Responsive image
博碩士論文 etd-0724108-112240 詳細資訊
Title page for etd-0724108-112240
論文名稱
Title
應用保形時域有限差分法探討球形體與圓柱之散射
A Study on the Scattering of Spheres and Cylinders Using the Conformal FDTD Method
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
71
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-07-21
繳交日期
Date of Submission
2008-07-24
關鍵字
Keywords
時域有限差分法、保形時域有限差分法、雷達截面積、動差法
Conformal FDTD, FDTD, Moment Method, RCS
統計
Statistics
本論文已被瀏覽 5650 次,被下載 0
The thesis/dissertation has been browsed 5650 times, has been downloaded 0 times.
中文摘要
時域有限差分法(FDTD)可以非常成功的模擬各種電磁波的現象,一般情形下時域有限差分法在處理電磁問題時皆以Cartesian正交座標系為主,但是在曲面結構的問題上,使用傳統的時域有限差分法是較困難求得精確解,這是因為在Yee演算法上是使用staircasing近似,為了改善此缺點,所以使用保形時域有限差分法(Conformal FDTD)去分析曲面結構,保形時域有限差分法使用規則時域有限差分法的磁場計算式,將其沿著曲線的電場值引入保形長度的修正項,所以保形時域有限差分法可以更適用於模擬曲面的結構。
動差法是將積分方程轉化為矩陣方程。動差法(Moment Method)的主要瓶頸在於造成滿矩陣及巨額的計算量。保形時域有限差分法直接從Maxwell方程式近似得到,可避免使用更多的數學公式。本論文使用保形時域有限差分法來模擬圓柱與球形體散射之雷達截面積(RCS)值,並將保形時域有限差分法與動差法(Moment Method)來做比較,從中可得知在層狀結構中保形時域有限差分法會比動差法更省記憶體容量與CPU時間。
Abstract
FDTD can successfully simulate various kinds of phenomena of electromagnetic waves. Mainly, we use orthogonal Cartesian coordinate in general situations when we deal with the electromagnetic problems, but the curved geometry of the problem makes it difficult to obtain accurate results using conventional FDTD algorithm because of staircasing. To analyze curved geometry using Conformal FDTD can improve this shortcoming. The Conformal FDTD uses the regular FDTD equation for updating the magnetic field by using the electric field values along the distorted
contours, that are appropriately weighted with lengths of the contours. The Conformal FDTD technique is well suited for handling such curved geometries.
The moment method is used to convert the integral equation into a matrix equation.The major drawback of moment method (MoM) is the full matrix generation and huge computation time. The CFDTD directly approximates the differential operators in the Maxwell curl equation, and avoids using more mathematic formulae. This thesis uses Conformal FDTD to simulate RCS value of the cylinder and sphere and compare Conformal FDTD with Moment Method. We know that Conformal FDTD will save memory requirement and CPU time even more than Moment Method in layered structure.
目次 Table of Contents
目錄……………………………………………..Ⅰ
圖表目錄……………………………………………..IV
第一章 序論…………………………………………..1
1.1 研究動機與目的………………………………….1
1.2 論文大綱………………………………………….2
第二章 基本數值方法………………………………..4
2.1 FDTD數值法……………………………………...4
2.2 Conformal FDTD : 二維情況…………………….9
2.3 Conformal FDTD : 三維情況…………………...12
2.4 Conformal FDTD 的面積處理………………….13
2.5 Conformal FDTD 的介質處理………………….14
2.5.1 加權平均處理法………………………………14
2.5.2 線性的加權平均處理法………………………15
2.6 Conformal FDTD 的三維的公式……………….16
2.7 近場與遠場的轉換……………………………...18
2.8 雷達截面積……………………………………...23
第三章 動差法………………………………………25
3.1 介電體…………………………………………...25
3.2 導磁體…………………………………………...27
3.3 導磁與介電體………………………………...29
3.4 病態矩陣………………………………………...30
第四章 圓柱的散射…………………………………32
4.1 平面波入射……………………………………...32
4.1.1 正向入射平面波: TMz 極化…………………..32
4.1.2 正向入射平面波: TEz 極化…………………...32
4.2 解析解…………………………………………...33
4.2.1 圓柱散射: TMz 極化…………………………..33
4.2.2 遠場的散射場: TMz 極化……………………..34
4.2.2.1 金屬圓柱的遠場散射場: TMz 極化………….35
4.2.2.2 介質圓柱的遠場散射場: TMz 極化………….35
4.2.2.3 介質塗層金屬圓柱的遠場散射場: TMz 極化.35
4.2.3 圓柱散射: TEz 極化…………………………...36
4.2.4 遠場的散射場: TEz 極化……………………...37
4.2.4.1 金屬圓柱的遠場散射場: TEz 極化………..37
4.2.4.2 介質圓柱的遠場散射場: TEz 極化………..38
4.2.4.3 介質塗層金屬圓柱的遠場散射場: TEz 極化.38
4.3 數值結果………………………………………...38
4.3.1 完全導體圓柱…………………………………38
4.3.2 介質塗層導體圓柱……………………………39
4.3.3 以一個週期性8×8 圓柱狀矩形陣列塗層於介質
圓柱..…………………………………………………40
4.3.4 以兩層不同介質塗層於導體圓柱……………42
第五章 球的散射……………………………………44
5.1 平面波入射……………………………………...44
5.2 解析解…………………………………………...45
5.2.1 波轉換…………………………………………45
5.2.2 向量位結構……………………………………46
5.2.3 遠場的散射場…………………………………49
5.3 數值結果………………………………………...50
5.3.1 完全導體圓球…………………………………50
5.3.2 介質球…………………………………………51
5.3.3 介質塗層導體球………………………………53
5.3.4 以兩種不同介質塗層導體球…………………54
第六章 結論…………………………………………56
參考文獻……………………………………………58
參考文獻 References
[1] Yee, K. S., “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,“ IEEE Trans. Antennas and Propagat.,vol. 14, pp. 302-307, 1966.
[2] A. Taflove., “Computational Electrodynamics: The Finite-Difference Time-Domain Method,“ 1995.
[3] Umashankarv K R and Taflove A., “A novel method to analyze electromagnetic scattering of complex objects,” IEEE Trans. Electromagn. Compat., NOV. 1982, EMC-24(4):397~405.
[4] Taflove A, Umashankarv K R and Jurgens T G., “Validation of FD-TD modeling of the radar cross section of three dimensional structures spanning up to nine wavelengths,” IEEE Trans. Antennas Propagat., June 1985, Ap-33(6): 662~666.
[5] Jurgens T G and Taflove A., “Finite-difference time-domain modeling of curved surfaces,” IEEE Trans. Antennas Propagat., April 1992, Ap-40(4): 357~365.
[6] Railton C J and Schneider J B., “An analytical and numerical analysis of several locally conformal FDTD schemes,” IEEE Trans.Microwave Theory Tech., Jan.
1999, MTT-47(1): 56~66.
[7] Dey S, Mittra R and Chebolu S., “A locally conformal finite-difference time-domain algorithm for modeling three-dimensional perfectly conducting
objects,” IEEE Microwave Opt. Tech. Lett., Sept. 1997, 7(9): 273~275.
[8] Dey S, Mittra R., “A modified locally conformal FDTD algorithm for modeling three-dimensional perfectly conducting objects,” IEEE Microwave Opt. Tech. Lett., April 1998, 17(6): 349~352.
[9] Su T, Liu Y, Yu W and Mittra R., “A conformal mesh-generating technique for the conformal finite-difference time-domain (CFDTD) method,” IEEE Antennas Propagat. Magazine., Feb.2004, 46(1): 37~49.
[10] Wenhua Yu, Senior Member and Raj Mittra, Life Fellow., “A conformal finite difference time domain technique for modeling curved dielectric surfaces,” IEEE Microwave and Wireless Companent Letters, VOL. 11, NO. 1, JANUARY 2001.
[11] Supriyo Dey', Raj Mittra' and Niel Peggz., “ Efficient and accurate calculation of radar cross section of curved objects by using the conformal finite difference time domain scheme,” IEEE, 1999.
[12] Wei-Cheng Lai., “The modification of Yee’s FDTD method for the simulation of-curved structures,” National Sun-Yat-sen University, 2003.
[13] Jun-Xian Huang., “ Application of the FDTD Method with the Scattering Matrix in Microwave Circuit Simulation,” National Sun-Yat-sen University,2002.
[14] Hossein Mosallaei, Student Member and Yahya Rahmat-Samii, Fellow., “RCS Reduction of Canonical Targets Using Genetic Algorithm Synthesized RAM,” IEEE Transaction on Antennas and Propagation, VOL. 48, NO. 10, OCTOBER 2000.
[15] R. F. Harrington., “Field Computation by Moment Methods,” New York: Macmillan, 1968.
[16] Jhih-Wei Ruan., “Method of Fundamental Solutions for Modeling Electromagnetic Wave Scattering Problems,” National Taiwan University, 2003.
[17] 計畫主持人:鄭仁杰,參與研究人員:林鴻佳., “以三維無結構網格解子探討匿蹤無人飛機之氣動力性能研究,” 國立虎尾科技大學補助鼓勵性專題研究計畫, MARCH 2004.
[18] Prof.Chi-Sen Lin and M.Tahir Yaqoob., “A moment method solution for scattering from a dielectrically coated conducting cylinder,” IEEE, 1992.
[19] Xiao-Chun Nie,Ning Yuan,Le-Wei
Li,Fellow,IEEE,Yeow-Beng Gan, Senior
Member, IEEE,and Tat Soon Yeo, Fellow, IEEE., “A Fast Volume-Surface Integral Equation Solver for Scattering From Composite Conducting-Dielectric
Objects,” IEEE Transaction on Antennas and Propagation, VOL. 53, NO. 2, FEBRUARY 2005.
[20] Ulf Andersson, PDC, KTH., “The GemsTD benchmark suite”Royal Institute of
Technology, December 2003.
[21] LOUIS N. MEDGYESI-MITSCHANG, MEMBER, IEEE, AND JOHN M. PUTNAM., “Electromagnetic Scattering from Axially Inhomogeneous Bodies of
Revolution,” IEEE Transaction on Antennas and Propagation, VOL. AP-32, NO. 8, AUGUST 1984
[22] Kun-Jung Wu., “Solving Electromagnetic Scattering Problems of Three-Dimensional Objects by Parallel Multilevel Fast Multipole Algorithm,”
National Taiwan ocean University, 2004.
[23] Roger F. Harrington., “Origin and Development of The Method of Moments for Field Computation,” IEEE Antennas and Propagation Society Magazine, JUNE 1990
[24] Y.CHANG,MEMBER,IEEE, AND POGER F. HARRINGTON, FELLOW, IEEE., “A Surface Formulation for Characteristic Modes of Material Bodies,”IEEE Transaction on Antennas and Propagation, VOL. AP-25, NO. 6,NOVEMBER 1977
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.143.9.115
論文開放下載的時間是 校外不公開

Your IP address is 3.143.9.115
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code