Responsive image
博碩士論文 etd-0724109-144954 詳細資訊
Title page for etd-0724109-144954
論文名稱
Title
蓄熱式觸媒焚化處理揮發性有機物之研究
Treatment of Volatile Organic Compounds by a Regenerative Catalytic Oxidizer
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
303
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-06-09
繳交日期
Date of Submission
2009-07-24
關鍵字
Keywords
異丙醇、甲苯、土壤中揮發性有機物、氧化鋁觸媒、矽石觸媒、蓄熱式觸媒焚化
Regenerative catalytic oxidizer, Cu/Mn catalyst, Volatile organic compounds, Toluene, Gravel, Isopropyl alcohol, Aluminum oxide, Cu/Co catalyst
統計
Statistics
本論文已被瀏覽 5651 次,被下載 0
The thesis/dissertation has been browsed 5651 times, has been downloaded 0 times.
中文摘要
摘要
本研究前期先以異丙醇和甲苯為目標污染物,於實驗室中以觸媒焚化的方式並透過不同的操作參數來篩選具有高處理效率的觸媒。在後期將實驗室篩選出來之高效率觸媒再將其運用於蓄熱式觸媒焚化系統中,並以受油品污染之土壤污染場址為案例作進一步探討。本研究的成果共有七項摘錄如下:
1.Cu/Co及Cu/Mn矽石觸媒焚化處理氣相異丙醇
研究發現10% Cu/Co(6/4)觸媒對異丙醇擁有最佳之轉化率。當異丙醇進流濃度在2500 ppm以下時,焚化溫度至少為425℃,10% Cu/Co(6/4)矽石觸媒即可有95% 之轉化效率。經衰敗試驗及SEM等相關分析結果發現,10% Cu/Co(6/4)矽石觸媒在測試前後並無明顯之破損及活性衰退現象。
2.Cu/Mn氧化鋁觸媒焚化處理氣相甲苯
研究發現20% Cu/Mn觸媒對甲苯擁有最佳之焚化處理效率。當溫度提高至350℃時,空間流速對甲苯轉化效率的影響降低,其轉化效率皆可達到95% 以上。經衰敗試驗及SEM等相關分析結果發現,20% Cu/Mn氧化鋁觸媒在測試前後並無明顯之破損及活性衰退現象。
3.RCO系統焚化氣相甲苯
研究結果得知20% Cu/Mn氧化鋁觸媒於RCO系統中對甲苯有良好之焚化效果,在操作溫度為400℃時,即可達到96%,之處理效率;而此操作條件下之RTO之處理效率亦僅有25%。RCO之熱回收率會隨著進氣流量的增加而減少,但其TRE值約為89-93%,顯示有相當良好的熱回收率。
4.RTO系統焚化處理SVE尾氣揮發性有機物
研究發現RTO對VOCs之去除效率會明顯隨著進氣流量與VOCs進流濃度增加而減少,但當操作溫度為900℃以上時,皆有80%以上之去除效果。RTO溫度在800℃及900℃時,熱回收率大約分佈在86-90%之間。
5.RCO焚化處理SVE尾氣揮發性有機物(10% Cu/Co(6/4)矽石觸媒)
10% Cu/Co(6/4)矽石觸媒於RCO系統中現場處理VOCs的效果並不佳,雖然在其最佳操作條件下的處理效果可達65%,但整體而言之去除效果皆偏低。
6.RCO焚化處理SVE尾氣揮發性有機物(20% Cu/Mn 氧化鋁觸媒)
RCO系統(20% Cu/Mn 氧化鋁觸媒)在650℃的操作條件下,對於不同VOCs進流濃度的去除效率皆有良好的表現。RCO(20% Cu/Mn 氧化鋁觸媒)系統操作溫度650℃時,熱回收率大約分佈在90% 左右,有相當不錯熱回收率。衰敗試驗顯示20% Cu/Mn 氧化鋁觸媒有良好之穩定性。
7.RCO焚化處理SVE尾氣揮發性有機物(20% Cu/Mn 矽石觸媒)
RCO系統(20% Cu/Mn 矽石觸媒)在600℃的操作條件下,對於不同VOCs進流濃度的去除效率皆有95% 的表現。RCO系統(20% Cu/Mn 矽石觸媒)在不同操作情況下,其熱回收率大約分佈在90%以上,有相當不錯的熱回收率表現。衰敗試驗前後之20% Cu/Mn 矽石觸媒表面結構並無明顯之破損或燒結之情形。
Abstract
Abstract
Isopropyl alcohol(IPA)and toluene are extensively used in industry as solvents. They are all highly toxic to animals and humans. Accordingly, IPA and toluene are strongly associated with problems of VOCs. In first step catalytic incineration was adopted to decompose IPA and toluene in laboratory, and the second step for a pilot-scale regenerative catalytic oxidizer (RCO)were adopted to decompose mixture VOCs in real soil herein.
The screening test of catalytic activity and the influences of the operational parameters on IPA and toluene removal efficiencies were widely discussed through catalytic incinerations of IPA and toluene in laboratory. The more effective and cheaper catalysts through above discussions of catalytic incineration were selected. And they were utilized in an pilot scale RCO as follows to investigate their performance in VOCs oxidation and RCO operations in THC removal of contamination soils. The achievements of this study are summarized as follows:
(1)Cu/Mn and Cu/Co gravel catalytic incinerations of isopropyl alcohol
The results demonstrated that 10 wt% Cu0.6Co0.4 catalyst was the most effective because the CO2 yield reached 95 % under the following operating conditions; a temperature of 425oC, an inlet IPA concentration of 2500 ppm, an oxygen concentration of 21%, and a space velocity of 13500 hr-1. Additionally, the stability test results indicated that the 10 wt% Cu0.6Co0.4 catalyst exhibited excellent stability at both low and high conversion of IPA.
(2)20% Cu/Mn aluminum oxide catalytic incinerations of toluene
The conversion for toluene reached 95% when the Cu/Mn catalyst was used with a metal ratio of 1:1 and 20% loading at 350°C, an influent toluene concentration of 1000 ppm, oxygen concentration of 21%, a space velocity of 12000 hr-1, and relative humidity of 26%. The long-term test was proceeded for seven days at a constant influent toluene concentration of 1000 ppm, constant oxygen concentration of 21%, constant space velocity of 12000 hr-1 and constant relative humidity of 26%. The SEM results indicated the Cu/Mn catalyst was quite stable at 350℃.
(3)RCO testing for a copper/manganese catalyst of gaseous toluene
The Cu/Mn (20wt%) catalyst was selected as the best one, because it converted 95% of the toluene at 400℃. The results also indicating that the Cu/Mn catalyst was quite stable at 400℃.
(4) RTO treatment of VOCs with SVE system
The conversion for VOCs reached 80% at 900°C, an influent VOCs concentration of 450-2000 ppm and a gas flow rate of 0.5 m3/min.The Thermal Recovery Efficiency(TRE)was approximately 86-90% in a RTO operated at 800-900℃.
(5)RCO treatment of VOCs with SVE system(10 wt% Cu0.6Co0.4 gravel catalyst)
The 10 wt% Cu0.6Co0.4 gravel catalyst was the poverty active, because it converted 65% of the VOCs by SVE system operated at 650℃.
(6)RCO treatment of VOCs with SVE system(20% Cu/Mn aluminum oxide catalytst)
The 20% Cu/Mn aluminum oxide catalytic was the best choice, because it converted 95% of the VOCs at 650℃, an influent VOCs concentration of 450-10000 ppm and a gas flow rate of 0.5-1.5 m3/min. The SEM results indicated that the conversion of VOCs decay did not clearly vary at 650℃, also indicating that the Cu/Mn catalyst selected was quite stable. The TRE was approximately 90% in a RCO(20% Cu/Mn aluminum oxide catalytic)operated at 650℃.
(7)RCO treatment of VOCs with SVE system(20% Cu/Mn gravel catalytst)
The 20% Cu/Mn gravel catalytst was the best selection , because it converted 95% of the VOCs at 600℃, an influent VOCs concentration of 450-10000 ppm and a gas flow rate of 0.5-1.5 m3/min. The SEM results indicated that the conversion of VOCs decay did not clearly vary at 600℃, also indicating that the Cu/Mn catalyst selected was quite stable. The TRE was approximately 90% in a RCO(20% Cu/Mn gravel catalytic)operated at 600℃.
目次 Table of Contents
目 錄
頁數
謝誌 I
摘要 II
目錄 IX
圖目錄 XVIII
表目錄 XXX
第一章 緒論 1-1
1-1 研究緣起 1-1
1-2 研究目的及內容 1-3
第二章 文獻回顧 2-1
2-1 揮發性有機物(VOCs)介紹 2-1
2-1-1甲苯及異丙醇介紹 2-3
2-2土壤氣體抽除技術(Soil Vapor Extraction, SVE) 2-7
2-3 VOCs相關處理技術 2-7
2-3-1非破壞性處理技術 2-7
2-3-2破壞性處理技術 2-9
2-4 直接焚化法與蓄熱式焚化法 2-17
2-4-1直接焚化法 2-17
2-4-2蓄熱式焚化法 2-18
2-5 觸媒焚化法與蓄熱式觸媒焚化法 2-20
2-5-1觸媒焚化法 2-20
2-5-2蓄熱式觸媒焚化法 2-20
2-5-3影響蓄熱式觸媒焚化法及觸媒焚化處理效率之因素 2-21
2-5-3-1操作溫度 2-21
2-5-3-2空間流速 2-24
2-5-3-3 VOCs之組成與濃度 2-26
2-5-3-4觸媒特性 2-29
2-5-3-5觸媒之活性衰退 2-34
2-5-3-6蓄熱材料 2-38
2-5-3-7水氣與CO2之影響 2-41
2-6 觸媒介紹 2-43
2-6-1觸媒製備 2-45
2-6-2載體 2-49
2-6-3活性金屬 2-51
2-7 RCO系統之熱回收率與熱傳 2-54
2-7-1熱回收率 2-54
2-7-2熱傳 2-55
第三章 研究方法與實驗設備 3-1
3-1研究架構及實驗流程 3-1
3-1-1研究架構 3-1
3-1-2實驗流程 3-3
3-2 Cu/Co及Cu/Mn矽石觸媒焚化處理氣相異丙醇篩選測試 3-8
3-2-1 Cu/Co及Cu/Mn矽石觸媒製備及活性篩選 3-8
3-2-1-1矽石觸媒製備 3-8
3-2-1-2矽石活性篩選 3-10
3-2-2矽石觸媒焚化異丙醇操作參數探討 3-11
3-2-3矽石觸媒活性衰退試驗 3-12
3-2-4檢量線製作 3-12
3-3 Cu/Mn氧化鋁觸媒焚化處理氣相甲苯篩選測試 3-14
3-3-1氧化鋁觸媒製備及活性篩選 3-14
3-3-1-1氧化鋁觸媒製備 3-14
3-3-1-2 氧化鋁觸媒活性篩選 3-15
3-3-2氧化鋁觸媒焚化甲苯操作參數探討 3-16
3-3-3氧化鋁觸媒活性衰退試驗 3-17
3-3-4甲苯檢量線製作 3-17
3-4 RCO系統焚化氣相甲苯 3-19
3-4-1 20wt% Cu/Mn氧化鋁觸媒製備 3-19
3-4-2 RCO系統操作參數變化對甲苯焚化效能影響 3-20
3-4-3 RTO和RCO系統焚化氣相甲苯實驗步驟 3-21
3-5 RTO系統實廠測試 3-21
3-5-1 RTO系統實廠操作參數變化對處理效能影響 3-22
3-5-2 RTO系統實廠操作步驟 3-22
3-6 RCO系統之實廠測試 3-23
3-6-1 RCO系統觸媒製備 3-23
3-6-2 RCO系統實場操作參數變化對處理效能影響 3-26
3-6-3 RCO系統實廠操作步驟 3-26
3-6-4 RCO系統之最佳觸媒及成本效益 3-27
3-6-5 RCO系統衰敗測試 3-28
3-7 實驗設備 3-28
3-7-1觸媒焚化系統 3-28
3-7-2 RTO與RCO系統設備 3-32
3-7-3蓄熱材物理性質 3-36
3-7-4 觸媒物理性質 3-37
3-8 分析設備 3-39
3-9 研究用之試藥及氣體 3-42
第四章 結果與討論 4-1
4-1 Cu/Co及Cu/Mn矽石觸媒焚化處理氣相異丙醇 4-1
4-1-1 Cu/Co及Cu/Mn矽石觸媒活性篩選 4-1
4-1-2空白試驗(10% Cu/Co(6/4)矽石觸媒)4-7
4-1-3不同操作參數測試(10% Cu/Co(6/4)矽石觸媒) 4-9
4-1-3-1異丙醇進流濃度(10% Cu/Co(6/4)矽石觸媒) 4-9
4-1-3-2空間流速(10% Cu/Co(6/4)矽石觸媒)
4-11
4-1-3-3氧氣濃度(10% Cu/Co(6/4)矽石觸媒) 4-13
4-1-3-4焚化產物(10% Cu/Co(6/4)矽石觸媒) 4-15
4-1-3-5衰敗試驗(10% Cu/Co(6/4)矽石觸媒) 4-17
4-2 Cu/Mn氧化鋁觸媒焚化處理氣相甲苯 4-22
4-2-1 Cu/Mn氧化鋁觸媒活性篩選 4-22
4-2-2空白試驗(20% Cu/Mn氧化鋁觸媒) 4-26
4-2-3不同操作參數測試(20% Cu/Mn氧化鋁觸媒) 4-28
4-2-3-1甲苯進流濃度(20% Cu/Mn氧化鋁觸媒) 4-28
4-2-3-2空間流速(20% Cu/Mn氧化鋁觸媒) 4-30
4-2-3-3氧氣濃度(20% Cu/Mn氧化鋁觸媒) 4-32
4-2-3-4衰敗試驗(20% Cu/Mn氧化鋁觸媒) 4-34
4-3 RCO系統焚化氣相甲苯 4-38
4-3-1不同操作溫度焚化氣相甲苯(RCO與RTO系統) 4-38
4-3-2不同進流濃度焚化氣相甲苯(RCO與RTO系統) 4-40
4-3-3不同進氣流量焚化氣相甲苯(RCO與RTO系統) 4-42
4-3-4 RCO與RTO系統於不同操作條件下之壓損 4-44
4-3-5不同溫度下RCO 系統之爐床溫度分佈與熱回收率 4-46
4-4 RTO系統焚化處理SVE尾氣揮發性有機物 4-49
4-4-1 RTO系統不同進氣流量焚化VOCs 4-49
4-4-2 RTO系統不同進氣濃度焚化VOCs 4-54
4-4-3 RTO系統成本探討 4-57
4-4-3-1 RTO熱回收率和排氣溫差探討 4-57
4-4-3-2 RTO壓損探討 4-63
4-4-4 RTO床體溫度變化 4-66
4-5 RCO焚化處理SVE尾氣揮發性有機物(10% Cu/Co(6/4)矽
石觸媒) 4-72
4-5-1不同進氣流量(10% Cu/Co(6/4)矽石觸媒) 4-72
4-5-2不同進流濃度(10% Cu/Co(6/4)矽石觸媒) 4-77
4-6 RCO焚化處理SVE尾氣揮發性有機物(20% Cu/Mn 氧化鋁觸
媒) 4-85
4-6-1不同進氣流量(20% Cu/Mn 氧化鋁觸媒) 4-85
4-6-2不同進流濃度(20% Cu/Mn 氧化鋁觸媒) 4-90
4-6-3 RCO系統成本探討(20% Cu/Mn 氧化鋁觸媒) 4-99
4-6-3-1 RCO系統熱回收率和排氣溫差探討(20% Cu/Mn 氧
化鋁觸媒) 4-99
4-6-3-2 RCO壓損探討(20% Cu/Mn 氧化鋁觸媒)……4-104
4-6-4 RTO床體溫度變化(20% Cu/Mn 氧化鋁觸媒)
4-105
4-6-5 RCO衰敗試驗(20% Cu/Mn 氧化鋁觸媒)4-107
4-7 RCO焚化處理SVE尾氣揮發性有機物(20% Cu/Mn 矽石觸媒) 4-111
4-7-1不同進氣流量(20% Cu/Mn 矽石觸媒)4-111
4-7-2不同進流濃度(20% Cu/Mn 矽石觸媒)4-116
4-7-3 RCO系統成本探討(20% Cu/Mn 矽石觸媒4-125
4-7-3-1 RCO系統熱回收率和排氣溫差探討(20% Cu/Mn 矽石觸媒)4-125
4-7-3-2 RCO壓損探討(20% Cu/Mn 矽石觸媒)
4-130
4-7-4 RCO床體溫度變化(20% Cu/Mn 矽石觸媒)
4-131
4-7-5 RCO衰敗試驗(20% Cu/Mn 矽石觸媒)4-133
4-8成本評估4-137
4-8-1觸媒製備成本4-137
4-8-2 RCO與RTO系統操作費用評估4-139
第五章 結論與建議 5-1
5-1結論 5-1
5-1-1 Cu/Co及Cu/Mn矽石觸媒焚化處理氣相異丙醇 5-1
5-1-2 Cu/Mn氧化鋁觸媒焚化處理氣相甲苯 5-2
5-1-3 RCO系統焚化氣相甲苯 5-3
5-1-4 RTO系統焚化處理SVE尾氣揮發性有機物 5-4
5-1-5 RCO焚化處理SVE尾氣揮發性有機物(10% Cu/Co(6/4)
矽石觸媒) 5-5
5-1-6 RCO焚化處理SVE尾氣揮發性有機物(20% Cu/Mn 氧化
鋁觸媒) 5-5
5-1-7 RCO焚化處理SVE尾氣揮發性有機物(20% Cu/Mn 矽石
觸媒) 5-7
5-2建議 5-8
參考文獻 參-1




圖目錄
頁數
圖2-3-1 國內外有機廢氣處理技術分類 2-12
圖2-3-2 VOCs排氣處理方法其廢氣流量與濃度之關係 2-16
圖2-3-3 VOCs處理技術的相對處理成本與濃度之關係 2-16
圖2-4-1 RTO系統示意圖 2-19
圖2-5-1觸媒焚化的反應速率和反應溫度之關係 2-23
圖2-5-2 Fe、Al、Zn、Al2O3、stone及ZnCl2不同溫度之蓄熱量 2-39
圖2-6-1 有機物觸媒氧化反應機制示意圖 2-45
圖3-1-1 Cu/Co及Cu/Mn矽石觸媒焚化處理氣相異丙醇流程圖
3-4
圖3-1-2 Cu/Mn氧化鋁觸媒焚化處理氣相甲苯流程圖 3-5
圖3-1-3 RCO系統現地處理VOCs流程圖 3-6
圖3-1-4 研究整體流程圖 3-7
圖3-2-1觸媒煅燒裝置示意圖 3-9
圖3-7-1觸媒焚化系統設備 3-31
圖3-7-2 RTO與RCO實驗設備 3-32

圖4-1-1 3%負載量之不同觸媒於不同溫度下對異丙醇之轉化效果
4-4
圖4-1-2 5%負載量之不同觸媒於不同溫度下對異丙醇之轉化效果
4-5
圖4-1-3 10%負載量之不同觸媒於不同溫度下對異丙醇之轉化效果
4-6
圖4-1-4 Blank、Stone與Catalyst三者在不同溫度下對於異丙醇之
轉化效率 4-8
圖4-1-5 10% Cu/Co(6/4)矽石觸媒在不同溫度下對不同異丙醇進
流濃度之轉化效率 4-10
圖4-1-6 10% Cu/Co(6/4)矽石觸媒在不同空間流速下對異丙醇
進流之轉化效率 4-12
圖4-1-7 10% Cu/Co(6/4)矽石觸媒在不同氧氣濃度下對異丙醇之
轉化效率 4-14
圖4-1-8 10% Cu/Co(6/4)矽石觸媒在不同溫度下對異丙醇轉化效
率及產物選擇性 4-16
圖4-1-9 10% Cu/Co(6/4)矽石觸媒在300℃及350℃下之衰敗情形
4-18
圖4-1-10新鮮10% Cu/Co(6/4)矽石觸媒SEM影像 4-20
圖4-1-11衰敗測試後10% Cu/Co(6/4)矽石觸媒SEM影像 4-20
圖4-1-12新鮮10% Cu/Co(6/4)矽石觸媒EDS分析結果 4-21
圖4-1-13衰敗測試後10% Cu/Co(6/4)矽石觸媒EDS分析結果
4-21
圖4-2-1不同金屬負載量之氧化鋁觸媒於不同溫度下對甲苯之轉化
效果 4-24
圖4-2-2不同金屬負載量之Cu/Mn氧化鋁觸媒於不同溫度下對甲苯
之轉化效果 4-25
圖4-2-3 Blank、Carrier Blank與Catalyst三者在不同溫度下對於甲
苯之轉化效率 4-27
圖4-2-4 20% Cu/Mn氧化鋁觸媒在不同溫度下對不同甲苯進流濃度
之轉化效率 4-29
圖4-2-5 20% Cu/Mn氧化鋁觸媒在不同空間流速下對甲苯之轉化效
率 4-31
圖4-2-6 20% Cu/Mn氧化鋁觸媒在不同氧氣濃度下對甲苯之轉化效
率 4-33
圖4-2-7 20% Cu/Mn氧化鋁觸媒在350℃下之衰敗情形 4-35
圖4-2-8新鮮20% Cu/Mn氧化鋁觸媒SEM影像 4-36
圖4-2-9衰敗測試後20% Cu/Mn氧化鋁觸媒SEM影像 4-36
圖4-2-10新鮮20% Cu/Mn氧化鋁觸媒EDS圖譜 4-37
圖4-2-11衰敗測試後20% Cu/Mn氧化鋁觸媒EDS圖譜 4-37
圖4-3-1 RCO(20% Cu/Mn氧化鋁觸媒)與RTO系統在不同溫度
下之甲苯轉化效率 4-39
圖4-3-2 RCO(20% Cu/Mn氧化鋁觸媒)與RTO系統在不同甲苯
進流濃度之轉化效率 4-41
圖4-3-3 RCO(20% Cu/Mn氧化鋁觸媒)與RTO系統在不同進氣
流量下對甲苯之轉化效率 4-43
圖4-3-4 RCO(20% Cu/Mn氧化鋁觸媒)與RTO系統在不同條件
下之壓損 4-45
圖4-3-5 RCO(20% Cu/Mn氧化鋁觸媒)系統在不同條件下之爐床
溫度分佈 4-47
圖4-3-6 RCO(20% Cu/Mn氧化鋁觸媒)系統在不同條件下之熱回
收率 4-48
圖4-4-1 RTO不同進氣流量下VOCs濃度1000 ppm之去除率(A)
0.5 m3/min、(B)1.0 m3/min、(C)1.5 m3/min 4-52
圖4-4-2 RTO 800℃於不同進氣流量下VOCs之去除率 4-53
圖4-4-3 RTO 900℃於不同進氣流量下VOCs之去除率 4-53
圖4-4-4 RTO不同進氣濃度及進氣流量對VOCs之去除效率(A)
0.5 m3/min(B)1.0 m3/min(C)1.5 m3/min 4-55
圖4-4-5 RTO 800℃於不同進流濃度之VOCs去除率 4-56
圖4-4-6 RTO 900℃於不同進流濃度之VOCs去除率 4-56
圖4-4-7 RTO溫度在350℃、400℃及450℃時,不同進氣流量對
TRE的影響 4-61
圖4-4-8 RTO溫度在800℃及900℃時,不同進氣流量對TRE的影
響 4-61
圖4-4-9 RTO溫度在350℃、400℃及450℃時,不同進氣流量對
Td的影響 4-62
圖4-4-10 RTO溫度在800℃及900℃時,不同進氣流量對Td的影
響 4-62
圖4-4-11 RTO溫度在350℃、400℃及450℃時,不同進氣流量對
壓損的影響 4-64
圖4-4-12 RTO溫度在800℃及900℃時,不同進氣流量對壓損的影
響 4-65
圖4-4-13 RTO系統在350℃穩定狀態時的床體溫度分佈 4-69
圖4-4-14 RTO系統在400℃穩定狀態時的床體溫度分佈 4-69
圖4-4-15 RTO系統在450℃穩定狀態時的床體溫度分佈 4-70
圖4-4-16 RTO系統在800℃穩定狀態時的床體溫度分佈 4-70
圖4-4-17 RTO系統在900℃穩定狀態時的床體溫度分佈 4-71
圖4-5-1不同進氣流量下RCO(10% Cu/Co(6/4)矽石觸媒)與
RTO之低濃度VOCs去除率(A)0.5 m3/min、(B)1.0
m3/min、(C)1.5 m3/min 4-75
圖4-5-2不同進氣流量下RCO(10% Cu/Co(6/4)矽石觸媒)與
RTO之高濃度VOCs去除率(A)0.5 m3/min、(B)1.0
m3/min、(C)1.5 m3/min 4-76
圖4-5-3 RCO(10% Cu/Co(6/4)矽石觸媒)低VOCs進流濃度對
VOCs之去除效率(A)0.5 m3/min(B)1.0 m3/min(C)1.5
m3/min 4-79
圖4-5-4 RCO(10% Cu/Co(6/4)矽石觸媒)高VOCs進流濃度
對VOCs之去除效率(A)0.5 m3/min(B)1.0 m3/min(C)
1.5 m3/min 4-80
圖4-5-5 RCO(10% Cu/Co(6/4)矽石觸媒)低VOCs進流濃度對
VOCs之去除效率(A)500℃(B)600℃(C)650℃
4-83
圖4-5-6 RCO(10% Cu/Co(6/4)矽石觸媒)高VOCs進流濃度對
VOCs之去除效率(A)500℃(B)600℃(C)650℃
4-84
圖4-6-1不同進氣流量下RCO(20% Cu/Mn 氧化鋁觸媒)與RTO
之VOCs(1000ppm)去除率(A)0.5 m3/min、(B)1.0
m3/min、(C)1.5 m3/min 4-88
圖4-6-2不同進氣流量下RCO(20% Cu/Mn 氧化鋁觸媒)與RTO
之VOCs(8000ppm)去除率(A)0.5 m3/min、(B)1.0 m3/min、
(C)1.5 m3/min 4-89
圖4-6-3 RCO(20% Cu/Mn 氧化鋁觸媒)低VOCs進流濃度對VOCs
之去除效率(A)0.5 m3/min(B)1.0 m3/min(C)1.5 m3/min
4-92
圖4-6-4 RCO(20% Cu/Mn 氧化鋁觸媒)高VOCs進流濃度對VOCs
之去除效率(A)0.5 m3/min(B)1.0 m3/min(C)1.5 m3/min
4-93
圖4-6-5 RCO(20% Cu/Mn 氧化鋁觸媒)低VOCs進流濃度對VOCs
之去除效率(A)500℃(B)600℃(C)650℃ 4-97
圖4-6-6 RCO(20% Cu/Mn 氧化鋁觸媒)高VOCs進流濃度對
VOCs之去除效率(A)500℃(B)600℃(C)650℃
4-98
圖4-6-7 RCO(20% Cu/Mn 氧化鋁觸媒)溫度在350℃、400℃及
450℃時,不同進氣流量對TRE的影響 4-102
圖4-6-8 RCO(20% Cu/Mn 氧化鋁觸媒)溫度在500℃、600℃及
650℃時,不同進氣流量對TRE的影響 4-102
圖4-6-9 RCO(20% Cu/Mn 氧化鋁觸媒)溫度在350℃、400℃及
450℃時,不同進氣流量對Td的影響4-103
圖4-6-10 RCO(20% Cu/Mn 氧化鋁觸媒)溫度在500℃、600℃及650℃時,不同進氣流量對Td的影響4-103
圖4-6-11 RCO系統(20% Cu/Mn 氧化鋁觸媒)在0.5 m3/min進氣流速下之壓損4-104
圖4-6-12 RCO系統(20% Cu/Mn 氧化鋁觸媒)在650℃穩定狀態
時的床體溫度分佈4-106
圖4-6-13 RCO系統(20% Cu/Mn 氧化鋁觸媒)在650℃不同狀態之床體溫度分佈4-106
圖4-6-14 RCO系統(20% Cu/Mn 氧化鋁觸媒)衰敗試驗4-108
圖4-6-15 RCO系統新鮮20% Cu/Mn 氧化鋁觸媒SEM表面結 構4-109
圖4-6-16 RCO系統20% Cu/Mn 氧化鋁觸媒衰敗試驗後SEM表 面結構4-109
圖4-6-17 RCO系統新鮮20% Cu/Mn 氧化鋁觸媒EDS圖 4-110
圖4-6-18 RCO系統20% Cu/Mn 氧化鋁觸媒衰敗試驗後EDS圖譜 4-110
圖4-7-1不同進氣流量下RCO(20% Cu/Mn 矽石觸媒)與RTO之
VOCs(1000ppm)去除率(A)0.5 m3/min、(B)1.0 m3/min、
(C)1.5 m3/min4-114
圖4-7-2不同進氣流量下RCO(20% Cu/Mn 矽石觸媒)與RTO之
VOCs(8000ppm)去除率(A)0.5 m3/min、(B)1.0 m3/min、
(C)1.5 m3/min4-115
圖4-7-3 RCO(20% Cu/Mn 矽石觸媒)低VOCs進流濃度對VOCs 之去除效率(A)0.5 m3/min(B)1.0 m3/min(C)1.5 m3/min4-118
圖4-7-4 RCO(20% Cu/Mn 矽石觸媒)高VOCs進流濃度對VOCs 之去除效率(A)0.5 m3/min(B)1.0 m3/min(C)1.5 m3/min 4-119
圖4-7-5 RCO系統(20% Cu/Mn 矽石觸媒)對於低VOCs進流濃度的去除情形(500℃)4-121
圖4-7-6 RCO系統(20% Cu/Mn 矽石觸媒)對於低VOCs進流濃度的去除情形(600℃)4-121
圖4-7-7 RCO系統(20% Cu/Mn 矽石觸媒)對於高VOCs進流濃度的去除情形(500℃)4-124
圖4-7-8 RCO系統(20% Cu/Mn 矽石觸媒)對於高VOCs進流濃度的去除情形(600℃)4-124
圖4-7-9 RCO(20% Cu/Mn 矽石觸媒)溫度在350℃、400℃及450℃ 時,不同進氣流量對TRE的影響4-128
圖4-7-10 RCO(20% Cu/Mn 矽石觸媒)溫度在500℃及600℃時, 不同進氣流量對TRE的影響4-128
圖4-7-11 RCO(20% Cu/Mn 矽石觸媒)溫度在350℃、400℃及450℃時,不同進氣流量對Td的影響4-129
圖4-7-12 RCO(20% Cu/Mn 矽石觸媒)溫度在500℃及600℃時, 不同進氣流量對Td的影響4-129
圖4-7-13 RCO系統(20% Cu/Mn 矽石觸媒)在0.5 m3/min進氣流速下之壓損4-130
圖4-7-14 RCO系統(20% Cu/Mn 矽石觸媒)在600℃穩定狀態時 的床體溫度分佈4-132
圖4-7-15 RCO系統(20% Cu/Mn 矽石觸媒)在600℃不同狀態之床體溫度分佈4-132
圖4-7-16 RCO系統(20% Cu/Mn 矽石觸媒)衰敗試驗4-134
圖4-7-17 RCO系統新鮮20% Cu/Mn 矽石觸媒SEM表面結構.4-135
圖4-7-18 RCO系統20% Cu/Mn 矽石觸媒衰敗試驗後SEM表面結構4-135
圖4-7-19 RCO系統新鮮20% Cu/Mn 矽石觸媒EDS圖譜 4-136
圖4-7-20 RCO系統20% Cu/Mn 矽石觸媒衰敗試驗後EDS圖譜4-136
表目錄
頁數
表2-1-1 甲苯物理與化學性質 2-4
表2-1-2 異丙醇物理與化學性質 2-6
表2-3-1 VOCs控制技術適用特性 2-13
表2-3-2 VOCs處理技術之優缺點 2-14
表2-5-1 VOCs的破壞難易程度 2-27
表2-5-2觸媒中毒形式與防治方法 2-38
表2-6-1觸媒貴重金屬與金屬氧化物比較 2-53
表2-6-2各種金屬氧化物活性等級 2-53
表3-2-1矽石觸媒篩選之操作參數與範圍 3-10
表3-2-2矽石觸媒活性探討操作參數與範圍 3-12
表3-3-1氧化鋁觸媒篩選之操作參數與範圍 3-15
表3-3-2氧化鋁觸媒活性探討操作參數與範圍 3-17
表3-4-1 RCO系統焚化氣相甲苯操作參數之範圍 3-20
表3-5-1 RTO實廠操作參數之範圍 3-22
表3-6-1 RCO實廠操作參數之範圍 3-26
表3-7-1 RTO與RCO系統設備規格 3-33
表3-7-2矽石物理性質 3-38
表3-7-3觸媒物理性質 3-38
表4-4-1 RTO系統在不同操作條件下的熱回收率和排氣溫差 4-60
表4-6-1 RCO系統(20% Cu/Mn 氧化鋁觸媒)在不同操作條件下
的熱回收率和排氣溫差 4-101
表4-7-1 RCO系統(20% Cu/Mn 矽石觸媒)在不同操作條件下的 熱回收率和排氣溫差4-127
表4-8-1觸媒製備成本估算4-139
表4-8-2 RCO與RTO系統之操作費用4-144
參考文獻 References
參考文獻
Abdullah, A. Z., Bakar,M. Z. A., Bhatia, S., Combustion of chlorinated volatile organic compounds (VOCs) using bimetallic chromium- copper supported on modified H-ZSM-5 catalyst, Journal of Hazardous Materials. Vol. 129, 39–49, 2006.
Afandizadeh S., Foumeny, E. A., Design of packed bed reactors: guides to catalyst shape, size, and loading selection, Applied Thermal Engineering. Vol. 21, 669-682, 2001.
Alifanti, M., Florea, M., Pârvulescu, V. I., Ceria-based oxides as supports for LaCoO3 perovskite; catalysts for total oxidation of VOC, Applied Catalysis B: Environmental. Vol. 70, 400–405, 2007.
Álvarez-Galván, M. C., Pawelec, B., de la Peña O’Shea, V.A., Fierro, J. L. G., Arias, P. L., Formaldehyde/methanol combustion on alumina-supported manganese-palladium oxide catalyst, Applied Catalysis B: Environmental. Vol. 51, 83–91, 2004.
Anna, M. P., Destruction of trichloroethylene (TCE) and trichloromethane (TCM) in the presence of selected VOCs over Pt-Pd-based catalyst, Catalysis Today. Vol. 119, 301–304, 2007.
Anna, M. P., Mendyka, B., Catalytic oxidation of chlorinated hydrocarbons in two-component mixtures with selected VOCs, Catalysis Today. Vol. 90, 139–144, 2004.
Ataloglou, T., Vakros, J., Bourikas, K., Fountzoula, C., Kordulis, C., Lycourghiotis, A., Influence of the preparation method on the structure–activity of cobalt oxide catalysts supported on alumina for complete benzene oxidation, Applied Catalysis B: Environmental. Vol. 57, 299–312, 2005.
Beatriz de Rivas, Jose I. Gutiérrez-Ortiz, Rubén Lŏpez-Fonseca, Juan R. González-Velasco, Analysis of the simultaneous catalytic combustion of chlorinated aliphatic pollutants and toluene over ceria-zirconia mixed oxides, Applied Catalysis A: General. Vol. 314, 54–63, 2006.
Beauchet, R., Magnoux, P., Mijoin, J., Catalytic oxidation of volatile organic compounds (VOCs) mixture (isopropanol/o-xylene) on zeolite catalysts, Catalysis Today. Vol. 124, 118–123, 2007.
Blasin-Aube, V., Belkouch, J., Monceaux, L., General study of catalytic oxidation of various VOCs over La0.8Sr0.2MnO3+x perovskite catalyst-influence of mixture , Applied Catalysis B:Environmental. Vol. 43, No. 2, 175-186, 2003.
Burch, R., Urbano, F. J., Loader, P. K., Methane combustion over palladium catalysts: the e.ect of carbon dioxide and water on activity. Applied Catalysis A: General. Vol. 123,173–184, 1995.
Cheng, W. H., Chou, M. S., Lee, W. S., Huang, B. J., Applications of low-temperature regenerative thermal oxidizers to treat volatile organic compounds, Journal of Environmental Engineering. Vol. 128, No. 4, 313-319, 2002.
Chou, M. S., Hei, C. M., Performance study on the treatment of gas-borne chlorohydrocarbons by a regenerative thermal oxidizer, Journal of the Chinese Institute of Environmental Engineering. Vol. 14, No. 2, 73-82, 2004.
Chou, M. S., Hei, C. M., Huang Y. W., Regenerative Thermal Oxidation of Airborne N, N-Dimethylformamide and Its Associated Nitrogen OxidesFormation Characteristics, Air & Waste Management Association. Vol. 57, 991-999, 2007.
Chu, H., Hao, G. H., Tseng, T. K., Laboratory study of poisoning of a MnO/Fe2O3 catalyst by dimethyl sulfide and dimethyl disulfide Journal of Hazardous Materials. Vol. 100, 301–316, 2003.
Chu, H., Lee, W. T., The effect of sulfur poisoning of dimethyl disulfide on the catalytic incineration over a Pt/Al2O3 catalyst, Science of the Total Environment. Vol. 209, 217 - 224, 1998.
Dai, Q., Wang, X., Lu, G., Low-temperature catalytic destruction of chlorinated VOCs over cerium oxide, Catalysis Communications. Vol. 8, 1645–1649, 2007.
Dai, Q.,Wang, X., Lu, G., Low-temperature catalytic combustion of trichloroethylene over cerium oxide and catalyst deactivation, Applied Catalysis B: Environmental. Vol. 81, 192–202, 2008.
Das D. P., Parida K. M., Mn(III) oxide pillared titanium phosphate (TiP) for catalytic deep oxidation of VOCs, Applied Catalysis A: General. Vol. 324, 1-8, 2007.
Delphine, R., Park, G., Emmanuel, T., Catalytic behaviour of Cl-free and Cl-containing Pd/Al2O3 catalysts in the total oxidation of methane at low temperature, Applied Catalysis A:General. Vol. 203, 90-102, 2000.
Devinny J. S., Deshusses M. A., Webster T. S., Biofiltration for Air Pollution Control, Lewis Publishers. 1998.
Don, J. A., Feenstra L., Odour abatement through biofitration, In Proceedings of Symposium on Characterization and Control of Odoriferous Pollutants in Process Industrirs : Lonvain-La Neuve (Belgium), 1984.
Gallardo-Amores, J. M., Armaroli, T., Ramis, G., Finocchio, E., Busca, G., A study of anatase–supported Mn oxide as catalysts for 2-propanol oxidation, Applied Catalysis B: Environmental. Vol. 22, 249–259, 1999.
García, T., Solsona, B., Taylor, S. H., Naphthalene total oxidation over metal oxide catalysts, Applied Catalysis B: Environmental. Vol. 66, No. 1-2, 92-99, 2006.
Gil. A., A. Diaz., L. M. Gandia, M. Montes, Influence of the Preparation Method and Nature of the Suppor on the Stability of Nickel Catalyst, Applied Catalysis:A General. Vol. 109, No. 2, 355-361, 1994.
Gil, A., Gandía, L. M., Korili, S. A., Effect of the temperature of calcination on the catalytic performance of manganese- and samarium-manganese-based oxides in the complete oxidation of acetone, Applied Catalysis A: General. Vol. 274, 229–235, 2004.
Golodets, G. I. Heterogeneous Catalytic Reactions Involving Molecular Oxygen, New York, Elsevier, 1983.
Guerreiro-Ruiz, A., Rodrigz-Ramoz I., Fierro, Dehydrogenation of Methanol to Methyl Formate over Supported Copper Catalyst, Applied. Catalysis:A General. Vol. 72, No. 1, 119-128, 1994.
Guisnet, M. P., Magnoux, D. P., Catalytic oxidation of volatile organic compounds 1. Oxidationof xylene over a 0.2 wt% Pd/HFAU(17) catalyst. Applied Catalysis B: Environmental. Vol. 20, 1-13, 1999.
Guillemot M., Mijoin J., Mignard S., Magnoux P., Mode of zeolite catalysts deactivation during chlorinated VOCs oxidation, Applied Catalysis A: General. Vol. 327, 211–217, 2007.
Guillemot M., Mijoin J., Mignard S., Magnoux P., Volatile organic compounds (VOCs) removal over dual functional adsorbent/catalyst system, Applied Catalysis B: Environmental. Vol. 75, 249–255, 2007.
Heck,R. M.,and R. J. Farrauto, “Catalytic Air pollution Control”, Van Nostrand Reinhold, New York, 1995.
Huling, S. G., B. E. Bledose, and M. V. White ., Enhanced Bioremediation Utilization Hydrogen Peroxide as a Supplement Source of Oxygen :a Laboratory and Field Study. EPA/600/S2- 90/006, 1990.
Huang, H., Liu, Y., Tang, W., Chen, Y. Catalytic activity of nanometer La1-xSrxCoO3 (x = 0, 0.2)perovskites towards VOCs combustion, Catalysis Communications. Vol. 9, 55–59, 2008.
Huang, T. J. Effect of Calcination Condition on Surface Properties of Copper/Alumina Catalysts, Journal of the Chinese.1. Ch.E.21, No. 5, 1990.
Jin, L. Y., Lu, J. Q., Luo, M. F., Xie, G. Q., He, M., CeO2-Y2O3 Washcoat and Supported Pd Catalysts for theCombustion of Volatile Organic Compounds (VOCs), ACTA PHYSICO-CHIMICA SINICA.Vol. 23, No. 11, 1691-1695, 2007.
Jose I. Gutiérrez-Ortiz, Beatriz de Rivas, Rubén López-Fonseca, Juan R. González-Velasco., Catalytic purification of waste gases containing VOC mixtures with Ce/Zr solid solutions, Applied Catalysis B: Environmental. Vol. 65, 191–200, 2006.
Jose I. Gutiérrez-Ortiz, Beatriz de Rivas, Rubén López-Fonseca, Susana Martín , Juan R. González-Velasco., Structure of Mn–Zr mixed oxides catalysts and their catalytic performance in the gas-phase oxidation of chlorocarbons, Chemosphere. Vol. 68, No. 6, 1004-1012, 2007.
Kim, S. C., The catalytic oxidation of aromatic hydrocarbons over supported metal oxide, Journal of Hazardous Materials. Vol. 91, 285–299, 2002.
Kim, S. C., Nahm, S. W., Shim, W. G., Lee, J. W., Moon, H., Influence of physicochemical treatments on spent palladium based catalyst for catalytic oxidation of VOCs, Journal of Hazardous Materials. Vol. 141, 305–314, 2007.
Kim S. C., Shim W. G., Recycling the copper based spent catalyst for catalytic combustion of VOCs, Applied Catalysis B: Environmental Vol. 79, 149-156, 2008.
Ku a y ski, M., Ommen, J. G. van, Trawczy ski, J., Walendziewski, J., Catalytic combustion of trichloroethylene over TiO2-SiO2 supported catalysts, Applied Catalysis B: Environmental. Vol. 36, No. 3, 239-247, 2002.
Li, W. B., Chu, W. B., Zhuang, M., Hua, J., Catalytic oxidation of toluene on Mn–containing mixed oxides prepared in reverse microemulsions, Catalysis Today. Vol. 93-95, 205-209, 2004.
Lopez-Fonseca R., Cibrián, S., Gutiérrez-Ortiz, J. I., González-Velasco, J. R., Effect of Pd addition on the catalytic performance of H-ZSM-5 zeolite in chlorinated VOCs combustion, Studies in Surface Science and Catalysis. Vol. 142, 847-854, 2002.
Lu, C. Y., Wen, M. Y., Chen, L. I., Application of polyol process to prepare AC-supported nanocatalyst for VOC oxidation, Applied. Catalysis:A General. Vol. 325, No. 1, 163-174, 2007.
Mario, A., Pietropaolo, M., Numerical evaluation of the energetic performances of structured and random packed beds in regenerative thermal oxidizers, Applied Thermal Engineering. Vol. 27, 762-770, 2007.
Manfred Nacken, Steffen Heidenreich, Marius Hackel , Georg Schaub, Catalytic activation of ceramic filter elements for combined particle separation, NOx removal and VOC total oxidation, Applied Catalysis B: Environmental Vol.70, 370-376, 2007.
Mishra T., Mohapatra P., Parida K.M., Synthesis, characterisation and catalytic evaluation of iron–manganese mixed oxide pillared clay for VOC decomposition reaction, Applied Catalysis B: Environmental Vol. 79, 279–285, 2008.
Morales, M. R., Bibiana P., Cadús L. E., Evaluation and characterization of Mn–Cu mixed oxide catalysts for ethanol total oxidation: Influence of copper content, Fuel. 2007. In press.
Oliveira, L.C.A., Lago, R. M., Fabris, J. D., Sapag, K., Catalytic oxidation of aromatic VOCs with Cr or Pd-impregnated Al-pillared bentonite: Byproduct formation and deactivation studies, Applied Clay Science.2007. In press.
Padilla, A.M., Corella, J., Toledo, J.M., Total oxidation of some chlorinated hydrocarbons with commercial chromia based catalysts, Applied Catalysis B:Environmental. Vol.22, 107–121, 1999.
Pope, D., Walker, D.S., Moss, R.L., Evaluation of Cobalt Oxide Catalysts for the Oxidation of Low Concentration of Organic Compounds, Atmospheric Environment. Vol. 10, 951-956, 1976.
Radian C., Control Techniques for Volatile Organic Emission from Stationary Source, USEPA, EPA-450/2-78-022, 1978.
Ramanathan, K., Spivey, J.J. Combust. Catalytic oxidation of 1,1-dichloroethane. Sci.Tech. 63, 247 ,1989.
Robert, J. F., Environmental Catalysts, C&EN., 34-44, 1992.
Satoshi Kameoka, An Pang Tsai, Oxidation behavior and catalytic property of intermetallic compound AuCu, Catalysis Today. Vol.132, 88-92, 2008.
Scirè, S., Minicò, S., Crisafulli, C., Satriano, C., Pistone, A., Catalytic
combustion of volatile organic compounds on gold/cerium oxide catalysts. Applied Catalysis B: Environmental. Vol. 40, 43–49, 2003.
Spivey, J. J., Complete Catalytic Oxidation of Volatile Organics,Industrial Engineering Chemical Research. Vol. 26, 2165 -2180,1987.
Strots, V. O., Bunimovich, G. A., Roach, C. R., Matros, Y. S.,Regenerative catalytic oxidizer technology for VOC control.Reaction Engineering for Pollution Prevention. 113.
Tichenor, A., Palazzolo, M. A., Destruction of Volatile Organic compounds via Catalytic Incineration, Environment Progress. Vol. 6,No. 3, 172-176, 1987.
Tidahy, H. L., Siffert S., Lamonier, J. F., Cousin, R., Zhilinskaya, E. A.,Aboukaïs, A., Su, B.-L., Canet, X., Weireld, G., Frère, M., Giraudon,J.-M., Leclercq, G., Influence of the exchanged cation in Pd/BEA and Pd/FAU zeolites for catalytic oxidation of VOCs, Applied Catalysis B: Environmental. Vol. 70, No. 1-4, 377-383, 2007.
Tidahy, H. L., Siffert, S., Wyrwalski, F., Lamonier, J. F., Aboukaïs, A.,Catalytic activity of copper and palladium based catalysts for toluene total oxidation, Catalysis Today. Vol. 119, No. 1-4, 317-320, 2007.
Tsou, J., Magnoux, P., Guisnet, M., M. Órfão, J. J., Figueiredo, J. L. Catalytic oxidation of volatile organic compounds: Oxidation of methyl-isobutyl-ketone over Pt/zeolite catalysts, Applied Catalysis B: Environmental. Vol. 57, No. 2, 117-123, 2005.
Wang, C. H., Al2O3-supported transition-metal oxide catalysts for catalytic incineration of toluene, Chemosphere. Vol. 55, 11-17, 2004. Wang, C. H., Lin, S. S., Chen, C. L., Weng, H. S., Performance of the supported copper oxide catalysts for the catalytic incineration of aromatic hydrocarbons, Chemosphere. Vol. 64, 503-509, 2006.
Wollner, A., Lange, F., Schmelz, H., Knozinger, H. Characterization of Mixed Copper-Manganese Oxides Supported on Titania Catalysts for Selective Oxidation of Ammonia, Applied Catalysis A: General. Vol. 94, No. 1, 181-203, 1993.
Wu, J. C. S., Lin, Z. A., Pan, J. W., Rei, M. H. A novel boron nitride supported Pt catalyst for VOC incineration, Applied Catalysis A: General. Vol. 219, 117–124, 2001.
Wyrwalski, F., Lamonier, J. F., Siffert, S., Aboukais, A., Additional effects of cobalt precursor and zirconia support modifications for the design of efficient VOC oxidation catalysts, Applied Catalysis B: Environmental. Vol. 70, 393-399, 2007.
Zhang R. and Schwarz T. A., “Design of Inhomogeneous Metal Distribution Within Catalyst Particles’’, Applied Catalysis A: General, Vol. 91, pp.57, 1992.
Zimowska, M., Michalik-Zym, A., Janik, R., Machej, T., Gurgul, J., Socha, R. P., Podobin′ski, J., Serwick, E. M., Catalytic combustion of toluene over mixed Cu–Mn oxides, Catalysis Today. Vol. 119,321-326, 2007.
潘忠柏,以蓄熱式焚化爐處理含氮揮發性有機物之氮氧化物生成研究,國立中山大學環境工程研究所,2005。
笵素翡,徐瑞珠,我國CFC-113及三氯乙烷使用現況,氟氯碳化物(CFC),2000。
涂耀仁,印刷電路板業銅污泥回收銅粉並產製奈米級鐵氧磁體尖晶石觸媒催化VOCs 之硏究,國立中山大學化學研究所博士論文,2006。
劉國棟,VOC 管制趨勢展望,工業污染防治,第48 期,p.15-31,1993。
林淑婷,以蓄熱石材觸媒氧化VOCs之研究,國立中山大學環境工程研究所,2005。
林文元,油品在幾種台灣土壤中之吸附、脫附與移動性探討,碩士論文,國立屏東科技大學環境工程與科學系,1999。
林建宏,銅觸媒活性中心之研究,國立中山大學化學研究所碩士論文,1995。
李定粵,觸媒的原理與應用,正中書局,1990。
李秉傑、邱宏明、王奕凱「非均勻系催化原理與應用」,渤海堂文化公司,1993。
李昆展,以稻穀灰分初濕含浸製備擔體銅觸媒之研究,國立中央大學化學工程研究所碩士論文,2001。
盧裕倉,以觸媒氧化法處理含揮發性有機物煙道氣之研究,國立中山大學環境工程研究所碩士論文,2000。
高雄市環境保護局,「揮發性有害空氣污染物之健康影響」空氣污染防治網站。
黃柏仁,以蓄熱式觸媒焚化設施處理排氣中揮發性有機物質之理論解析與驗證,國立中山大學環境工程研究所碩士論文,1998。
黃士偉,以觸媒焚化和蓄熱式觸媒焚化處理氣相揮發性有機物之研究,國立中山大學環境工程研究所,2008。
黃士偉,以蜂巢式觸媒氧化氣相異丙醇之研究,國立中山大學環境工程研究所碩士論文,2003。
黃思蓴,電子半導體業揮發性有機物排放處理之本土化全自控生物濾床模組設備研發,國科會/ 環保署科技合作研究計畫NSC87 –2218 - E- 216-002 期末報告,1998。
洪文雅,揮發性有機廢氣處理技術簡介,台灣環保產業雙週刊,2003。
洪文雅,揮發性有機廢氣處理技術之規劃實務,綠色技術發展研究中心,2002。
黑正明,以蓄熱式焚化爐處理含氯揮發性有機物之操作性能研究,國立中山大學環境工程研究所,2002。
謝天佑,以Fenton 法整治受BTEX 污染之地下水研究-採用離場式、現地式、現場式之探討,國立高雄第一科技大學環境與安全衛生工程系,2006。
許朝翔,以粒狀觸媒氧化甲苯之研究,國立中山大學環境工程研究所,2007。
許世杰,生物濾床應用於高科技產業揮發性有機廢氣之研究,新竹縣環保局2003年高科技產業研討會論文集,pp39-47,2003。
朱小容、陳郁文,工業廢氣特殊處理技術,化工資訊,第68-78頁,2003。
張書豪、張木彬,科學園區空氣污染物排放特性之探討,國立中央大學環境工程研究所研究成果報告,1999。
鄭福田,空氣污染防治(九)-臭味問題,工業污染防治,第3 卷,第1期,第59-64 頁,1994。
鄭乙任,影響觸媒焚化的主要因素及操作維護注意事項之探討,工業污染防治報導,第132 期,2000。
張慶璋,溫度效應對一氧化氮在銅/碳煙觸媒上還原反應行為之探討,國立中山大學化學研究所碩士論文,1999。
車明道,土壤復育技術介紹及有效性評估,能源、資源與環境E.R.E.Q,pp. 41-46,1993。
臭氣處理程序設計評估技術,工研院化工所,1991。
史盟秀,BTEX 在幾種台灣主要土壤中之吸附與降解,碩士論文,國立屏東科技大學環境工程與科學系,2001。
沈明宗,實廠蓄熱式焚化爐處理排氣中揮發性有機物之操作性能研究,國立中山大學環境工程研究所,2001。
蔡在堂,以電動力法復育受油品污染土壤,國立屏東科技大學環境工程與科學系碩士論文,2003。
顏駿翔,添加Mn/γ-Al2O3 於觸媒濕式氧化程序處理 2,4-二氯酚水溶液之研究,國立中山大學環境工程研究所碩士論文,2001。
王一雄,土壤環境污染與農藥,明文書局印行,1997。
王繼翰,「膠帶製造業勞工甲苯暴露評估研究」,國立交通大學產業安全與防災學系碩士論文,2001。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 44.210.107.64
論文開放下載的時間是 校外不公開

Your IP address is 44.210.107.64
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code