Responsive image
博碩士論文 etd-0724108-171256 詳細資訊
Title page for etd-0724108-171256
論文名稱
Title
應用二氧化鈦及氧化鋯光觸媒還原二氧化碳之研究
Photoreduction of Carbon Dioxide via TiO2 and ZrO2 Photocatalysts
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
227
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-01-02
繳交日期
Date of Submission
2008-07-24
關鍵字
Keywords
二氧化碳、光催化還原、反應路徑、光觸媒、L-H反應動力模式、自然光
solar light, photoreduction, carbon dioxide, L-H kinetic model, photocatalysts, reaction pathway
統計
Statistics
本論文已被瀏覽 5707 次,被下載 5877
The thesis/dissertation has been browsed 5707 times, has been downloaded 5877 times.
中文摘要
本研究旨在探討近紫外光(UV-A, λ=365 nm)及紫外光(UV-C, λ=254 nm)激發二氧化鈦(TiO2)及氧化鋯(ZrO2)光觸媒,進行光催化還原氣相二氧化碳(CO2)之反應研究,並進一步探討不同操作參數對光催化還原反應效率之影響。
本研究採用自行設計之內循環批次光催化還原反應系統及皿式批次光催化還原反應系統,光觸媒則選擇商業型TiO2(Degussa P-25)及ZrO2,進行光催化還原CO2之實驗。實驗操作參數包括還原劑種類(H2、H2O、H2+H2O)、光源波長(UV-A, λ=365 nm;UV-C, λ=254 nm)、CO2初始濃度(0.2~5.0%)、反應溫度(35~95℃),反應時間為2小時。所使用之近紫外光(λ=365 nm)(或紫外光(λ=254 nm))均為15 W之低壓汞燈。產物分析係以氣相層析儀/火燄離子偵測器(gas chromatography/flame ionization detector;GC/FID)配合甲烷轉換器(methanizer)偵測並定量之。
本研究結果顯示,TiO2(Degussa P-25)光觸媒之光催化還原效率較ZrO2光觸媒佳,TiO2在H2+H2O條件下有最高之還原效率,主要還原反應產物為CH4、C2H6、CO等產物,產量範圍為32.95~94.60、0.80~18.55、1.12~21.78 μmol/g;而ZrO2在H2條件下有最高之還原效率,主要還原反應產物僅為CO,產量範圍為0.34~4.99 μmol/g。操作參數實驗結果顯示,光催化反應速率隨著CO2初始濃度提高,其光還原產物累積總產量愈高;反應溫度方面,提高反應溫度顯然加速反應速率,對於產物生成有促進效果。本研究結果與相關文獻比較得知,TiO2和ZrO2光觸媒之主要還原產物產量普遍較文獻為高。此外,利用FTIR光譜分析TiO2和ZrO2光觸媒表面發現甲酸(HCOOHads)、甲醇(CH3OHads)、碳酸鹽(CO32−ads)、重碳酸鹽(HCO32−ads)、甲酸鹽(HCOO−ads)、甲酸(HCOOH ads)、甲醛(HCOHads)及甲酸甲酯(HCOOCH3 ads)等產物之存在,因此提出以TiO2和ZrO2為光觸媒反應之可能反應路徑。本研究應用相互競爭且反應之雙分子L-H反應動力模式,加入水氣和氫氣項修正,模擬在不同反應溫度、CO2初始濃度、反應溼度下,光催化還原CO2反應之情形,實驗值與模擬值均相當吻合,同時也成功模擬光催化還原CO2反應速率。最後以TiO2和ZrO2光觸媒應用自然光催化還原CO2,結果顯示確實可行。在自然光照射下,TiO2光觸媒主要還原產物為CH4、C2H6及CO,產量範圍為0.716~2.995、0.057~0.114及0.050~0.134 μmol/g;而ZrO2光觸媒主要還原產物為CO,產量範圍為0.024~0.051 μmol/g。由實驗結果得知,在TiO2光觸媒之平均光能效率(AEf)最高可達4.13%,表觀量子效率(φA)最高可達1.05%;而在ZrO2光觸媒之平均光能效率(AEf)最高可達5.07×10-3%,表觀量子效率(φA)最高可達1.54×10-2%。
Abstract
This study investigated the photocatalytic reduction of CO2 in a self-designed closed circulated batch reactor system and a bench-scale batch photocatalytic reactor. The photocatalysts tested included titanium dioxide (TiO2, Degussa P-25) and zirconium oxide (ZrO2). The reductants investigated included hydrogen (H2), water vapor (H2O), and hydrogen plus water vapor (H2+H2O). The wavelengths of incident near ultra-violet (UV) and UV lights for the photocatalysis of TiO2 and ZrO2 were 365 nm and 254 nm, respectively. The initial concentrations of CO2 ranged from 0.2-5.0% and the reaction temperature ranged from 35-95 ○C. The incident near-UV (or UV) light with wavelength of 365 nm (or 254 nm) was irradiated by a 15-watt low-pressure mercury lamp. The photocatalytic reaction was conducted continuously for approximately two hours. Reactants and products were analyzed by a gas chromatography with a flame ionization detector followed by a methanizer (GC/FID-methanizer).
Experimental results indicated that glass pellets coated with TiO2 had better photoreduction efficiency than ZrO2. The highest yield rates of the photoreduction of CO2 were obtained using TiO2 with H2+H2O and ZrO2 with H2. Photoreduction of CO2 over TiO2 with H2+H2O formed CH4, C2H6, and CO in the yield of 32.95~94.60, 0.80~18.55, 1.12~21.78 μmol/g, respectively, while the photoreduction of CO2 over ZrO2 with H2 formed CO in the yield of 0.34~4.99 μmol/g.
Results obtained from the operating parameter tests showed that the photoreduction rate increased with the initial concentration of carbon dioxide and resulted in more product accumulation. The photoreduction rate of carbon dioxide increased with reaction temperature, which promoted the formation of products. Concurred with previous researches, the reaction rate of major products over TiO2 and ZrO2 were higher than previous investigations of CO2 photoreduction.
Furthermore, the spectra of FTIR showed that formic acid (HCOOHads), methanol (CH3OHads), carbonate (CO32−ads), bicarbonate (HCO32−ads), formate (HCOO−ads), formic acid (HCOOH ads), formaldehyde (HCOHads) and methyl formate (HCOOCH3 ads) formed on the surface of TiO2 and ZrO2 photocatalysts. The detected reaction products supported the proposal of two reaction pathways for the photoreduction of CO2 over TiO2 and ZrO2 with H2 and H2O, respectively.
A modified bimolecular Langmuir-Hinshelwood kinetic model was developed to simulate the reaction temperature, CO2 initial concentration and relative humidity promotion and inhibition of the photoreduction of CO2. Additionally, the modified L-H kinetic model was successfully applied to simulate the photoreduction rate of CO2.
The result showed that CO2 could be reduced by used solar light over TiO2 and ZrO2 photocatalysts. The reaction products of CO2 photoreduction over TiO2 were CH4, C2H6, and CO in the yield of 2.16~2.995, 0.057~0.128, 0.078~0.134 μmol/g, respectively, while the photoreduction of CO2 over ZrO2 formed only CO in the yield of 0.023~0.051 μmol/g.
Furthermore, experimental results indicated that TiO2 gave the highest average photo energy efficiency (AEf) of ~4.13%, and apparent quantum efficiency (φA) of ~1.05%. However, the ZrO2 gave the highest average photo energy efficiency (AEf) of 5.07×10-3%, and apparent quantum efficiency (φA) of ~1.54×10-2%.
目次 Table of Contents
目 錄
中文摘要………………………………………..……………………….… I
英文摘要……………………………………………………………..….… III
目 錄………………………………………………………………..….… V
表目錄………………………………………………………………..….… VIII
圖目錄………………………………………………………………..……. X
第一章 前 言………………………………………….………………… 1-1
1-1 研究緣起……………………………………………….….…….. 1-1
1-2 研究目的……………………………………………….….…….. 1-3
第二章 文獻回顧………………………………..……………….….……. 2-1
2-1 二氧化碳之背景概述………………………………….….…….. 2-1
2-1-1 二氧化碳之環境影響…………………………….………. 2-1
2-1-2 二氧化碳之處理技術…………………….……….……… 2-3
2-2 光催化反應基本原理………….……………………….….……. 2-8
2-2-1 催化反應之種類…………….…………………….……… 2-8
2-2-2 半導體光觸媒之能隙…………………………….….…… 2-9
2-2-3 半導體光觸媒之分類…………..………………….……... 2-12
2-2-4 半導體電子激發過程……..……………………….……... 2-12
2-2-5 光催化反應機制..………………………………….……... 2-17
2-2-6 光觸媒表面之吸附現象…………………………….……. 2-20
2-2-7 光催化反應動力………….………………………….…… 2-24
2-3 二氧化鈦及氧化鋯光觸媒…………………………………..….. 2-29
2-3-1 結晶型態與表面結構特性…………………………….…. 2-29
2-3-2 光觸媒之製備方式…………………………………….…. 2-36
2-4 光催化還原反應之影響因素………………………………..….. 2-41
2-4-1 觸媒種類、晶型與量子尺寸效應之影響………….…..… 2-44
2-4-2 光波長與光強度的影響……….……………………….… 2-54
2-4-3 還原劑之影響……….……………………………….…… 2-53
2-4-4 反應溫度之影響……….…………………………….…… 2-55
2-4-5 反應器型式之影響……….………………………….…… 2-56
2-5 光催化反應之光譜分析與應用……………………………..….. 2-58
第三章 研究方法…………………………..…………………………..…. 3-1
3-1 實驗材料及製備方法…………….……………………………... 3-1
3-1-1 實驗材料…………………………………….………….… 3-3
3-1-2 光觸媒裝備方法……………………………..…………… 3-6
3-2 實驗系統………………………………………….……………... 3-7
3-2-1 內循環批次光催化還原反應系統..……………………… 3-7
3-2-2 皿式批次光催化還原反應系統..………………………… 3-10
3-3 實驗方法……..………………………………....…...…………... 3-12
3-3-1 操作條件及範圍…………………..……………………… 3-12
3-3-2 玻璃珠表面光觸媒披覆厚度之估算..…………………… 3-14
3-3-3 反應時間之計算..………………………………………… 3-15
3-3-4 水氣濃度計算…………………………………………….. 3-17
3-3-5 光催化還原反應效率之計算………..…………………… 3-18
3-3-5-1 反應效率之計算……………………………...……... 3-18
3-3-5-2 光能效率之計算…………………………………….. 3-19
3-3-6 反應系統特性試驗………….…….……………………… 3-21
3-3-6-1 反應系統壓力測試………………………………..… 3-21
3-3-6-2 載體吸附測試………..……………………………… 3-21
3-3-6-3 均相光反應測試…………………………………….. 3-22
3-3-6-4 不照光反應測試…………………………………….. 3-22
3-3-6-5 異相光反應測試…………………………………..… 3-22
3-4 產物分析方法……….………….…….………...…...…………... 3-23
3-5 分析方法之品保與品管……….…….…….…..…...………….... 3-26
第四章 結果與討論………..…………………….……...………………... 4-1
4-1 反應系統特性測試結果.……………........................…............... 4-1
4-1-1 系統壓力測試結果………………………..……………… 4-1
4-1-2 載體吸附測試結果……..………………………………… 4-1
4-1-3 均相光反應測試結果………….…………………………. 4-3
4-1-4 不照光反應測試結果……..…….………………………... 4-5
4-1-5 異相光反應測試結果………….…………………………. 4-7
4-2 操作參數對光催化還原效率之影響………………...…............. 4-7
4-2-1 還原劑種類對光催化還原效率之影響…..……………… 4-9
4-2-2 光源波長對光催化還原效率之影響……..……………… 4-17
4-2-3 CO2初始濃度對光催化還原效率之影響..……………….. 4-26
4-2-4 反應溫度對光催化還原效率之影響…………………….. 4-37
4-3 光觸媒表面產物分析結果...…………………............................. 4-43
4-4 光催化還原反應路徑探討...…..………………........................... 4-48
4-4-1 TiO2光觸媒之光催化還原反應路徑……………………… 4-48
4-4-2 ZrO2光觸媒之光催化還原反應路徑.……..……………… 4-50
4-5 光催化還原反應動力模式分析.....…........…........…........…....... 4-53
4-6 自然光催化還原CO2之結果…………………..………......….... 4-70
4-7 光能效率評估….....…........…........………………........…........... 4-82
4-8 與其他文獻比較….....…........…........………………........…....... 4-86
第五章 結論與建議……………………………………………................. 5-1
5-1 結論……………………………....…........…........…........…........ 5-1
5-2 建議……………………………....…........…........…........…........ 5-4
參考文獻…………………………..………………………………………. R-1
附錄A…………………………..…………………………………………. A-1
附錄B…………………………..…………………………………………. B-1
個人小傳
出版目錄

表目錄
表2.1.1 二氧化碳之物理及化學性質……..…...…...…………...……... 2-2
表2.2.1 固體觸媒之分類……......…...……….……...…………...…….. 2-10
表2.2.2 光催化反應與熱催化反應之差異比較..……….……...……… 2-10
表2.2.3 半導體之能隙寬度和激發所需光波波長….……….…..……. 2-11
表2.2.4 半導體金屬氧化物之分類…….……….……….………...…… 2-13
表2.2.5 物理吸附和化學吸附的比較…….……….……….………...… 2-21
表2.2.6 光催化反應動力模式…….……….……….……….………..… 2-25
表2.3.1 二氧化鈦之基本性質及應用……….……….……….………... 2-31
表2.3.2 二氧化鈦三種晶型之物理特性比較.……….….…….……….. 2-31
表2.3.3 Degussa P-25 TiO2之物理化學特性.……….….…...….……… 2-34
表2.3.4 氧化鋯的基本性質及應用…………………………………….. 2-36
表2.3.5 氧化鋯光觸媒之應用領域…….……….……….……….…….. 2-36
表2.3.6 不同觸媒製備方法之優缺點比較….……….……….………... 2-38
表2.3.7 不同鍛燒溫度下以烴氧化物製備TiO2之特性….……….…... 2-38
表2.3.8 鍛燒溫度與TiO2孔隙度和比表面積之關係….……….……... 2-39
表2.4.1 由低價產物轉變為高價值燃料的反應….……….……….…... 2-42
表2.4.5.1 各類型反應器之優缺點比較表….……….……….…………... 2-56
表3.2.1 自然光照下之光強度及溫度實際量測結果………………….. 3-13
表3.3.1 光催化還原CO2之實驗操作條件及範圍….……….………… 3-13
表3.4.1 氣相層析儀/甲烷轉化器(GC/FID-methanizer)之操作條件….. 3-23
表3.5.1 品保及品管查核結果一覽表….…...…...................................... 3-27
表4.2.1.1 不同還原劑之光還原CO2反應產物產量彙整表…………….. 4-10
表4.2.1.2 不同還原劑之光還原CO2反應CO2轉化率與產物選擇率彙整表…………………………………………………………….. 4-10
表4.2.2.1 不同光源波長之光還原CO2反應產物產量彙整表………….. 4-19
表4.2.2.2 不同光源波長之光還原CO2反應CO2轉化率與產物選擇率彙整表………………………………………………………….. 4-19
表4.2.3.1 不同CO2初始濃度之光還原CO2反應產物產量彙整表…….. 4-28
表4.2.3.2 不同CO2初始濃度之光還原CO2反應CO2轉化率與產物選擇率彙整表…………………………………………………….. 4-28
表4.2.4.1 不同反應溫度之光還原CO2反應產物產量彙整表………….. 4-33
表4.2.4.2 不同反應溫度之光還原CO2反應CO2轉化率與產物選擇率彙整表………………………………………………………….. 4-33
表4.2.5.1 不同反應濕度之光還原CO2反應產物產量彙整表………….. 4-39
表4.2.5.2 不同反應濕度之光還原CO2反應CO2轉化率與光還原產物選擇率彙整表………………………………………………….. 4-39
表4.5.1 不同反應溫度在氫氣含水氣條件下之L-H反應動力修正模式常數值彙整表……………………………………………….. 4-57
表4.5.2 不同CO2初始濃度在氫氣含水氣條件下之L-H反應動力修正模式常數值彙整表………………………………………….. 4-64
表4.5.3 不同反應濕度之L-H反應動力修正模式常數值彙整表…….. 4-68
表4.6.1 不同還原劑之自然光催化還原CO2反應產物產量彙整表….. 4-70
表4.6.2 不同還原劑之自然光催化還原CO2反應CO2轉化率與產物選擇率彙整表………………………………………………….. 4-70
表4.6.3 不同CO2初始濃度之自然光催化還原CO2反應產物產量彙整表…………………………………………………………….. 4-72
圖4.6.4 不同CO2初始濃度之自然光催化還原CO2反應CO2轉化率與產物選擇率彙整表.................................................................. 4-72
表4.6.5 自然光催化還原CO2反應在氫氣含水氣條件之L-H反應動力修正模式常數值彙整表…………………………………….. 4-78
表4.6.6 自然光催化還原CO2反應在僅為水氣條件之L-H反應動力修正模式常數值彙整表……………………………………….. 4-83
表4.7.1 光能效率彙整表……………………………………………….. 4-85
表4.8.1 本研究與其他相關研究光還原產物之產率比較表………….. 4-87

圖目錄
圖2.1.1 二氧化碳分離、轉化、固定及儲存技術之相互關連性……...... 2-4
圖2.2.1 金屬、半導體和絕緣體之能帶圖………..…………..……….. 2-11
圖2.2.2 半導體能隙激發過程中電子-電洞對的移動路徑…………… 2-14
圖2.2.3 常用半導體的能帶邊緣位置………………………..………… 2-16
圖2.2.4 光觸媒表面和內部電荷載體阱示意圖……………..………… 2-16
圖2.2.5 反應物之初始激發過程…………………………..…………… 2-19
圖2.2.6 CO2之解離吸附示意圖…………………………..…………… 2-23
圖2.3.1 二氧化鈦三種晶型之晶格結構……………..………………… 2-30
圖2.3.2 銳鈦礦和金紅石之能隙和能帶邊緣位置示意圖……..……… 2-32
圖2.3.3 二氧化鈦光觸媒之應用領域………………..………………… 2-35
圖2.3.4 氧化鋯之相變化流程圖…………………………………..…… 2-35
圖2.4.1 TiO2 (anatase)觸媒之能階圖及H2O、CO2的還原電位……..… 2-43
圖2.4.1.1 CaFe2O4和Fe2O3之氧化還原能階及CO2和可能之中間產物還原能階示意圖………………………………..……………… 2-46
圖2.4.1.2 以Cd/ZnS為晶體光催化還原CO2之產物量子效率………… 2-49
圖2.4.1.3 酸性和中性基材觸媒的光催化還原反應機制..……………… 2-53
圖2.4.5.1 光觸媒不同之固定型式………………..……………………… 2-57
圖2.5.1 銅觸媒表面進行二氧化碳氫化之反應機制……………..…… 2-60
圖2.5.2 觸媒表面Cu-Zn之協同作用…………………..……………… 2-60
圖2.5.3 二氧化碳於TiO2照光後進行LMCT被活化之過程…….…… 2-61
圖3.1.1 實驗設計流程圖………………………………...…………....... 3-2
圖3.1.2 光觸媒製備流程圖………………..…………………………… 3-8
圖3.2.1 內循環批次光催化還原反應系統圖……………...…………... 3-9
圖3.2.2 填充床反應器示意圖…………………..……………………… 3-9
圖3.2.3 皿式批次光催化還原反應系統示意圖…………………..…… 3-11
圖3.2.4 皿式批次光催化還原反應器………………………………….. 3-11
圖3.4.1 標準氣體分析圖譜……………………………………………. 3-24
圖3.4.2 TiO2光觸媒光催化還原CO2反應之氣相產物分析圖譜……. 3-25
圖3.4.3 ZrO2光觸媒光催化還原CO2反應之氣相產物分析圖譜……. 3-25
圖4.1.1.1 不同光催化還原反應系統之壓力測試結果………………..… 4-2
圖4.1.2.1 不同光催化還原反應系統之載體吸附測試結果…………….. 4-2
圖4.1.3.1 不同光源波長下反應物與還原劑之均相光測試結果….……. 4-4
圖4.1.4.1 不同光觸媒下反應物與還原劑之不照光反應測試結果…….. 4-6
圖4.1.5.1 不同光觸媒之異相光反應測試結果………………………….. 4-8
圖4.2.1.1 不同還原劑種類於UV-A(365 nm)照射下之TiO2光還原CO2反應產物產量隨反應時間變化趨勢圖………….………. 4-11
圖4.2.1.2 不同還原劑種類於UV-C(254 nm)照射下之TiO2光還原CO2反應產物產量隨反應時間變化趨勢圖…………….……. 4-12
圖4.2.1.3 不同還原劑種類於UV-A(365 nm)照射下之ZrO2光還原CO2反應產物產量隨反應時間變化趨勢圖…………….……. 4-13
圖4.2.1.4 不同還原劑種類於UV-C(254 nm)照射下之ZrO2光還原CO2反應產物產量隨反應時間變化趨勢圖…………….……. 4-13
圖4.2.1.5 不同還原劑之光還原CO2反應CO2轉化率比較圖…………. 4-15
圖4.2.2.1 不同光源波長於H2下之TiO2光還原CO2反應產物產量隨反應時間變化趨勢圖…………………………………………….. 4-20
圖4.2.2.2 不同光源波長於H2O下之TiO2光還原CO2反應產物產量隨反應時間變化趨勢圖………………………………………….. 4-21
圖4.2.2.3 不同光源波長於H2+H2O下之TiO2光還原CO2反應產物產量隨反應時間變化趨勢圖…………………………………….. 4-22
圖4.2.2.4 不同光源波長於還原劑(A:H2;B:H2O;C:H2+H2O)下之ZrO2光還原CO2反應產物產量隨時間變化趨勢圖……. 4-23
圖4.2.3.1 不同CO2初始濃度之TiO2光還原CO2反應產物產量隨反應時間變化趨勢圖……………………………………………….. 4-29
圖4.2.3.2 不同CO2初始濃度之ZrO2光還原CO2反應產物產量隨反應時間變化趨勢圖……………………………………………….. 4-30
圖4.2.3.3 光還原CO2反應之產物產量隨CO2初始濃度變化趨勢圖….. 4-30
圖4.2.3.4 光還原CO2反應之CO2轉化率隨CO2初始濃度變化趨勢圖... 4-31
圖4.2.4.1 不同反應溫度之TiO2光還原CO2反應產物產量隨反應時間變化趨勢圖…………………………………………………….. 4-34
圖4.2.4.2 不同反應溫度之ZrO2光還原CO2反應產物產量隨反應時間變化趨勢圖…………………………………………………….. 4-35
圖4.2.4.3 光還原CO2反應之產物產量隨反應溫度變化趨勢圖……….. 4-36
圖4.2.4.4 光還原CO2反應之產物選擇率隨反應溫度變化趨勢圖…….. 4-36
圖4.2.4.5 光還原CO2反應之CO2轉化率隨反應溫度變化趨勢圖…….. 4-37
圖4.2.5.1 不同反應濕度之TiO2光還原CO2反應產物產量隨反應時間變化趨勢圖…………………………………………………….. 4-40
圖4.2.5.2 不同反應濕度之ZrO2光還原CO2反應產物產量隨反應時間變化趨勢圖…………………………………………………….. 4-41
圖4.2.5.3 光還原CO2反應之CO2轉化率隨反應濕度變化趨勢圖…….. 4-41
圖4.2.5.4 光還原CO2反應之產物產量隨反應濕度變化趨勢圖……….. 4-42
圖4.3.1 TiO2光觸媒表面之FTIR吸收光譜圖……………….……….. 4-45
圖4.3.2 ZrO2光觸媒表面之FTIR吸收光譜圖....................................... 4-45
圖4.4.4.1 TiO2光觸媒光還原CO2反應之可能反應路徑圖..................... 4-51
圖4.4.4.2 ZrO2光觸媒光還原CO2反應之可能反應路徑圖..................... 4-53
圖4.5.1 不同溫度與氫氣含水氣條件下之TiO2光還原CO2反應濃度隨反應時間模式模擬預測結果.................................................. 4-58
圖4.5.2 不同溫度與氫氣含水氣條件下之ZrO2光還原CO2反應濃度隨反應時間模式模擬預測結果……………………………….. 4-59
圖4.5.3 不同溫度在氫氣含水氣條件下之TiO2光還原CO2反應速率隨反應溫度模式模擬預測結果……………………………….. 4-60
圖4.5.4 不同溫度在氫氣含水氣條件下之ZrO2光還原CO2反應速率隨反應溫度模式模擬預測結果……………………………….. 4-60
圖4.5.5 不同光觸媒於不同溫度下之反應速率常數(kLH)與反應溫度線性迴歸關係圖…………………………………………….. 4-62
圖4.5.6 不同CO2初始濃度在氫氣含水氣條件下之TiO2光還原CO2反應濃度隨反應時間模式模擬預測結果…………………….. 4-64
圖4.5.7 不同CO2初始濃度在氫氣含水氣條件下之ZrO2光還原CO2反應濃度隨反應時間之模式模擬預測結果………………….. 4-65
圖4.5.8 TiO2光還原CO2反應速率隨CO2初始濃度模式模擬預測結果……………………………………………………………….. 4-66
圖4.5.9 ZrO2光還原CO2反應速率隨CO2初始濃度模式模擬預測結果……………………………………………………………….. 4-66
圖4.5.10 不同反應濕度之TiO2光還原CO2反應濃度隨反應時間模式模擬預測結果………………………………………………….. 4-68
圖4.5.11 不同反應濕度之ZrO2光還原CO2反應濃度隨反應時間模式模擬預測結果………………………………………………….. 4-69
圖4.6.1 不同還原劑於自然光照射下之TiO2光還原CO2反應產物產量隨反應時間變化趨勢……………………………………….. 4-73
圖4.6.2 不同CO2初始濃度於自然光照射下之TiO2光還原CO2反應產物產量隨反應時間變化趨勢圖…………………………….. 4-74
圖4.6.3 不同還原劑於自然光照射下之ZrO2光還原CO2反應產物產量隨反應時間變化趨勢……………………………………….. 4-75
圖4.6.4 不同CO2初始濃度於自然光照射下之ZrO2光還原CO2反應產物產量隨反應時間變化趨勢……………………………….. 4-75
圖4.6.5 自然光波長分佈圖…………………………………………..… 4-77
圖4.6.6 不同溫度在氫氣含水氣條件下之TiO2自然光還原CO2反應濃度隨反應時間模式模擬預測結果………………………….. 4-79
圖4.6.7 不同溫度在氫氣含水氣條件下之ZrO2自然光還原CO2反應濃度隨反應時間模式模擬預測結果………………………….. 4-80
圖4.6.8 TiO2自然光還原CO2反應速率隨CO2初始濃度模式模擬預測結果………………………………………………………….. 4-81
圖4.6.9 ZrO2自然光還原CO2反應速率隨CO2初始濃度模式模擬預測結果………………………………………………………….. 4-81
圖4.6.10 在反應濕度下TiO2自然光還原CO2反應濃度隨反應時間模式模擬預測結果……………………………………………….. 4-83
圖4.6.11 在反應濕度下ZrO2自然光還原CO2反應濃度隨反應時間模式模擬預測結果……………………………………………….. 4-84
參考文獻 References
Adachi, K., K. Ohta, and T. Mizuno, “Photocatalytic Reduction of Carbon Dioxide to Hydrocarbon Using Copper-loaded Titanium Dioxide”, Solar Energy, 53, 187-190 (1994).
Åkermark, B., U. Eklund-westlin, P. Baeckstrom, and R. Lof, “Photochemical, Metal-promoted Reduction of Carbon Dioxide and Formaldehyde in Aqueous Solution,” Acta Chemica Scandinavica B: Organic Chemistry and Biochemistry, 34, 27-34 (1980).
Alberici, R.M. and W.F. Jardim, “Photocatalytic Destruction of VOCs in the Gas-phase Using Titanium Dioxide,” Applied Catalysis B: Environmental, 14, 55-68 (1997).
Anderson, M.A., A. Yamazaki-Nishida, and S. Cervera-March, “Photodegradation of Trichloroethylene in the Gas Phase Using TiO2 Porpous Ceramic Membranes,” in Photocatalytic Purification and Treatment of Water and Air, D.F. Ollis, H. Al- Ekabi, Eds., Elsevier: Amsterdam, 405 (1993).
Anpo, M., N. Aikawa, and Y. Kubokawa, “Photocatalytic Hydrogenation of Alkynes and Alkenes with Water over TiO2 Pt-Loading Effect on the Primary Processes,” The J. of Physical Chemistry, 88, 3998-4000 (1984).
Anpo, M., M. Matsuoka, and H. Yamashita, “In Situ Investigations of the Photocatalytic Decomposition of NOX on Ion-exchanged Silver (Ⅰ) ZSM-5 Catalyst,” Catalysis Today, 35, 177-181 (1997a).
Anpo, M., S.G. Zhang, H. Mishima, M. Matsuoka, and H. Yamashita, “Design of Photocatalysts Encapsulated within the Zeolite Framework and Cavities for the Decomposition of NO into N2 and O2 at Normal Temperature,” Catalysis Today, 39, 159-168 (1997b).
Anpo, M., H. Yamashita, Y. Ichihashi, Y. Fujii, and M. Honda, “Photocatalytic Reduction of CO2 with H2O on Titanium Oxides Anchored with Micropores of Zeolites: Effects of the Structure of the Active Sites and the Addition of Pt,” J. of Physical Chemistry B, 101, 2632-2636 (1997c).
Anpo, M., H. Yamashita, K. Ikeue, Y. Fujishima, S.G. Zhang, Y. Ichihashi, D.R. Park, Y. Suzuki, K. Koyano, and T. Tatsumi, “Photocatalytic Reduction of CO2 with H2O on Ti-MCM-41 and Ti-MCM-48 Mesoporous Zeolite Catalysts,” Catalysis Today, 44, 327-332 (1998).
Anpo, M., S.G. Zhang, S. Higashimoto, M. Matsuoka, and H. Yamashita, “Characterization of the Local Structure of the Vanadium Silicalite (VS-2) Catalyst and Its Photocatalytic Reactivity for the Decomposition of NO into N2 and O2,” J. of Physical Chemistry B, 103, 9295-9301 (1999).
Balzani, V. and F. Scandola, “Light-induced and Thermal Electron-Transfer Reactions,” edited by M. Gratzel, Energy Resources through Photochemistry and Catalysis, 1st ed., Academic press, New York, 2 (1983).
Bando, K.K., K. Sayama, H. Kusama, K. Okabe, and H. Arakawa, “In-situ FT-IR Study on CO2 Hydrogenation over Cu Catalysts on SiO2, Al2O3, and TiO2,” Applied Catalysis A: General, 165, 391-409 (1997).
Barin, I., “Thermochemical Data of Pure Substances,” Berlin, 1989.
Bhaumik, S., S. Majumdar, and K.K. Sirkar, “Hollow-Fiber Membrane-based Rapid Pressure Swing Absorption,” AIChE Journal, 42, 409-421 (1996).
Burdett, J.K., T. Hughbands, J.M. Gordon, J.W. Richardson, and J.V. Smith, “Structural-electronic Relationships in Inorganic Solids: Powder Neutron Diffraction Studies of the Rutile and Anatase Polymorphs of Titanium Dioxide at 15 and 295 K,”J. of the American Chemical Society, 109, 3639-3646 (1987).
Carlson, T. and G.L. Griffin, “Photooxidation of Aethanol Using V2O5/TiO2 and MoO3/TiO2 Surface Oxide Monolayer Catalysts”, The J. of Physical Chemistry, 90, 5896-5900 (1986).
Chakma, A. “Separation of CO2 and from Flue Gas Streams by Liquid Membrane,” Energy Conversion and Management, 36, 405-410 (1995).
Chang, H.T., N.M. Wu, and F. Zhu, “A Kinetic Model for Photocatalytic Degradation of Organic Contaminants in a Thin-flim TiO2 Catalyst,” Water Research, 34, 407-416 (2000).
Chen, H.Y., S.P. Lau, L. Chen, J. Lin, C.H. A. Huan, K.L. Tan, and J.S. Pan, “Synergism Between Cu and Zn Sites in Cu/Zn Catalysts for Methanol Synthesis,” Applied Surface Science, 152, 193-199 (1999).
Chen, Jian, D.F. Ollis, W.H. Rulkens, and H. Bruning, “Kinetic Processes of Photocatalytic Mineralization of Alcohols on Metallized Titanium Dioxide,” Water Research, 33, 1173-1180 (1999).
Choi, W., J.Y. Ko, H. Park, and J.S. Chung, “Investigation on TiO2-coated Optical Fibers for Gas-phase Photocatalytic Oxidation of Acetone,” Applied Catalysis B: Environmental, 31, 209–220 (2001).
Cooper, C.D. and F.C. Alley, “Air Pollution Control: A Design Approach,” Waveland Press, Inc., Central Book Publishing Company, Taipei (1996).
Cot, F., A. Larbot, G. Nabias, and L. Cot, “Preparation and Characterization of Colloidal Solution Derived Crystallized Titania Powder,’’ J. of the European Ceramic Society, 18, 2175-2181 (1998).
d′Hennezel, O., P. Pichat, and D.F. Ollis, “Benzene and Toluene Gas-phase Photocatalytic Degradation over H2O and HCL Pretreated TiO2: by Products and Mechanisms,” J. of Photochemistry and Photobiology A: Chemistry, 118, 197-204 (1998).
Dean, J.A., “Lange’s Handbook of Chemistry,” McGraw-Hill, New York (1992).
Driessen, M.D. and V.H. Grassian, “Photooxidation of Trichloro-ethylene on Pt/TiO2,” J. of Physical Chemistry B, 102, 1418-1423 (1998).
Eggins, B.R., P.K. J. Robertson, E.P. Murphy, E. Woods, and J. T. S. Irvine, “Factors Affecting the Photoelectrochemical Fixation of Carbon Dioxide with Semiconductor Colloids,” J. of Photochemistry and Photobiology A: Chemistry, 118, 31-40 (1998).
Einaga, H., A. Ogata, S. Futamura, and T. Ibusuki, “The stabilization of active oxygen species by Pt supported on TiO2,” Chemical Physics Letters, 338, 303-307 (2001).
Emeline, A.V., L.G. Smirnova, G.N. Kuzmin, L.L. Basov, and N. Serpone, “Spectral Dependence of Quantum Yields in Gas-solid Heterogeneous Photosysems Influence of Anatase/Rutile Content on the Photostimulated Adsorption of Dioxygen and Dihydrogen on Titania." J. of Photochemistry and Photobiology A: Chemistry, 148, 97-102 (2002).
Fan, L. and K. Fujimoto, “Development of Active and Stable Supported Noble Metal Catalysts for Hydrogenation of Carbon Dioxide to Methanol,” Energy Conversion and Management, 36, 633-636 (1995).
Flagan, R.C. and H.S. John, “Fundamentals of Air Pollution Enginerring,” Englewood Cliffs, N.J.: Prentice Hall, New Jersey (1988).
Fogler, H.S., “Elements of chemical reaction engineering”, 3rd ed. Prentice Hall (1999)
Fox, M.A. and M.T. Dulay, “Hetergeneous Photocatalysis,” Chemical Reviews, 93, 341-357 (1993).
Fu, X.F., L.A. Clark, W.A. Zeltner, and M.A. Anderson, “Effect of Reaction Temperature and Water Vapor Content on the Heterogeneous Photocatalytic Oxidation of Ethylene,” J. of Photochemistry and Photobiology A: Chemistry, 97, 181-186 (1996).
Fujishima, A. and K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode,” Nature, 238, 37-38 (1972).
Fujishima, A., T.N. Rao, and D.A. Tryk, “Titanium Dioxide Photocatalysis”, J. of Photochemistry and Photobiology C: Photochemistry Reviews, 1 (2000).
Fujiwara, H., H. Hosokawa, K. Murakoshi, Y. Wada, and S. Yanagida, “Effect of Surface Structures on Photocatalytic CO2 Reduction Using Quantized CdS Nanocrystallites,” J. of Physical Chemistry B, 101, 8270-8278 (1997).
Gerischer, H. “In Photocatalytic Purification and Treatment of Water and Air,” D.F. Ollis, H. Al- Ekabi, Eds., Elsevier: Amsterdam (1993).
Getoff, N., G. Scholes, and J. Weiss, “Reduction of Carbon Dioxide in Aqueous Solutions Under the Influence of Radiation,” Tetrahedron Letters, 1(39), 17-23 (1960).
Goren, Z. and I. Willner, “Selective Photoreduction of CO2/HCO3- to Formate by Aqueous Suspensions and Colloids of Pd-TiO2,” The J. of Physical Chemistry, 94, 3784-3790 (1990).
Guo, L., W. Yan, H. Yang, Y. Liu, H. Liu, and L. Zhao, “Hydrogen Production by Photosplitting Water under Visible Light with a Series of Composite Photocatalysts,” The Symposium (#71) On Clean And Green Technologies For A Sustainable Environment, Paper ID# 868, Honolulu, Hawaii, USA (2005).
Halmann, M., “Photochemical Fixation of Carbon Dioxide,” edited by M. Gratzel, Energy Resources through Photochemistry and Catalysis, 1st ed., Academic press, New York, 507 (1983).
He M.Y. and J.G. Ekerdt, “Infrared Studies of the Adsorption of Synthesis Gas on Zirconium Dioxide,” J. of Catalysis, 87, 381-388 (1984).
Henglein, A., “Small-particles Research: Physicochemical Properties of Extremely Small Colloidal Metal and Semiconductor Particles,” Chemical Reviews, 89, 1861-1873 (1989).
Henglein, A., M. Gutierez, and C. Fisher, “Berichte Der Bunsen-Gesellschaft Fur,” Physikalische Chemie, 88, 1704 (1984).
Herrmann, J.M., “Heterogeneous Photocatalysis: Fundamentals and Applications to the Removal of Various Types of Aqueous Pollutants,” Catalysis Today, 53, 115-129 (1999).
Heuer, A.H., N. Claussen, W.M. Kriven, and M. Ruhle, “Stability of Tetragonal ZrO2 Particles in Ceramic Matrices,” J. of the American Ceramic Society, 65(12), 642-650, (1982).
Hinogami, R., Y. Nakamura, S. Yae, and Y. Nakato, “An Approach to Ideal Semiconductor Electrodes for Efficient Photoelectrochemical Reduction of Carbon Dioxide by Modification with Small Metal Particles,” J. of Physical Chemistry B, 102, 974-980 (1998).
Hirao, T., S. Watabe, M. Tubono, and K. Kitagawa, “Studies on Dispersion of Refrigerant Composition for Multi-air Conditioners with Non-azeotropic Refrigerant Mixture”, Technical Review, 35, 36-40 (1998).
Hofstadler, K., and R. Bauer, “New Reactor Design for Photocatalytic Wastewater Treatment with TiO2 Immobilized on Fused-Silica Glass Fibers: Photomineralization of 4-Chlorophenol,” Environmental Science and Technology, 28, 670-674 (1994).
Hori, H., O. Ishitani, K. Koike, F. P. A. Johnson, and T. Ibusuki, “Efficient Carbon Dioxide Photoreduction by Novel Metal Complex and Its Reaction Mechanisms,” Energy Conversion and Management, 36, 621-624 (1995).
Howe, R.F. and M. Gratzel, “EPR Study of Hydrated Anatase Under UV Irradiation,” The J. of Physical Chemistry, 91, 3906-3909 (1987).
Hugenschmidt, M.B., L. Gamble, and C.T. Campbell, “The Interaction of H2O with a TiO2(110) Surface,” Surface Science, 302, 329-340 (1994).
Hung, C.H., “Gas-phase photocatalytic degradation of trichloroethylene and formation of reaction products on immobilized titanium dioxide,” Ph. D. Dissertation, Purdue Univ (1995).
Hung, C.H. and B.J. Marinas, “Role of Chlorine and Oxygen in the Photocatalytic Degradation of Trichloroethylene Vapor on TiO2 Films,” Environmental Science and Technology, 31, 562-568 (1997a).
Hung C.H. and B.J. Marinas, “Role of water in the photocatalytic degradation of trichloroethylene vapor on TiO2 films,” Environmental Science and Technology, 31, 1440-1445 (1997b).
Hurum, D.C., A.G. Agrios, K.A. Gray, T. Rajh, and M.C. Thurnauer, “Explaining the Enhanced Photocatalytic Activity of Degussa P25 Mixed-Phase TiO2 Using EPR,” J. of Physical Chemistry B, 107, 4545-4549 (2003).
Ichikawa, S., “Chemical Conversion of Carbon Dioxide by Catalytic Hydrogenation and Room Temperature Photoelectrocatalysis,” Energy Conversion and Management, 36, 613-616 (1995).
Ikeue, K., H. Yamashita, M. Anpo, and T. Takewaki, “Photocatalytic Reduction of CO2 with H2O on Ti-β Zeolite Photocatalysts: Effect of the Hydrophobic and Hydrophilic Properties,” J. of Physical Chemistry B, 105, 8350-8355 (2001).
Ikeue, K., S. Nazaki, M. Ogawa, and M. Anpo, “Characterization of Self-standing Ti-containing Porous Silica Thin Films and Their Reactivity for the Photocatalytic Reduction of CO2 with H2O,” Catalysis Today, 74, 241-248 (2002).
Inoue, H., H. Moriwaki, K. Maeda, and H. Yoneyama, “Photoreduction of Carbon Dioxide Using Chalcogenide Semiconductor Microcrystals,” J. of Photochemistry and Photobiology A: Chemistry, 86, 191-196 (1995).
Inoue, T., A. Fujishima, S. Konishi, and K. Honda, “Photoelectrocatalytic Reduction of Carbon Dioxide in Aqueous Suspensions of Semiconductor Powders,” Nature, 277, 637-638 (1979).
Ishibashi, K.I., A. Fujishima, T. Watanabe, and K. Hashimoto, “Quantum Yields of Active Oxidative Species Formed on TiO2 Photocatalyst,” J. of Photochemistry and Photobiology A: Chemistry, 134, 139-142 (2000).
Itoh M., H. Hattroi, and K. Tanabe, “The Acidic Properties of TiO2-SiO2 and Its Catalytic Activities for the Amination of Phenol, the Hydration of Ethylene and the Isomerization of Butane,” J. of Catalysis, 35, 225-231 (1974).
Jacob K.H., E. Knözinger and S. Benfer, “Chemisorption of H2 and H2-O2 on Polymorphic Zirconia,” J. of the Chemical Society, Faraday Transactions, 90, 2969-2975 (1994).
Jacoby, A.W., D.M. Blake, R.D. Noble, and C.A. Koval, “Kinetic of the Oxidation of Trichlorothylene in Air Via Heterogeneous Photocatalysis,” J. of Catalysis, 157, 87-96 (1995).
Jaeger, C.D. and A.J. Bard, “Spin Rapping and Electron Spin Resonance Detection of Radical Intermediates in the Photodecomposition of Water at TiO2 Particulate System,” The J. of Physical Chemistry, 83, 3146 (1979).
Kakaumoto, T., “A Theoretical Study for the CO2 Hydrogenation Mechanism on Cu/ZnO Catalyst,” Energy Conversion and Management, 36, 661-664 (1995).
Kaneco, S., H. Kurimoto, K. Ohta, T. Mizuno, and A. Saji, “Photocatalytic Reduction of CO2 Using TiO2 Powders in Liquid CO2 Medium,” J of Photochemistry and Photobiology A: Chemistry, 109, 59-63 (1997).
Kaneco, S., Y. Shimizu, K. Ohta, T. Mizuno, “Photocatalytic Reduction of High Pressure Carbon Dioxide Using TiO2 Powders with a Positive Hole Scavenger,” J of Photochemistry and Photobiology A: Chemistry, 115, 223-226 (1998).
Kato, K., “Synyhesis of TiO2 Photocatalyst with High Activity by the Alkoxide Method,” in Photocatalytic Purification and Treatment of Water and Air, D.F. Ollis, H. Al-Ekabi, Eds., Elsevier: Amsterdam, 809 (1993)
Kobayakawa, K., C. Sato, Y. Sato, and A. Fujishima, “Continuous-flow photoreactor packed with titanium dioxide immobilized on large silica gel beads to decompose oxalic acid in excess water,” J. of Photochemistry and Photobiology A: Chemistry, 118, 65-69, 1998.
Kohno Y., T. Yamamoto, T. Tanaka, and T. Funabiki, “Photoenhanced Reduction of CO2 by H2 over Rh/TiO2 Characterization of Supported Rh Species by Means of Infrared and X-ray Absorption Spectroscopy,” J. of Molecular Catalysis A: Chemical, 175, 173-178 (2001).
Kohno, Y., H. Hayashi, S. Takenaka, T. Tanaka, T. Funabiki, and S. Yoshida, “Photo-enhanced Reduction of Carbon Dioxide with Hydrogen over Rh/TiO2,” J. Photochemistry and Photobiology A: Chemistry, 126, 117-123 (1999).
Kohno, Y., T. Tanaka, T. Funabiki, and S. Yoshida, “Identification and Reactivity of a Furface Intermediate in the Photoreduction of CO2 with H2 over ZrO2,” J. of the Chemical Society, Faraday Transactions, 94, 1875-1880 (1998).
Kohno, Y., T. Tanaka, T. Funabiki, and S. Yoshida, “Photoreduction of Carbon Dioxide with Hydrogen over ZrO2,” Chemistry Communication, 841-842 (1997).
Kohno, Y., T. Tanaka, T. Funabiki, and S. Yoshida, “Reaction Mechanium in the Photoreduction of CO2 with CH4 over ZrO2,” Physic Chemistry Chemistry Physic, 2, 5302-5307 (2000).
Kondo J., H. Abe, Y. Sakata, K. Maruya, K. Domen and T. Onishi, “Infrared Studies of Adsorbed Species of H2, CO and CO2 over ZrO2,” J. Chem. Soc., Faraday Trans. 1, 84, 511-519 (1988).
Kondo J., Y. Sakata, K. Domen, K. Maruya and T. Onshi, “Infrared Study of Hydrogen Adsorbed on ZrO2,” J. Chem. Soc., Faraday Trans., 86, 397-401 (1990).
Ku, Y., R.M. Leu, and K.C. Lee, “The Effect of Dissolved Oxygen on the Treatment of 2-Chlorophenol in Aqueous Solution by UV/TiO2 Process,” J. of Chinese Institute of Environmental Engineering, 6, 43-49 (1996).
Ku, Y., W.-H. Lee and W. Wang, “Photocatalytic Reduction of Carbon Dioxide in Gas Steams by UV/TiO2 Process,” J. of the Chinese Institute of Environmental Engineering, 13, 243-249 (2003).
Kurtz, R.L., R. Stockbauer, T.E. Madey, E. Roman, and J.L. De Segovia, “Synchrotron Radiation Studies of H2O Adsorption on TiO2(110),” Surface Science, 218, 178-200 (1989).
Kyle, B.G., “Chemical and Process Thermodynamics,” 3rd ed., Prentice-Hall (1999).
Lai, S.Y., W.X. Pan, and F.N. Ching, “Catalytic Hydrolysis of Dichlorodifluoromethane (CFC-12) on Unpromoted and Sulfate Promoted TiO2-ZrO2 Mixed Oxide Catalysts,” Applied Catalysis B: Environmental, 24, 207-217 (2000).
Laidler, K.J. and J.H. Meiser, “Physical Chemistry”, John Wiley & Sons, Inc. (1982).
Lewis, N.S., “An Analysis of Charge Transfer Rate Constants for Semiconductor/Liquid Interfaces,” Annual Review of Physical Chemistry, 42, 543-580 (1991).
Lim, T.H., S.M. Jeong, S.D. Kim, and J. Gyenis, “Photocatalytic Decomposition of NO by TiO2 Particles,” J. of Photochemistry and Photobiology A: Chemistry, 134, 209-217 (2000).
Linsebigler, A.L., G. Lu, and J.T. Yates, “Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results,” Chemical Reviews, 95, 735-758 (1995).
Liu, B.J., T. Torimoto, and H. Yoneyama, “Photocatalytic Reduction of CO2 Using Surface-modified CdS Photocatalysts in Organic Solvents,” J. of Photochemistry and Photobiology A: Chemistry, 113, 93-97 (1998).
Liu, B.J., T. Torimoto, H. Matsumoto, and H. Yoneyama, “Effect of Solvents on Photocatalytic Reduction of Carbon Dioxide Using TiO2 Nanocrystal Photocatalyst Embedded SiO2 Matrics,” J. of Photochemistry and Photobiology A: Chemistry, 108, 187-192 (1997).
Luo, Y. and D.F. Ollis, “Heterogeneous Photocatalytic Oxidation of Trichlorethylene and Toluene Mixture in Air: Kinetic Promotion and Inhibition, Time-dependent Catalyst Activity,” J. of Catalysis, 163, 1-11 (1996).
Maehashi, T., K. Maruya, K. Domen, K. Aiko, and T. Onishi, “Selective Formation of Iso-butene from Carbon Monoxide and Hydrogen over Zirconium Oxide Catalyst,” Chemistry Letters, 13, 747-748 (1984).
Martin, S.T., H. Herrmann, W. Choi, and M.R. Hoffmann, “Time-resolved Microwave Conductivity,” J. of the Chemical Society, Faraday Transactions, 90, 3315-3322 (1994).
Matsumoto, Y., M. Obata, and J. Hombo, “Photocatalytic Reduction of Carbon Dioxide on P-tape CaFe2O4 Powder,” The J. of Physical Chemistry, 98, 2950-2951 (1994).
Matthews, R.W., “Kinetics of Photocatalytic Oxidation of Organic Solutes over Titanium Dioxide,” J. of Catalysis, 111, 264-272 (1988).
Mayer, J.T., U. Diebold, T.E. Madey, and E. Garfunkel, “Titanium and Reduced Overlayers on Titanium Dioxide (110),” J. of Electron Spectroscopy and Related Phenomena, 73, 1-11 (1995).
McRae, G.J., “A Simple Procedure for Calculating Atmospheric Water Vapor Concentration.” J. of Air Pollution Control Association, 30, 394-396 (1980).
Minuno, T., K. Adachi, K. Ohta, and A. Saji, “Effect of CO2 Pressure on Photocatalytic Reduction of CO2 Using TiO2 in Aqueous Solutions,” J. of Photochemistry and Photobiology A: Chemistry, 98, 87-90 (1996).
Morterra, C., “An Infrared Spectroscopic Study of Anatase Properties,” J. of the Chemical Society, Faraday Transactions 1, 84, 1617-1637 (1988).
Nakamura, R. and Y. Nakata, “Primary Intermediates of Oxygen Photoevolutin Reaction on TiO2 (Rutile) Particles, Revealed by in Situ FTIR Absorption and Photoluminescence Measurements,” J. of The American Chemical Society, 126, 1290-1298 (2004).
Nakamura, R., A. Imanishi, K. Murakoshi, and Y. Nakato, “In Situ FTIR Studies of Primary Intermediates of Photocatalytic Reactions on Nanocrystalline TiO2 films in Contact with Aqueous Solutions,” J. of The American Chemical Society, 125, 7443-7450 (2003).
Nakano Y., T. Iizuka, H. Hattori, and K. Tanabe, “Surface Properties of Zirconium Oxide and Its Catalytic Activity for Isomerization of 1-Butene,” J. of Catalysis, 57, 1-10 (1979).
Nakano Y., T. Yamaguchi, and K. Tanabe, “Hydrogenation of Conjugated Dienes Over ZrO2 by H2 and Cyclohexadiene,” J. of Catalysis, 80, 307-314 (1983)
Nimlos, M.R., E.J. Wolfrum, M.L. Brewer, J.A. Fennell, and G.B. Bintner, “Gas-ghase Heterogeneous Photocatalytic Oxidation of Ethanol: Pathway and Kinetic Modeling,” Environmental Science and Technology, 30, 3102-3-3110 (1996).
Nishiwaki K., N. Kakuta, A. Ueno, and H. Nakabayashi, “Generation of Acid Sites on Finely Divided TiO2,” J. of Catalysis, 118, 498-501 (1989).
Nomura, N., T. Tagawa, and S. Goto, “In Situ FTIR Study on Hydrogenation of Carbon Dioxide over Titania-supported Copper Catalysts,” Applied Catalysis A: General, 166, 321-326 (1998).
Nosaka, Y. and M.A. Fox, “Kinetics for Alectron Transfer From Laser-pulse- irradiated Colloidal Semiconductors to Adsorbed Methylviologen Dependence of the Quantum Yield on Incident Pulse Width”, The J. of Physical Chemistry, 92, 1893-1897 (1988).
Obee, T.N. and R.T. Brown, “TiO2 Photocatalysis for Indoor Air Applications: Effects of Humidity and Trace Contaminant Levels on the Oxidation Rates of Formaldehyde, Toluene, and 1,3-Butadiene,” Environmental Science and Technology, 29, 1223-1231 (1995).
Obee, T.N. and S.O. Hay, “Effects of Moisture and Temperature on the Photooxidation of Ethylene on Titania,” Environmental Science and Technology, 31, 2034-2038 (1997).
Ohta, K., A. Hasimoto and T. Mizuno, “Electrochemical Reduction of Carbon Dioxide by the Use of Copper Tube Electrode,” Energy Conversion and Management, 36, 625-628 (1995).
Onishi T., H. Abe, K. Maruya and K. Domen, “I.r. Spectra of Hydrogen Adsorbed on ZrO2,” J. Chem. Soc. Chem. Commun. 617-618 (1985).
Ouyang, F., J.N. Kondo, K. Maruya and K. Domen, “IR Study on H/D Isotope Exchange Reactions of Formate and Methoxy Species with D2 on ZrO2,” J. of the Chemical Society, Faraday Transactions, 93, 169-174 (1997).
Park, H.K., D.K. Kim, and C.H. Kim, “Effect of Solvent on Titania Particle Formation and Morphology in Thermal Hydrolysis of TiCl4,” J. of the American Ceramic Society, 80, 743-749 (1997).
Peral, J. and D.F. Ollis, “Heterogeneous Photocatalytic Oxidation of Gas-phase Organics for Air Purification : Acetone, 1-Butanol, Butyraldehyde, Formaldehyde, and m-Xylene Oxidation,” J. of Catalysis, 136, 554-545 (1992).
Pralrie, M.R., L.R. Evans, B.M. Stange, and S.L. Martinez, “An Investigation of TiO2 Photocatalysis for the Treatment of Water Contaminated with Metals and Organic Chemicals,” Environmental Science and Technology, 27, 1776-1782 (1993).
Premkumar, J. and R. Ramaraj, “Photocatalytic Reduction of Carbon Dioxide to Formic Acid at Porphyrin and Phthalocyanine Adsorbed Nafion Membranes,” J. of Photochemistry and Photobiology A: Chemistry, 110, 53-58 (1997).
Ramamurthy, V., “Photochemistry in Organized and Constrained Media,” VCH: New York (1991).
Rasko, J., “FTIR Study of the Photoinduced Dissociation CO2 on Titania-supported Noble Metals,” Catalysis Letters, 56, 11-15 (1998).
Richards, J.M., “A Simple Expression for the Saturation Vapour Pressure of Water in the Range -50 to 140°C,” J. of Physics D: Applied Physics, 4, L15-L18 (1971).
Rothenberger, G., J. Moser, M. Gratzel, N. Serpone, and D.K. Sharma, “Charge Carrier Trapping and Recombination Dynamics in Small Semiconductor Particles,” J. of The American Chemical Society, 107, 8054-8059 (1985).
Russel, P.G., N. Kovac, S. Sirinivasan, and M. Steinberg, “The Electrochemical Reduction of Carbon Dioxide, Formic Acid, and Formaldehyde,” J. of the Electrochemical Society, 124, 1329-1338 (1977) .
Saito, M., T. Fujitani, I. Takahara, T. Watanabe, M. Takeuchi, Y. Kanai, and T. Kakumoto, “Development of Cu/ZnO-based High Performance Catalysts for Methanol Synthesis by CO2 Hydrogenation,” Energy Conversion and Management, 36, 577-580 (1995).
Sakai, H., H. Kawahara, M. Shimazaki, and M. Abe, “Preparation of Ultrafine Titanium Dioxide Particles Using Hydrolysis and Condensation Reactions in the Inner Aqueous Phase of Reversed Micelles: Effect of Alcohol Addition,” Langmuir, 14, 2208-2212 (1998).
Sakata, T. and T. Kawai, “Photosynthesis and Photocatalysis with Semiconductor Powders,” edited by M. Gratzel, Energy Resources through Photochemistry and Catalysis, 1st ed., Academic press, New York, 331 (1983).
Saladin, F. and I. Alxneit, “Temperature Dependence of the Photochemical Reduction of CO2 in the Presence of H2O at the Solid/gas Interface of TiO2,” J. of the Chemical Society, Faraday Transactions, 93, 4159-4163 (1997).
Saladin, F., L. Forss, and I. Kamber, “Photosynthesis of CH4 at a TiO2 Surface from Gaseous H2O and CO2,” J. of the Chemical Society, Chemical Communications, 533-534 (1995).
Sanjinés, R., H. Tang, H. Berger, F. Gozzo, G. Margaritondo, and F. Lévy, “Electronic Structure of Anatase TiO2 Oxide,” J. of Applied Physics, 75, 2945-2951 (1994).
Sayama, K., and H. Arakawa, “Photocatalytic Decomposition of Water and Photocatalytic Reduction of Carbon Dioxide over Zirconia Catalyst,” The J. of Physical Chemistry, 97, 531-533 (1993).
Schiavello, M. and A. Sclafani, “Thermodynamic and Kinetic Aspects in Photocatalysis,” in Photocatalysis Fundamental and Applications, edited by N. Serpone, E. Pelizztti, John Wiley & Sons, New Yark (1989).
Schilke, T.C., I.A. Fisher, and A.T. Bell, “In Situ Infrared Study of Methanol Synthesis from CO2/H2 on Titania and Zirconia Promoted Cu/SiO2,” J. of Catalysis, 184, 144-156 (1999).
Sclafani, A. and J.H. Herrmann, “Comparison of the Photoelectronic and Photocatalytic Activities of Various Anatase and Rutile Forms of Titania in Pure Liquid Organic Phases and in Aqueous-Solutions”, The J. of Physical Chemistry, 100, 13655-13661 (1996).
Sclafani, A., L. Palmisano, and M. Schiavello, “Influence of the Preparation Methods of TiO2 on the Photocatalytic Degradation of Phenol in Aqueous Dispersion,” The J. of Physical Chemistry, 94, 829-832 (1990).
Serpone, N., D. Lawless, and R. Khairutdinov, “Size Effects on the Photophysical Properties of Colloidal Anatase TiO2 Particles: Size Quantization or Direct Transitions in This Indirect Semiconductor,” The J. of Physical Chemistry, 99, 16646-16654 (1995).
Serpone, N., R. Terzian, C. Minero, and E. Pelizztti, “Heterogeneous Photocatalyzed Oxidation of Phenol, Cresols, and Fluorophenols in TiO2 Aqueous Suspensions”, in photosensitive metal-organic systems: mechanistic principles and applications, American Chemical Society, Washington (1993).
Sharma, B. K., R. Ameta, J. Kaur, and S. C. Ameta, “Photocatalytic Reduction of Carbon Dioxide over Ferrocyanide-coated titanium Dioxide Powder,” International J. of Energy Research, 21, 923-929 (1997).
Shen, K.P. and M.H. Li, “Solubility of Carbon Dioxide in Aqueous Mixtures of Monoethanolamine with Methyldiethanolamine,” J. Chem. Eng., 37, 96-100 (1992).
Slamet, H.W. Nasution, E. Purnama, S. Kosela, and J. Gunlazuardi, “Photocatalytic Reduction of CO2 on Copper-doped Titania Catalysts Prepared by Improved-impregnation Method,” Catalysis Communications, 6, 313-319 (2005).
Stumn, W., “Chemistry of the Solid-Water Interface,” John Wiley & Sons, New York (1992).
Subrahmanyam, M., S. Kaneco, and N. Alonso-Vante, “A Screening for the Photoreduction of Carbon Dioxide Supported on Metal Oxide Catalysts for C1-C3 Selectivity,” Applied Catalysis B: Environmental, Vol.23, pp.169-174, 1999.
Sugawa, S., K. Sayama, K. Okabe, and H. Arakawa, “Methanol Synthesis from CO2 and H2 over Silver Catalyst,” Energy Conversion and Management, 36, 665-668 (1995).
Sumita, T., T. Yamaki, S. Yamamoto, and A. Miyashita, “Photo- induced Surface Charge Separation of Highly Oriented TiO2 Anatase and Rutile Thin Films,” Applied Surface Science, 200, 21-26 (2002).
Sun, L., and J.R. Bolton, “Determination of the Quantum Yield for the Photochemical Generation of Hydroxyl Radicals in TiO2 Suspensions,” The J. of Physical Chemistry, 100, 4127-4134 (1996).
Suzuki, T., A. Skaoda, and M. Suzuki, “Recovery of Carbon Dioxide from Stack Gas by Piston-Driven Ultra-Rapid PSA,” J. of Chemical Engineering of Japan, 30, 1026-1033 (1997).
Suzuki, Y., “The Important Role of Organic Matter Cycling for the Biological Fixation of CO2 in Coral Reefs,” Energy Conversion and Management, 36, 737-740 (1995).
Szczepankiewicz, S.H., A.J. Colussi, and M.R. Hoffmann, “Infrared Spectra of Photoinduced Species on Hydroxylated Titania Surfaces,” J. of Physical Chemistry B, 104, 9842-9850 (2000).
Tajima, M., M. Niwa, Y. Fujii, Y. Koinuma, R. Aizawa, S. Kushiyama, S. Kobayashi, K. Mizuno, and H. Ohuchi, “Decomposition of Chlorofluorocarbons on TiO2-ZrO2,” Applied Catalysis B: Environmental, 12, 263-276 (1996).
Tajima, M., M. Niwa, Y. Fujii, Y. Koinuma, R. Aizawa, S. Kushiyama, S. Kobayashi, K. Mizuno, and H. Ohuchi, “Decomposition of Chlorofluorocarbons on W/TiO2-ZrO2,” Applied Catalysis B: Environmental, 14, 97-103 (1997).
Tanabe K., H. Hattori, T. Sumiyoshi, K. Tamaru, and T. Kondo, “Surface Property and Catalytic Activity of MgO-TiO2,” J. of Catalysis, 53, 1-8 (1978).
Tanaka T., H. Kumagai, H. Hattori, M. Kudo, and S. Hasegawa, “Generation of Basic Sites on TiO2 by Reduction with H2,” J. of Catalysis, 127, 221-226 (1991).
Tanaka, T., K. Teramura, and T. Funabiki, “Photo-oxidation of Cyclonhexane over Alumina-supported Vanadium Oxide Catalyst,” J. of Molecular Catalysis A: Chemical, 165, 299-301 (2001).
Tomoyuki I., “Highly Effective Compounds by Using Newly Developed Multi-Functional Composite Catalysts,” Asian-Pacific Conference on Industrial Waste Minimization and Sustainable Development’97, Taipei, 565-575 (1997).
Tseng, I.H., W.H. Chang, and C.S. Jeffrey Wu, “Photoreduction of CO2 Using Sol–gel Derived Titania and Titania-supported Copper Catalysts,” Applied Catalysis B: Environmental, 37, 37-48 (2002).
Ulagappan, N. and H. Frei, “Mechanistic Study of CO2 Photoreduction in Ti Silicalite Molecular Sieve by FT-IR Spectroscopy,” J. of Physical Chemistry A, 104, 7834-7839 (2000).
Wang, K.H., H.H. Tsai, and Y.H. Hsieh, “The Kinetics of Photocatalytic Degradation of Trichloroethylene in Gas Phase over TiO2 Supported on Glass Bead,” Applied Catalysis B: Environmental, 17, 313-320 (1998).
Wang, W. and Y. Ku, “Photocatalytic Degradation of Gaseous Benzene in Air Streams by Using an Optical Fiber Photoreactor”, J. of Photochemistry and Photobiology A: Chemistry, 159, 47-59 (2003).
Watanabe, T., A. Kitamura, E. Kojima, C. Nakayama, K. Hashimoto, and A. Fujishima, “Photocatalytic Activity of TiO2 ThinFilm Under Room Light,” The First International Conference on TiO2 Photocatalytic Purification and Treatment of Water and Air, Canada (1992).
Wu, J.C.S., H.-M. Lin, C.-L. Lai, “Photo Reduction of CO2 to Methanol Using Optical-fiber Photoreactor,” Applied Catalysis A: General, 296, 194-200 (2005)
Yamaguchi T., “Recent Progress in Solid Superacid,” Applied Catalysis, 61, 1-25 (1990).
Yamanaka T., and K. Tanabe, “A Representative Parameter, H0,max, of Acid-base Strength on Solid Metal-oxygen Compounds,” The J. of Physical Chemistry, 80, 1723-1727 (1976).
Yanagida, S., T. Ogata, Y. Yamamoto, Y. Wada, K. Murakoshi, M. Kusaba, N. Nakashima, A. Ishida, and S. Takamuku, “A Novel CO2 Photoreduction System Consisting of Phenazine as a Photosensitizer and Cobalt Cyclam as a CO2 Scavenger,” Energy Conversion and Management, 36 , 601-604 (1995).
Yanagisawa, Y., “Oxygen Exchange Between CO2 and Metal (Zn and Ti) Oxide Powders,” Energy Conversion and Management, 36, 443-446 (1995).
Yoneyama, H., “Photoreduction of Carbon Dioxide on Quantized Semiconductor Nanoparticles in Solution,” Catalysis Today, 39, 169-175 (1997).
Yu, J., X. Zhao, and Q. Zhao, “Photocatalytic Activity of Nanometer TiO2 Thin Flims Prepared by the Sol-gel Method,” Materials Chemistry and Physics, 69, 25-29 (2001).
Yuan, C.S. and C.H. Hung, “Gas-phase Photocatalytic Degradation of Trichloroethylene on Pyrex Pellets Immobilized with Anatase TiO2,” J. of Chinese Institute of Environmental Engineering, 8, 11-21 (1998).
Zhang, S., N. Fujii, and Y. Nosaka, “The Dispersion Effect of TiO2 Loaded over ZSM-5 Zeolite,” J. of Molecular Catalysis A: Chemical, 129, 219-224 (1998).
Zhang, S., T. Kobayashi, Y. Nosaka, and N. Fujii, “Photocatalytic Property of Titanium Silicate Zeolite,” J. of Molecular A: Chemical, 106, 119-123 (1996).
Zhang, S.G., Y. Ichihashi, H. Yamashita, T. Tatsumi, and M. Anpo, “Photoluminescence Property of Titanium Silicalite-2 Catalyst and Its Photocatalytic Reactivity for the Direct Decomposition of NO at 295K,” Chemistry Letters, 895-896 (1996).
Zou, Z., K. Sayama, and H. Arakawa, “Direct Splitting of Water Under Visible Light Irradiation with an Oxide Semiconductor Photocatalyst,” Nature, 414, 625-627 (2001).
王文,“以光纖反應器進行紫外線光觸媒程序分解氣相中苯之研究”,國立台灣大學化學工程研究所博士論文(2003)。
王亞男,“柳杉、樟樹對溫室氣體二氧化碳固定效益之研究”,國科會/環保署科技合作研究計畫報告,NSC 89-EPA-Z-110-001(2000)。
王國華、謝永旭、趙鵬文,“以二氧化鈦薄膜進行三氯乙烷之光催化分解反應研究”,第十六屆空氣污染控制技術研討會論文集(1999)。
王敏盈、陳伯中、曹恆光,“培養藻類於新型光化學生物反應器以進行二氧化碳之固定化”,國科會/環保署科技合作研究計畫報告,NSC 88-EPA-Z-005-004(1999)。
何咨泓,“二氧化碳資源化利用超臨界相甲醇合成反應新製程開發”,長庚大學化學工程研究所碩士論文(2000)。
何淑珠、顧洋,“以紫外線/二氧化鈦光還原程序回收二氧化碳反應行為之研究”,第十四屆空氣污染控制技術研討會論文集,第738- 742頁(1997)。
吳政峰,“溫度與濕度效應對光催化分解氣相揮發性有機物之影響”,國立中山大學環境工程研究所博士論文(2004)。
吳紀聖,“從全球碳質量與能量均衡的觀點看待二氧化碳溫室效應”,台大工程學刊,第84期,第103-110頁(2002)。
吳榮宗,“工業觸媒概論”,黎明書局(1985)。
呂錫民,“淺談溫室氣體中的主角-二氧化碳”,能源報導,第14-16頁(2008/2)。
呂卦南,“紅外線光譜研究在Pt/TiO2觸媒上之NO與CO反應”,康寧學報,第9期,第57-77頁(2007)。
李秉傑、邱宏明、王奕凱譯,“非均勻係催化原理與應用”,渤海堂出版社,第37-130頁(1993)。
李柏澍,“凝膠衍生穩定化氧化鋯之製備與特性分析”,淡江大學化學工程與材料工程學系碩士論文(2006)。
林有銘,“無所不在的環境清潔工-奈米光觸媒”,科學發展,第408期,第24-31頁(2006)。
林宏明、吳紀聖,“光催化還原二氧化碳生產再生能源”,工業溫室氣體減量發展簡訊-減量技術,第23期,第1-6頁(2006)。
林鎮國,“二氧化碳的儲存”,科學發展,第413期,第28-33頁(2007)。
邱瑞焜,“淺談二氧化碳海洋隔離法”,能源報導,第24-26頁(2007/4)。
宣大衡、范振暉,“二氧化碳地質封存所面對之問題”,工業污染防治,第102期,第109-126頁(2007)。
施信民,“飛灰/氫氧化鈣吸收劑吸收二氧化碳之研究”,國科會/行政院環境保護署研究計畫報告,NSC 89-EPA-Z-002-014(2000)。
洪雨利,“溶膠凝膠法製備奈米二氧化鈦觸媒進行光催化還原二氧化碳之批次反應研究”,國立中山大學環境工程研究所碩士論文(2004)。
洪崇軒、吳政峰、袁中新、羅卓卿,“環狀揮發性有機物光化分解反應特性探討–溫度效應”,第十七屆空氣污染控制技術研討會論文集,第109-114頁(2000)。
洪楨琳,“溫度與濕度效應對光催化分解苯蒸氣之影響研究”,國立中山大學環境工程研究所碩士論文(2001)。
胡振國譯,“半導體原件-物理與技術”,全華圖書公司(1989)。
徐玉清譯,“人工光合作用之夢實現”,牛頓科學雜誌,第234期,第26-33頁(2003)。
馬振基、阮韶銘、張海瑞、羅國峰,“二氧化碳回收再利用之研究”,工業污染防治,第88期,第162-179頁(2003)。
張志玲,“原來光觸媒是這麼回事”,科學發展,第373期,第38-43頁(2004)。
張富龍、林畢修,“利用海洋微細藻類固定二氧化碳及再資源化應用”,台灣環保產業雙月刊,第30期,第11-13頁(2005)。
莊英良,“以紫外線/二氧化鈦程序分別處理含六價鉻及亞素靈水溶液反應行為之研究”,國立台灣科技大學化學工程研究所碩士論文(1997)。
陳郁文,“奈米金屬在觸媒反應之應用四年計畫-第一年”,國立中央大學奈米觸媒研究中心,經濟部九十二年度學界開發產業技術細部計畫書(計畫編號 92-EC-17-A-09-S1-002)(2003)。
喬世豪,“氧化鋯氧化層之磁滯現象與直/交流可靠性研究”,國立交通大學電子工程系碩士論文(2001)。
程麗純,“溶凝膠法製備nano-pore氧化鋯薄膜”,國立臺灣大學化學工程學研究所碩士論文(1999)。
黃大仁,“二氧化碳減量技術”,工業污染防治,第88期,第123-134頁(2003)。
黃君強,“溶凝膠法製備微孔型氧化鋯薄膜”,國立臺灣大學化學工程學研究所碩士論文(1997)。
黃啟峰,“二氧化碳與地球暖化”,科學發展,第413期,第6-12頁(2007)。
黃啟峰,“聯合國氣候變化綱要公約(UNFCCC)彈性發展機制(CDM)之趨勢分析”,氣候變化綱要公約全球資訊網-決策資訊報告(http://sd.erl.itri.org.tw/fccc/ch/dec_mk/cdm/cdm_fccc.pdf)(1999)。
黃朝偉,“原位紅外線偵測二氧化碳在光觸媒上之光催化反應”,國立臺灣大學化學工程學研究所碩士論文(2006)。
葉志揚,“以溶膠-凝膠法製備二氧化鈦觸媒及其性質鑑定”,國立臺灣大學化學工程學研究所碩士論文(2000)。
劉安治,“近紫外光/二氧化鈦光催化分解氣相中低濃度四氯乙烯之操作參數探討”,國立中山大學環境工程研究所碩士論文(1997)。
蔡秉昇,“溶凝膠法用於奈米級SiO2-TiO2光學薄膜製程之研究”,逢甲大學材料科學所碩士論文(2002)。
談駿嵩,“溫室氣體CO2回收與再利用技術”,工安環保報導,第23期(2004),http://www.ftis.org.tw/cpe/download/she/Issue23/ current23.htm
蕭德福,“以改質之TiO2光觸媒探討四氯乙烯分解率及礦化率之影響”,國立中山大學環境工程研究所碩士論文(2000)。
藤山鳥昭、橋本和仁、渡部俊也、“光觸媒之奧秘”,日本實業出版社(2000)。
藤鳩昭、橋本和仁、渡部俊也,張立群譯,“光清靜革命”,協志工業叢書(1997)。
顧洋、李婉惠,“以UV/TiO2程序光還原氣相二氧化碳反應行為之研究”,第十六屆空氣污染控制技術研討會論文集,第126-131頁(1999)。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code