Responsive image
博碩士論文 etd-0724108-160242 詳細資訊
Title page for etd-0724108-160242
論文名稱
Title
以原子層沉積法於砷化鎵基板上備製二氧化鈦薄膜之 特性分析
Characterization of Titanium Oxide Films on Gallium Arsenide Prepared by Atomic Layer Deposition
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
107
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-07-18
繳交日期
Date of Submission
2008-07-24
關鍵字
Keywords
有機金屬化學氣相沉積法、二氧化鈦、原子層沉積法、砷化鎵
GaAs, ALD, TiO2, MOCVD
統計
Statistics
本論文已被瀏覽 5690 次,被下載 1134
The thesis/dissertation has been browsed 5690 times, has been downloaded 1134 times.
中文摘要
探討以原子層沈積法成長二氧化鈦薄膜於砷化鎵基板上的物理和化學特性,且利用金氧半結構來分析電特性。此外,利用硫化氨對砷化鎵基板進行硫化介面處理以改善薄膜特性。另一方面,嘗試生長較薄之二氧化鈦薄膜,利用非晶的薄膜結構以進一步改善多晶薄膜晶界所造成的漏電流
Abstract
In this study, the characteristics of atomic layer deposited TiO2 films on Gallium Arsenide substrate were investigated. The physical and chemical properties were measured and surveyed. And an Al/ALD-TiO2/GaAs MOS structure was used for the electrical characterizations. For the electrical property improvements, we investigated the atomic layer deposited TiO2 films by the (NH4)2Sx treatments for GaAs substrate. The leakage currents and the hysteresis loop flatband voltage shift can be improved for ALD-TiO2 films on S-GaAs.
Furthermore, in order to resist the leakage current from the grain boundary of the polycrystalline TiO2 films, amorphous-like structure of TiO2 thinner films are investigated. The combination of sulfur passivation and amorphous-like structure thinner films is sufficient to improve the electrical properties effectively.
目次 Table of Contents
Chapter 1
Introduction
1-1 Properties of TiO2
1-2 Comparison of deposition methods of TiO2
1-3 Advantages of MOCVD
1.4 Advantages of ALD
1-5 Motivation of ALD-TiO2 on (NH4)2Sx treated GaAs structure
1-6 Mechanism and the structure model of GaAs with sulfur treatment
Chapter 2
Experiments
2.1 CVD theorem
2.2 Deposition system of MOCVD
2.3 Properties of source materials
2.4 Deposition system of ALD
2-5 Deposition procedures
2-5-1 GaAs wafer cleaning and sulfidation procedures
2-5-2 Aluminum metal and In-Zn alloy cleaning processes
2-5-3 Preparations of MOCVD-TiO2 films
2-5-4 Growth Parameters of ALD-TiO2 films
2-5-5 Fabrication of Metal-Oxide-Semiconductor Structure
2.6 Characterization
2-6-1 Physical properties
2-6-2 Chemical properties
2-6-3 Electrical properties
Chapter 3
Results and Discussion
3.1 Characteristics of MOCVD-TiO2 and ALD-TiO2 films on GaAs substrate
3.1.1 Deposition rate of TiO2 films
3.1.1-1 Deposition rate of MOCVD-TiO2 film on GaAs as a function of deposition temperature
3.1.1-2 Independence between deposition rate of ALD-TiO2 film on GaAs and deposition temperature
3.1.2 SEM morphologies of TiO2 film on GaAs as a function of deposition temperature
3.1.3 XRD patterns of TiO2 film on GaAs as a function of deposition temperature
3.1.4 ESCA analyses of TiO2 film on GaAs as a function of deposition temperature
3.1.5 Electrical properties of MOCVD-TiO2 films on GaAs at deposition temperature
3.1.5-1 Leakage current density of MOCVD-TiO2 film on GaAs as a function of deposition temperature
3.1.5-2 C-V characteristics of MOCVD-TiO2 film on GaAs as a function of deposition temperature
3.1.6 Electrical properties of ALD-TiO2 film on GaAs at deposition temperature
3.1.6-1 Leakage current density of ALD-TiO2 film on GaAs as a function of deposition temperature
3.1.6-2 C-V characteristics of ALD-TiO2 film on GaAs as a function of deposition temperature
3.2 Characteristics of MOCVD-TiO2 and ALD-TiO2 film on (NH4)2Sx treated GaAs substrate
3.2.1 SEM morphologies of TiO2 film on S-GaAs as a function of deposition temperature
3.2.2 XRD patterns of TiO2 film on S-GaAs as a function of deposition temperature
3.2.3 Electrical properties of MOCVD-TiO2 film on S-GaAs at deposition temperature
3.2.3-1 Leakage current density of MOCVD-TiO2 film on S-GaAs as a function of deposition temperature
3.2.3-2 C-V characteristics of MOCVD-TiO2 film on S-GaAs as a function of deposition temperature
3.2.4 Electrical properties of ALD-TiO2 film on S-GaAs at deposition temperature
3.2.4-1 Leakage current density of ALD-TiO2 film on S-GaAs as a function of deposition temperature
3.2.4-2 C-V characteristics of ALD-TiO2 film on S-GaAs as a function of deposition temperature
3.3 Characteristics of MOCVD-TiO2 and ALD-TiO2 thinner film on GaAs and S-GaAs substrate
3.3.1 SEM morphologies of TiO2 thinner film on GaAs and S-GaAs as a function of deposition temperature
3.3.2 XRD patterns of TiO2 thinner film on S-GaAs as a function of deposition temperature
3.3.3 Electrical properties of MOCVD-TiO2 thinner film on GaAs and S-GaAs at deposition temperature
3.3.3-1 Leakage current density of MOCVD-TiO2 thinner film on GaAs and S-GaAs as a function of deposition temperature
3.3.3-2 C-V characteristics of MOCVD-TiO2 thinner film on GaAs and S-GaAs as a function of deposition temperature
3.3.4 Electrical properties of ALD-TiO2 thinner film on GaAs and S-GaAs at deposition temperature
3.3.4-1 Leakage current density of ALD-TiO2 thinner film on GaAs and S-GaAs as a function of deposition temperature
3.3.4-2 C-V characteristics of ALD-TiO2 thinner film on GaAs and S-GaAs as a function of deposition temperature
CHAPTER 4
Conclusions
References
參考文獻 References
[1] Y. H. Lee, K. K. Chan, and M. J. Brady, “Plasma enhanced chemical vapor deposition of TiO2 in microwave-radio frequency hybrid plasma reactor,” J. Vac. Sci. & Technol., vol. 13, pp. 596-601, 1995.
[2] G. V. Samsonov: The Oxide Handbook, (IFI/Plenum, New York), p.316, 1973.
[3] J. Yan, D. C. Gilmer, S. A. Campbell. W. L. Gladfelter, and R. G.
Schmid, “Structural and electrical characterization of TiO2 grown
from titanium tetrakis-isopropoxide (TTIP) and TTIP/H2O ambients,” J. Vac. Sci. & Technol., vol. B14, pp. 1706-1711, 1996.
[4] M. A. Butler, and D. S. Ginley, “Principles of photoelectrochemical
solar-energy conversion,” J. Mater. Sci., vol. 15, pp 1-19, 1980.
[5] T. Carlson, and G. L. Griffin, “Photo oxidation of methanol using
V2O5/TiO2 and MoO3/TiO2 surface oxide monolayer catalysts,” J.
Phys. Chem., vol. 90, pp.5896-5900, 1986.
[6] X. R. Wang, H. Masumoto, Y. Someno, and T. Hirai, “Optical
characterization of SiO2-TiO2 thin-film with graded refractive-index profiles,” J. Jpn. Inst. Metals, vol. 62, pp. 1069-1074, 1998.
[7] X. R. Wang, H. Masumoto, Y. Someno, and T. Hirai, “Helicon
plasma deposition of a TiO2/SiO2 multilayer optical filter with
graded refractive-index profiles,” Appl. Phys. Lett., vol. 72, pp.
3264-3266, 1998.
[8] C. Martinet, V. Paillard, A. Gagnaire, and J. Joseph, “Deposition of
SiO2 and TiO2 thin-film by PECVD for antireflection coating,” J.
Non-Cryst. Solids, vol. 216, pp. 77-82, 1997.
[9] K. Hara, K. Sayama, Y. Ohga, A. Shinpo, S. Suga, and H. Arakawa,
“A coumarin-derivative dye-sensitized nanocrystalline TiO2
solar-cell having a high solar-energy conversion efficiency up to
5.6-percent” Chem. Commun., pp. 569-570, 2001.
[10] A. Bahtat, M. Bouderbala, M. Bahtat, M. Bouazaoui, J. Mugnier,
and M. Druetta, “Structural characterization of Er3+ doped sol-gel
TiO2 planar optical wave-guides” Thin Solid Film, vol. 323, pp.
59-62, 1998.
[11] N. Goutev, Z. S. Nickolov, and J. J. Ramsden, “Wave-guide
Raman-Spectroscopy of Si(Ti)O2 thin-film with grating coupling,” J. Raman Spectrosc., vol. 27, pp. 897-900, 1996.
[12] S. D. Mo, and W. Y. Ching, “Electronic and optical-properties of
three phases of titanium-dioxide - rutile, anatase and brookite,” Phys. Rev. B, vol. 51, pp. 13023-13032, 1995.
[13] D. J. Won, C. H. Wang, H. K. Jang, and D. J. Choi, “Effects of
thermally induced anatase-to-rutile phase transition in
MOCVD-grown TiO2 film on structural and optical properties,”
Appl. Phys. A, vol. 73, pp. 595-600, 2001.
[14] A. L. Linsebigler, G. Q. Lu, and J. T. Yates, “Photocatalysis on TiO2
surfaces - principles, mechanisms, and selected results,” Chem. Rev., vol. 95, pp. 735-758, 1995.
[15] H. Tang, K. Prasad, R. Sanjines, P. E. Schmid, and F. Levy,
“Electrical and optical-properties of TiO2 anatase thin-film,” J. Appl. Phys., vol. 75, pp. 2042-2047, 1994.
[16] N. Daude, C. Goutm, and C. Jouanin, “Electronic band structure of
titanium dioxide,” Phys. Rev. B, vol. 15, pp. 3229-3235, 1977.
[17] G. S. Brady, and H. R. Clauser: Materials Handbook, 13th ed.
(McGraw-Hill, New York 1991)
[18] G. K. Boschloo, A. Goossens, and J. Schoonman, “Investigation of
the potential distribution in porous nanocrystalline TiO2 electrodes
by electrolyte electroreflection,” J. Electroanalytical Chem., vol.
428, pp. 25-32, 1997.
[19] M. Kadoshima, M. Hiratani, Y. Shimamoto, K. Torii, H. Miki, S.
Kimura and T. Nabatame, “Rutile-type TiO2 thin film for high-k
gate insulator,” Thin Solid Film, vol. 424, pp.224-228, 2003.
[20] National Institute of Standards and Technology, Phase Equilibrium
Diagrams, ver.2.1, The American Ceramic Society, Westerville,
1998, Fig. 4258.
[21] J. M. Criado, C. Real, and J. Soria, “Study of mechanochemical
phase transformation of TiO2 by EPR effect of phosphate,” Solid
State Ionics, vol. 32, pp. 461-465, 1989.
[22] R. D. Shannon, and J. A. Pask, J. Am. Ceram. Soc., vol. 48, p. 391,
1965.
[23] R. S. Sonawane, S. G. Hegde, and M. K. Dongare, “Preparation of
titanium(iv) oxide thin-film photocatalyst by sol-gel dip coating,”
Mater. Chem. Phys., vol. 77, pp. 744-750, 2003.
[24] O. Harizanov, and A. Harizanova, “Development and investigation
of sol-gel solutions for the formation of TiO2 coatings,” Sol. Energy
Mater. Sol. Cells, vol. 63, pp. 185-195, 2000.
[25] R. A. Zoppi, B. C. Trasferetti, and C. U. Davanzo, “Sol–gel titanium
dioxide thin film on platinum substrates: preparation and
characterization,” J. Electroanalytical Chem., vol. 544, pp. 47-57,
2003.
[26] G. Sanvicente, A. Morales, and M. T. Gutierrez, “Preparation and
characterization of sol-gel TiO2 antireflective coatings for silicon,”
Thin Solid Film, vol. 391, pp. 133-137, 2001.
[27] C. Garzella, E. Comini, E. Tempesti, C. Frigeri, and G. Sberveglieri,
“TiO2 thin film by a novel sol–gel processing for gas sensor applications,” Sens. Actuators B, vol. 68, pp. 189-196, 2000.
[28] S. C. Chiao, B. G. Bovard, and H. A. Macleod, “Repeatability of the
composition of titanium oxide film produced by evaporation of
Ti2O3,” Appl. Opt., vol. 37, pp. 5284-5290, 1998.
[29] D. Mergela, D. Buschendorfa, S. Eggerta, R. Grammesb, and B.
Samsetc, “Density and refractive index of TiO2 film prepared by
reactive evaporation,” Thin Solid Film, vol. 371, pp. 218-224, 2000.
[30] S. G. Springer, P. E. Schmid, R. Sanjines, and F. Levy,
“Morphology and electrical properties of titanium oxide nanometric
multilayers deposited by DC reactive sputtering,” Surf. Coat.
Technol., vol. 151, pp. 51-54, 2002.
[31] P. Zeman and S. Takabayashi, “Effect of total and oxygen partial
pressures on structure of photocatalytic TiO2 film sputtered on
unheated substrate,” Surf. Coat. Technol., vol. 153, pp. 93-99, 2002.
[32] T. M. Wang, S. K. Zheng, W. Hao, and C. Wang, “Studies on
photocatalytic activity and transmittance spectra of TiO2 thin-film
prepared by R.F. magnetron sputtering method,” Surf. Coat.
Technol., vol. 155, pp. 141-145, 2002.
[33] C. Martinet, V. Paillard, A. Gagnaire, and J. Joseph, “Deposition of
SiO2 and TiO2 thin film by plasma enhanced chemical vapor
deposition for antireflection coating,” J. Non-Cryst. Solids, vol. 216,
pp. 77-82, 1997.
[34] G. A. Battiston, R. Gerbasi, A. Gregori, M. Porchia, S. Cattarin, and
G. A. Rizzi-GA, “PECVD of amorphous TiO2 thin film: effect of
growth temperature and plasma gas composition,” Thin Solid Film,
vol. 371, pp. 126-131, 2000.
[35] N. C. Dacruz, E. C. Rangel, J. J. Wang, B. C. Trasferetti, C. U.
Davanzo, Castro-SGC, and Demoraes-MAB, “Properties of
titanium-oxide film obtained by PECVD,” Surf. Coat. Technol., vol.
126, pp. 123-130, 2000.
[36] S. S. Huang, and J. S. Chen, “Comparison of the characteristics of
TiO2 film prepared by low-pressure and plasma enhanced chemical
vapor-deposition,” J. Mater. Sci., vol. 13, pp. 77-81, 2002.
[37] S. Yamamoto, T. Sumita, Sugiharuto, A. Miyashita, and H.
Naramoto, “Characterization of epitaxial TiO2 film prepared by
pulsed laser deposition,” Thin Solid Film, vol. 401, pp. 88-93, 2001.
[38] D. G. Syarif, A. Miyashita, T. Yamaki, T. Sumita, Y. Choi, and H.
Itoh, “Preparation of anatase and rutile thin-film by controlling
oxygen partial-pressure,” Appl. Surf. Sci., vol. 193, pp. 287-292,
2002.
[39] R. Paily, A. Dasgupta, N. Dasgupta, P. Bhattacharya, P. Misra, T.
Ganguli, L. M. Kukreja, A. K. Balamurugan, S. Rajagopalan, and A.
K. Tyagi, “Pulsed-laser deposition of TiO2 for MOS gate dielectric,”
Appl. Surf. Sci., vol. 187, pp. 297-304, 2002.
[40] C. K. Ong, and S. J. Wang, “In-situ RHEED monitor of the growth
of epitaxial anatase TiO2 thin-film,” Appl. Surf. Sci., vol. 185, pp.
47-51, 2001.
[41] W. Sugimura, T. Yamazaki, H. Shigetani, J. Tanaka and T.
Mitsuhashi, “Anatase-type TiO2 thin-film produced by lattice
deformation,” Jpn. J. Appl. Phys., vol. 36, pp. 7358-7359, 1997.
[42] M. K. Lee, J. J. Huang, C. M. Shih, and C. C. Cheng, “Properties of
TiO2 thin-film on InP substrate prepared by liquid-phase
deposition,” Jpn. J. Appl. Phys., vol. 41, pp. 4689-4690, 2002.
[43] M. K. Lee, and B. H. Lei, “Characterization of titanium-oxide film
prepared by liquid-phase deposition using hexafluorotitanic acid,”
Jpn. J. Appl. Phys., vol. 39, pp. L101-L103, 2000.
[44] X. P. Wang, Y. Yu, X. F. Hu, and L. Gao, “Hydrophilicity of TiO2
film prepared by liquid-phase deposition,” Thin Solid Film, vol. 371,
pp. 148-152, 2000.
[45] P. Babelon, A. S. Dequiedt, H. Mostefasba, S. Bourgeois, P. Sibillot,
and M. Sacilotti, “SEM and XPS studies of titanium-dioxide
thin-films grown by MOCVD,” Thin Solid Films, vol. 322, pp.
63-67, 1998.
[46] S. C. Sun, and T. F. Chen, “Effects of electrode materials and
annealing ambient on the electrical-properties of TiO2 thin-films by
metalorganic chemical-vapor-deposition,” Jpn. J. Appl. Phys., vol.
36, pp. 1346-1350, 1997.
[47] C. K. Jung, B. C. Kang, H. Y. Chae, Y. S. Kim, M. K. Seo, S. K.
Kim, S. B. Lee, J. H. Boo, Y. J. Moon, and J. Y. Lee, “Growth of
TiO2 thin-films on Si(100) and Si(111) substrates using single
molecular precursor by high-vacuum MOCVD and comparison of
growth-behavior and structural-properties,” J. Cryst. Growth, vol.
235, pp. 450-456, 2002.
[48] M. K. Lee, J. J. Huang, and T. S. Wu, “Electrical characteristics
improvement of oxygen-annealed MOCVD-TiO2 films,” Semicond.
Sci. Technol., vol. 20, pp. 519-523, 2005.
[49] A. Tuan, M. Yoon, V. Medvedev, Y. Ono, Y. Ma, and J. W. Rogers,
“Interface control in the chemical-vapor-deposition of
titanium-dioxide on silicon(100),” Thin Solid Films, vol. 377, pp.
766-771, 2000.
[50] B. C. Kang, S. B. Lee, and J. H. Boo, “Growth of TiO2 thin-films on
Si(100) substrates using single molecular precursors by
metal-organic chemical-vapor-deposition,” Surf. Coat. Technol., vol.
131, pp. 88-92, 2000.
[51] D. H. Lee, Y. S. Cho, W. I. Yi, T. S. Kim, J. K. Lee and H. J. Jung,
“Metalorganic chemical-vapor-deposition of TiO2-N anatase
thin-film on Si substrate,” Appl. Phys. Lett., vol. 66, pp. 815-821,
1995.
[52] A. Turkovic, M. Ivanda, A. Drasner, V. Vranesa, and M. Persin,
“Raman-spectroscopy of thermally annealed TiO2 thin films,” Thin
Solid Films, vol. 198, pp. 199-205, 1991.
[53] H. S. Kim, D. C. Gilmer, S. A. Campbell, and D. L. Polla, “Leakage
current and electrical breakdown in metal-organic
chemical-vapor-deposited TiO2 dielectrics on silicon substrates,”
Appl. Phys. Lett., vol. 69, pp. 3860-3862, 1996.
[54] S. A. Campbell, D. C. Gilmer, X. C. Wang, M. T. Hsieh, H. S. Kim,
W. L. Gladfelter, and J. H. Yan, “MOSFET transistors fabricated
with high permittivity TiO2 dielectrics,” IEEE Trans. Electron
Devices, vol. 44, pp. 104-109, 1997.
[55] G. Stringfellow: Organometallic vapor phase epitaxy: Theory and
Practice, Academic Press, Boston, 1989.
[56] T. Suntola, Mater. Sci. Rep. 4, 261 (1989).
[57] J. W. Lim, H. S. Park, and S. W. Kang, J. Appl. Phys. 88, 6327 (2000).
[58] M. Leskela‥, M. Ritala , Thin Solid Films 409 (2002) 138
[59] M. Ritala, M. Leskela‥, J.-P. Dekker, C. Mutsaers, P.J. Soininen,
J. Skarp, Chem. Vap. Depos. 5 (1999) 7.
[60] M. Ritala, K. Kukli, A. Rahtu, et al., Science 288 (2000) 319.
[61] M. P. Houng, C. J. Huang, Y. H. Wang, N. F. Wang, and W. J.
Chang, “Extremely low temperature formation of silicondioxide on
gallium arsenide,” J. Appl. Phys., vol. 82, pp. 5788-5792, 1997.
[62] A. Paccagnella, A. Callegari, J. Batey, and D. Lacey, “Properties and
thermal stability of the SiO2/GaAs interface with different surface
treatments,” J. Appl. Phys., vol. 57, pp. 258–260, 1990.
[63] A. Callegari, D. K. Sadana, D. A, Buchana, A. Paccagnella, E. D.
Marshall, M. A. Tischler, and M. Norcoft, “Properties of
SiO2/Si/GaAs structures formed by solid phase epitaxy of
amorphous Si on GaAs,” Appl. Phys. Lett., vol. 58, pp. 2540-2542,
1991.
[64] X. Liu, X. Y. Chen, J. Yin, Z. G. Liu, J. M. Liu, X. B. Yin, G. X.
Chen, and M. Wang, “Epitaxial growth of TiO2 thin films by pulsed
laser deposition on GaAs(100) substrates,” J. Vac. Sci. Technol. A,
vol. 19, pp. 391-393, 2001.
[65] Y. H. Lee, K. K. Chan and M. J. Brady, “Plasma enhanced chemical
vapor deposition of TiO2 in microwave-radio frequency hybrid
plasma reactor,” J. Vac. Sci. Technol. A, vol. 13, pp. 596-601, 1995.
[66] K. Vydianathan, G. Nuesca, G. Peterson, E. T. Eisenbraun, A. E.
Kaloyeros, J. J. Sullivan, and B. Han, “Metalorganic chemical vapor
deposition of titanium oxide for microelectronics application,” J.
Mater. Res., vol. 16, pp. 1838-1849, 2001.
[67] S. M. Sze, Physics of Semiconductor Devices, 2nd ed. Ch. 8, Wiley,
New York, (1981).
[68] D. M. Shang and W. Y. Ching, “Electronic and optical properties of
three phases of titanium oxide: Rutile, anatase, and brookite,” Phys.
Rev. B, vol. 51, pp. 13023-13032, 1995.
[69] D. C. Gilmer, X. C Wang, M. T. Hsieh, H. S. Kim, W. L. Glasfelter
and J. Yan, “MOSFET transistors fabricated with high permitivity
TiO2 dielectrics,” IEEE Trans. Electron Devices, vol. 44, pp.
104-109 (1997).
[70] R. Lyer, R. R. Chang, A. Dubey, and D. L. Lile, “The effect of
phosphorous and sulfur treatment on the surface properties of InP,” J. Vac. Sci. & Technol. B, vol. 6, pp. 1174-1179, 1988.
[71] R. W. M. Kwok, L. J. Huang, W. M. Lau, M. Kasrai, X. Feng, K.
Tan, S. Ingrey, and D. Landheer, “X-ray absorption near edge
structures of sulfur on gas-phase polysulfide treated InP surfaces and
at SiNx/InP interfaces,” J. Vac. Sci. & Technol. A, vol. 12, pp.
2701-2704, 1994.
[72] Y. Dong, X. Ding, and X. Y. Hou, “Sulfur passivation of GaAs
metal-semiconductor-field-effect transistor,” Appl. Phys. Lett., vol.
77, pp. 3839-3841, 2000.
[73] J. L. Leclercq, E. Bergignat and G Hollinger, “Surface chemistry of
InAlAs after (NH4)2Sx sulphidation,” Semicond. Sci. Technol., vol. 10, pp. 95-100, 1995.
[74] M. J. Chester, T. Jach and J. A. Dagnta, “X-ray photoelectron and
Auger electron spectroscopy study of ultraviolet/ozone oxidized,
P2S5/(NH4)2S treated GaAs(100) surfaces,” J. Vac. Sci. Technol. A., vol. 11, pp. 474-480, 1993.
[75] Z. H. Lu, M. J. Graham, X. H. Feng and B. X. Yang, “Structure of S
on passivated GaAs (100),” Appl. Phys. Lett., vol. 62, pp.
2932-1934 (1993).
[76] James D. Plummer, Michael D. Deal, and Peter B. Griffin, Silicon
VLSI Technol., p. 512, 2000.
[77] Y. S. Yoon, W. N. Kang, H. S. Shin, S. S. Yom, T. W. Kim, J. Y. Lee,
D. J. Choi, and S. S. Baek, “Structural properties of BaTiO3 thin
films on Si grown by metalorganic chemical vapor deposition,” J.
Appl. Phys., vol. 73, pp. 1547-1549, 1993.
[78] L. M. Terman, “An investigation of surface states at a silicon/silicon
oxide interface employing metal-oxide-silicon diodes,” Solid-State
Electron., vol. 5, pp. 285-299, 1962.
[79] D. K. Schroder, Semiconductor Material and Device Characterization, pp. 378, New York: Wiley, 1998.
[80] E. H. Nicollian and J. R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology, Ch. 8, 9, New York: Wiley, 2003.
[81] C. T. Sah, A. B. Tole and R. F. Pierret, “Error analysis of surface
state density determination using the MOS capacitance method,” Solid-State Electron., vol. 12, pp. 689-709, Sep. 1969.
[82] B. C. Kang, S. B. Lee, and J. H. Boo, “Growth of TiO2 thin-films on Si(100) substrates using single molecular precursors by metal-organic chemical-vapor-deposition,” Surf. Coat. Technol., vol. 131, pp. 88-92, 2000.
[83] Jung-Wook Lim, Hyung-Sang Park, and Sang-Won Kang, “Analysis of a transient region during the initial stage of atomic layer deposition,” JOURNAL OF APPLIED PHYSICS, vol. 88, 6327, 2000
[84] Jung Wook Lim, Sun Jin Yun, and Jin Ho Lee, “Characteristics of TiO2 Films Prepared by ALD With and Without Plasma,” Electrochemical and Solid-State Letters, vol. 7, F73-F76, 2004
[85] D. J. Won, C. H. Wang, H. K. Jang, and D. J. Choi, “Effects of thermally induced anatase-to-rutile phase transition in MOCVD-grown TiO2 films on structural and optical properties,” Appl. Phys. A, vol. 73, pp. 595–600, 2001.
[86] A. L. Linsebigler, G. Q. Lu, and J. T. Yates, “Photocatalysis on TiO2 surfaces - principles, mechanisms, and selected results,” Chemical Reviews, vol. 95, pp. 735-758, 1995.
[87] “Powder Diffraction File,” Joint committee on powder diffraction standards.
[88] M.C. Marco de Lucas, F. Fabreguette, S. Collin, S. Bourgeois, “MOCVD growth of TiO2 thin films on single crystal GaAs substrates,” International Journal of Inorganic Materials, vol. 2, pp. 255–259, 2000
[89] S. F. Chen, C. W. Wang, “Effect of deposition temperature on the conduction mechanisms and reliability of radio frequency sputtered TiO2 thin films,” J. Vac. Sci. Technol. B, vol. 20(1), pp. 263-270, 2002
[90] R. W. M. Kwok, L. J. Huang, W. M. Lau, M. Kasrai, X. Feng, K. Tan, S. Ingrey, and D. Landheer, “X-ray absorption near edge structures of sulfur on gas-phase polysulfide treated InP surfaces and at SiNx/InP interfaces,” J. Vac. Sci. & Technol. A, vol. 12, pp. 2701-2704, 1994.
[91] M. M. Frank, G. D. Wilk, D. Starodub, T. Gustafsson, E. Garfunkel,Y. J. Chabal, J. Grazul, and D. A. Muller, “HfO2 and Al2O3 gate dielectrics on GaAs grown by atomic layer deposition,” Appl. Phys.Lett., vol. 86, pp. 152904-152906, 2005.
[92] M. Passlack, N. Medendorp, and R. Gregory, “Role of Ga2O3 template thickness and gadolinium mole fraction in GdxGa0.4–xO0.6/Ga2O3 gate dielectric stacks on GaAs,” Appl. Phys.Lett., vol. 83, pp. 5262-5264, 2003.
[93] F. Shi, K. L Chang, J. Epple, C. F. Xu, K. Y. Cheng, and K. C.Hsieh, “Characterization of GaAs-based n-n and p-n interface junctions prepared by direct wafer bonding,” J. Appl. Phys. vol. 92, pp. 7544-7549, 2002.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code