壓痕結論 86
6-1-1奈米壓痕模擬結論 86
6-1-2奈米壓痕試驗結論 86
參考文獻 88
參考文獻 References
[1] X. Li, P. Nardi, C. W. Baek, J. M. Kim and Y. K. Kim, “Direct nanomechanical machining of gold nanowires using a nanoindenter and an atomic force microscope,” J. Micromech. Microeng., Vol. 15 pp. 551-556, 2005.
[2] T. Chudoba, M. Griepentrog, A. Dück, D. Schneider, F. Richter, “Young’s modulus measurements on ultra-thin coatings,” Journal of Materials Research, Vol. 19, pp. 301-314, 2004.
[3] M. R. Vanlandingham, N. K. Chang, P. L. Drzal, C. C. White, S. H. Chang, “Viscoelastic characterization of polymers using instrumented indentation. I. Quasi-static testing,” Journal of Polymer Science Part B: Polymer Physics, Vol. 43, pp. 1794-1811, 2005.
[4] H. D. Espinosa, Y. Zhu, M. Fischer and J. Hutchinson, “An experimental/computational approach to identify moduli and residual stress in MEMS radio-frequency switches,” Experimental Mechanics, Vol. 43, pp. 309-316, 2003.
[5] T. Y. Zhang, Y. J. Su, C. F. Qian, M. H. Zhao, L. Q. Chen, “Microbridge testing of silicon nitride thin films deposited on silicon wafers,” Acta Materialia, Vol. 48, pp. 2843-2857, 2000.
[6] T. Scholz and G. A. Schneider, “Fracture toughness from submicron derived indentation cracks,” App. Phys. Lett., Vol. 84, pp. 3055-3057, 2004.
[7] U. Landman, W. D. Luedtke, N. A. Burnham, and R. J. Colton, “Atomistic mechanisms and dynamics of adhesion, nanoindentation, and fracture,” Science, Vol. 248, pp. 454-461, 1990.
[8] A. Gannepalli, and S. K. Mallapragada, “Molecular dynamics studies of plastic deformation during silicon nanoindentation,” Nanotechnology, Vol. 12, pp. 250-257, 2001. [9] W. C. D. Cheong and L. C. Zhang, “A stress criterion for the β-Sn transformation in silicon under indentation and uniaxial compression,” Key Eng. Materials, Vols. 233-236, pp. 603-608, 2003.
[10] W. C. D. Cheong and L. C. Zhang, “Molecular dynamics simulation of phase transformations in silicon monocrystals due to nano-indentation,” Nanotechnology, Vol. 11, pp. 173-178, 2000.
[11] W. J. Chou, G. P. Yu and J. H. Huang, “Mechanical properties of TiN thin film coatings on 304 stainless steel substrates,” Surface and Coatings Technology, Vol. 149, pp. 7-13, 2002.
[12] J. H. Ahn and D. Kwon, “Micromechanical estimation of composite hardness using nanoindentation technique for thin-film coated system,” Materials Science and Engineering A, Vol. 285, pp. 172-179, 2000.
[13] T. H. Fang and W. J. Chang, “Nanomechanical properties of copper thin films on different substrates using the nanoindentation technique,” Microelectronic Engineering, Vol. 65, pp. 231-238, 2003.
[14] J. Chen, W. Wang, L. H. Qian, K. Lu, “Critical shear stress for onset of plasticity in a nanocrystalline Cu determined by using nanoindentation,” Scripta Materialia, Vol. 49, pp. 645-650, 2003.
[15] W. W. Gerberich, D. E. Kramer, N. I. Tymiak, A. A. Volinsky, D. F. Bahr and M. D. Kriese, “Nanoindentation-induced defect-interface interactions: phenomena, methods and limitations,” Acta. Mater., Vol. 47, pp. 4115-4123, 1999.
[16] D. Beegan, S. Chowdhury and M. T. Laugier, “A nanoindentation study of copper films on oxidised silicon substrates,” Surface and Coatings Technology, Vol. 176, pp. 124-130, 2003.
[17] D. Beegan, S. Chowdhury and M. T. Laugier, “The nanoindentation behaviour of hard and soft films on silicon substrates,” Thin Solid Films, Vol. 466, pp. 167-174, 2004.
[18] Y. Liu and A. H. W. Ngan, “Depth dependence of hardness in copper single crystals measured by nanoindentation,” Scripta Materialia, Vol. 44, pp. 237-241, 2001.
[19] J. L. He, Y. Setsuhara, I. Shimizu and S. Miyake, “Structure refinement and hardness enhancement of titanium nitride films by addition of copper,” Surface and Coatings Technology, Vol. 137 pp. 38-42, 2001.
[20] B. Savoini, D. Cáceres, R. González, Y. Chen, J. V. Pinto, R. C. da Silva and E. Alves, “Copper nanocolloids in MgO crystals implanted with Cu ions,” Nuclear Instruments and Methods in Physics Research Section B, Vol. 218 , pp. 148-152, 2004.
[21] G. Wei, B. Bhushan, N. Ferrell and D. Hansford, “Microfabrication and nanomechanical characterization of polymer microelectromechanical system for biological applications,” Journal of Vacuum Science & Technology A, Vol. 23, pp. 811-819, 2005.
[22] F. Yang, “Thickness effect on the indentation of an elastic layer,” Materials Science and Engineering A, Vol. 358, pp. 226-232, 2003.
[23] J. Qi, C. Y. Chan, I. Bello, C. S. Lee, S. T. Lee, J. B. Luo and S. Z. Wen, “Film thickness effects on mechanical and tribological properties of nitrogenated diamond-like carbon films,” Surface and Coatings Technology, Vol. 145, pp. 38-43, 2001.
[24] A. Misra, M. Verdier, Y. C. Lu, H. Kung, T. E. Mitchell, M. Nastasi and J. D. Embury, “Structure and mechanical properties of Cu-X (X = Nb, Cr, Ni) nanolayered composites,” Scripta Materialia, Vol. 39, pp. 555-560, 1998.
[25] L. Thilly, F. Lecouturier and J. von Stebut, “Size-induced enhanced mechanical properties of nanocomposite copper/niobium wires: nanoindentation study,” Acta Materialia, Vol. 50, pp. 5049-5065, 2002.
[26] Y. M. Soifer, A. Verdyan, M. Kazakevich and E. Rabkin, “Nanohardness of copper in the vicinity of grain boundaries,” Scripta Materialia, Vol. 47, pp. 799-804, 2002.
[27] H. C. Barshilia and K. S. Rajam, “Characterization of Cu/Ni multilayer coatings by nanoindentation and atomic force microscopy,” Surface and Coatings Technology, Vol. 155, pp. 195-202, 2002.
[28] R. W. Armstrong, H. Shin and A. W. Ruff, “Elastic/plastic effects during very low-load hardness testing of copper,” Acta Metall. Mater., Vol. 43, pp. 1037-1043, 1995.
[29] B. J. Briscoe and K. S. Sebastian, “The elastoplastic response of poly(methyl methacrylate) to indentation,” Proc. R. Soc. Lond. A, Vol. 452, pp. 439-457, 1996.
[30] M. J. Adams, D. M. Gorman, S. A. Johnson and B. J. Briscoe, “Indentation depth recovery in poly(methyl methacrylate) sheet on the microlength scale,” Philosophical Magazine A, Vol. 82, pp. 2121-2131, 2002.
[31] A. Akram, B. J. Briscoe, M. J. Adams and S. A. Johnson, “ Nanoindentation of polymer-bound silica agglomerate layers,” Philosophical Magazine A, Vol. 82, pp. 2103-2112, 2002.
[32] A. Soldera, Y. Grohens, “Cooperativity in stereoregular PMMAs observed by molecular simulation,” Polymer, Vol. 45, pp. 1307-1311, 2004.
[33] C. W. Yong, W. Smith, and K. Kendall, “Molecular dynamics simulations of (001) MgO surface contacts: effects of tip structures and surface matching,” Nanotechnology, Vol. 14, pp. 829-839, 2003.
[34] W. P. Hsu, “Effect of tacticity of poly(methyl methacrylate) on the miscibility with poly(vinyl acetate),” Journal of Applied Polymer Science, Vol. 91, pp. 35-39, 2000.
[35] Y. Grohens, L. Hamon, P. Carriere, Y. Holl, J. Schultz, “Tacticity and surface chemistry effects on the glass transition temperature of thin supported PMMA films,” Mat. Res. Soc. Symp., Vol. 629, pp. FF1.7.1-FF1.7.7, 2001.
[36] S. B. Sane, T. Çağin, W. G. Knauss and W. A. Goddard, “Molecular dynamics simulations to compute the bulk response of amorphous PMMA,” Journal of Computer-Aided Materials Design, Vol. 8, pp. 87-106, 2001.
[37] P. F. Heini, B. Wälchli, U. Berlemann, “Percutaneous transpedicular vertebroplasty with PMMA: operative technique and early results,” European Spine Journal, Vol. 9, pp. 445-450, 2000.
[38] J. H. Park and S. C. Jana, “The relationship between nano- and micro-structures and mechanical properties in PMMA-epoxy-nanoclay composites,” Polymer, Vol. 44, pp. 2091-2100, 2003.
[39] B. Bilenberg, T. Nielsen, B. Clausen and A. Kristensen, “PMMA to SU-8 bonding for polymer based lab-on-a-chip systems with integrated optics,” J. Micromech. Microeng., Vol. 14, pp. 814-818, 2004.
[40] N. A. Ochoa, M. Masuelli and J. Marchese, “Effect of hydrophilicity on fouling of an emulsified oil wastewater with PVDF/PMMA membranes,” Journal of Membrane Science, Vol. 226, pp. 203-211, 2003.
[41] F. Beinhorn, J. Ihlemann, K. Luther, J. Troe, “Micro-lens arrays generated by UV laser irradiation of doped PMMA,” Applied Physics A, Vol. 68, pp. 709-713, 1999.
[42] G. B. Lee, S. H. Chen, G. R. Huang, W. C. Sung and Y. H. Lin, “Microfabricated plastic chips by hot embossing methods and their applications for DNA separation and detection,” Sensors and Actuators B, Vol. 75, pp. 142-148, 2001.
[43] C. K. M. Fung, M. Q. H. Zhang, R. H. M. Chan, W. J. Li, “A PMMA-based micro pressure sensor chip using carbon nanotubes as sensing elements,” Micro Electro Mechanical Systems, pp. 251-254, 2005.
[44] S. K. Lee, K. C. Lee and S. S. Lee, “A simple method for microlens fabrication by the modified LIGA process,” J. Micromech. Microeng., Vol. 12, pp. 334-340, 2002.
[45] M. K. Abyaneh, R. Pasricha, S. W. Gosavi and S. K. Kulkarni, “Thermally assisted semiconductor-like to insulator transition in gold-poly (methyl methacrylate) nanocomposites,” Nanotechnology, Vol. 17, pp. 4129-4134, 2006.
[46] J. Irving, J. Kirkwood, “The statistical mechanical theorey of transport properties. IV. The equations of hydrodynamics,” Journal of Chemical Physics, Vol. 18, pp. 817-829, 1950.
[47] J. M. Haile, “Molecular dynamics simulation:elementary methods,” John Wiley & Sons, Inc., New York, 1997.
[48] D. C. Rapaport, “The art of molecular dynamics simulation,” Cambridge University Press, London, 2004.
[49] J. M. Goodfellow, “Molecular dynamics:applications in molecular biology,” CRC Press, Boca Raton, 1990.
[50] M. P. Allen, D. J. Tildesley, “Computer simulation of liquids,” Oxford Science, London, 1991.
[51] D. Frenkel, B. Smit, “Understanding molecular simulation,” Academic Press, San Diego, 1996.
[52] D. W. Heermann, “Computer simulation methods in theoretical physics,” Springer-Verlag, Berlin, 1990.
[53] C. R. Martin, “Membrane-Based Synthesis of Nanomaterials,” Chem. Mater., Vol. 8, pp. 1739-1746, 1996.
[54] W. A. Lopes and H. M. Jaeger, “Hierarchical self-assembly of metal nanostructures on diblock copolymer scaffolds,” Nature, Vol. 414, pp. 735-738, 2001.
[55] A. S. Zalusky, R. Olayo- Valles, C. J. Taylor, M. A. Hillmyer, “Mesoporous Polystyrene Monoliths,” J. Am. Chem. Soc., Vol. 123, pp. 1519-1520, 2001.
[56] V. Rosato, M. Guillope, and B. Legrand, “Thermodynamical and structural properties of fcc transition metals using a simple tight-binding model,” Philos. Mag. A, Vol. 59, pp. 321-336, 1989.
[57] F. Cleri and V. Rosato, “Tight-binding potentials for transition metals and alloys,” Phys. Rev. B, Vol. 48, pp. 22-33, 1993.
[58] S. L. Mayo, B. D. Olafson, and W. A. Goddard Ш, “DREIDING: A Generic Force Field for Molecular Simulation,” J. Phys. Chem., Vol. 94, pp. 8897-8909, 1990.
[59] 楊小震, “分子模擬與高分子材料,” 科學出版社, 2002.
[60] S. S. Jang, Y. H. Jang, Y. H. Kim, W. A. Goddard Ш, A. H. Flood, B. W. Laursen, H. R. Tseng, J. F. Stoddart, J. O. Jeppesen, J. W. Choi, D. W. Steuerman, E. Delonno, and J. R. Heath, “Structures and Properties of Self-Assembled Monolayers of Bistable Rotaxanes on Au(111) Surfaces from Molecular Dynamics Simulations Validated with Experiment,” J. Amer. Chem. Soc., Vol. 127, pp. 1563-1575, 2005.
[61] A. R. Leach, “Molecular modelling:principles and applications,” Prentice Hall, Harlow, 2001.
[62] J. M. Haile, “Molecular dynamics simulation,” Wiley-Interscience, New York, 1992.
[63] S. Nosé, “A unified formulation of the constant temperature molecular dynamics methods,” Journal of Chemical Physics, Vol. 81, pp. 511-519, 1984.
[64] W. G. Hoover, “Canonical dynamics: Equilibrium phase-space distributions,” Physical Review A, Vol. 31, pp. 1695-1697, 1985.
[65] H. Hertz, “Über die Berührung fester elastischer Körper,”Journal für die reine und angewandte Mathematik, Vol. 92, pp. 156-171, 1881.
[66] D. Tabor, “A Simple Theory of Static and Dynamic Hardness,” Mathematical and Physical Sciences, Vol. 192, pp. 247-274, 1948.
[67] I. N. Sneddon, “The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile,” Int. J. Eng. Sci., Vol. 3, pp. 47-57, 1965.
[68] M. Doerner and W. D. Nix, “A method for interpreting the data from depth-sensing indentation instruments,” Journal of Materials Research, Vol. 1, pp. 601-609, 1986.
[69] W. C. Oliver and G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” Journal of Materials Research, Vol. 7, pp. 1564-1583, 1992.
[70] J. B. Pethica, R. Hutchings, W. C. Oliver, “Hardness Measurement at Penetration Depths as Small as 20 nm,” Philos. Mag. A, Vol. 48, pp. 593-606, 1983.
[71] G. M. Pharr, W. C. Oliver, F. R. Brotzen, “On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation,” J. Mater. Res., Vol. 7, pp. 613-617, 1992.
[72] G. Davies, “Properties and growth of diamond,” INSPEC, the Institution of Electrical Engineers, London, 1994.
[73] R. B. King, “Elastic analysis of some punch problems for a layered medium,” Int. J. Solids Struct., Vol. 23, pp. 1657-1664, 1987.
[74] B. N. Lucas, W. C. Oliver, J. E. Swindeman, “Dynamics of frequency-specific, depth-sensing indentation testing,” Materials Research Society Symposia Proceedings, Vol. 522, pp. 3-14, 1998.
[75] J. L. Loubet, B. N. Lucas, and W. C. Oliver, “Some measurements of viscoelastic properties with the help of nanoindentation,” International Workshop on Instrumental Indentation, pp. 31-34, 1995.
[76] B. N. Lucas, C. T. Rosenmayer, W. C. Oliver, “Mechanical characterization of sub-micron polytetrafluoroethylene (PTFE) thin films,” Thin-films – stresses and mechanical properties VII, Vol. 505, pp. 97-102, 1998.
[77] Hong Xiao著, 羅正忠, 張鼎張 譯, “半導體製程技術導論,” 學銘圖書有限公司, 2006.
[78] 莊達人, “VLSI 製造技術,” 高立圖書有限公司, 2003.
[79] 黃惠忠, “奈米材料分析,” 滄海書局, 2004.
[80] M. B. Daia, P. Aubert, S. Labdi, C. Sant, F. A. Sadi, and Ph. Houdy, and J. L. Bozet, “Nanoindentation investigation of Ti/TiN multilayers films,” Journal of Applied Physics, Vol. 87, pp. 7753-7757, 2000.
[81] JCPDS Card JCPDS-International Center for Diffraction Data, #04-0784.
[82] W. D. Nix, G. Huajian, “Indentation size effects in crystalline materials: a law for strain gradient plasticity,” Journal of the Mechanics and Physics of Solids, Vol. 46, pp. 411-425, 1998.
[83] B. N. Lucas and W. C. Oliver, “Indentation Power-Law Creep of High-Purity Indium,” Metallurgical and Materials Transactions A, Vol. 30, pp. 601-610, 1999.
[84] B. N. Lucas, W. C. Oliver, G. M. Pharr, J. L. Loubet, “Time dependent deformation during indentation testing,” Mater. Res. Soc. Symp. Proc., Vol. 436, pp. 233-238, 1997.
[85] P. Grau, H. Meinhard, S. Mosch, “Nanoindentation experiments on glass and polymers at different loading rates and the power law analysis,” Mat. Res. Soc. Symp. Proc., Vol. 522, pp. 153-158, 1998.
[86] B. J. Briscoe, A. Akram, M. J. Adams, S. A. Johnson and D. M. Gorman, “The influence of solvent quality on the mechanical properties of thin cast isotactic poly(methyl methacrylate) coatings,” Journal of Materials Science, Vol. 37, pp. 4929-4936, 2002.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code