Responsive image
博碩士論文 etd-0724109-155632 詳細資訊
Title page for etd-0724109-155632
論文名稱
Title
高級淨水程序之處理成效與應用粉狀活性碳薄膜反應程序去除飲用水中有機物之研究
Study on the Treatment Efficiency of ATP and Application of Powdered Acti vated Carbon and Membrane Bioreactor to Remove Organic Compounds in Drinking Water
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
196
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-06-09
繳交日期
Date of Submission
2009-07-24
關鍵字
Keywords
薄膜生物反應程序、活性碳、生物可利用有機碳、消毒副產物、高級淨水流程
membrane bioreactor, activated carbon, assimilable organic carbon, disinfection byproducts, advanced membrane processes
統計
Statistics
本論文已被瀏覽 5641 次,被下載 0
The thesis/dissertation has been browsed 5641 times, has been downloaded 0 times.
中文摘要
近年來,國內淨水場之淨水程序有幾座由傳統提升為高級處理,其中包含增設了薄膜處理,然而對於生物可利用有機碳(AOC)及消毒副產物潛勢(DBPFP)之去除成效有待觀察,因此本研究分為兩大部分,第一部份為高級淨水流程之成效分析,第二部份為應用生物活性碳薄膜反應處理程序,整合兩種程序去除水中微量有機物質,並針對溶解性有機碳及生物可利用有機碳(AOC)進行效能探討。
消毒副產物部分根據本研究調查,A,B兩廠清水中總三鹵甲烷(THMs)皆以TCM(三氯甲烷)為主,濃度分別為13.97±4.18 μg/L與21.49±10.59 μg/L,低於國內飲用水水質標準80 μg/L,此兩套高級淨水流程對於鹵化乙酸(HAA5)於A、B兩流程之清水濃度分別為17.67±14.50 μg/L與33.03±16.24 μg/L,結果顯示HAA5可符合目前國際飲用水水質標準。A、B兩流程之清水HAA5物種皆以二氯乙酸(DCAA)與三氯乙酸(TCAA)為主,分別佔總量的67%及83%。
有機物部分,分析發現臭氧+活性碳生物濾床(BAC)有不錯的去除效果,但應用超過濾膜(UF)及逆滲透膜(RO)之高級流程對於生物可利用有碳(AOC)則去除效果較差,平均高達70 μg acetate-C/L,無法降低至國際上文獻提及的50 μg acetate-C/L水準。
根據本研究顯示高級淨水流程對水中消毒副產物有不錯的去除率,分析結果皆可降低至國內法規值與文獻建議值。有機物部分,以臭氧配合活性碳生物濾床有一定的去除效率,但以薄膜處理之高級淨水流程可能因為水質之高硬度與高離子強度影響下造成電荷遮蔽或電荷屏障,以致於去除率不佳,本研究以生物活性碳配合薄膜過濾程序,可有效去除水中有機物並同時降低AOC值,符合文獻之建議值。
Abstract
To improve water quality of drinking water, the Taiwan Water Supply Corp (TWSC) upgraded three water treatment plants (WTP), changing traditional treatment processes into two advanced membrane processes and one advanced ozonation processes in recent years. Membrane water treatment units of the water treatment plant comprise ultrafiltration (UF) and reverse osmosis (RO). And the advanced ozonation water treatment units comprise pellet softening, post-ozonation and biological activated carbon (BAC) adsorption. This study investigated the formation of disinfection byproducts (DBPs), dissolved organic carbon (DOC) and assimilable organic carbon (AOC) at two advanced water treatment plants (ATP) in Kaohsiung City, Taiwan, by implementing a sampling program. The purposes of this study include:(1) The evaluation of treatment efficiency of advanced water treatment plants. (2) Application of powdered activated carbon and membrane bioreactor in removing organic compounds in drinking water.

TCM was by far the predominant species in the finished water, the average concentration of DPBs in this study at both plants were 13.97±4.18μg/L and 21.49±10.59μg/L of THMs for plant A and plant B, respectively. However, levels for DPBs compound are low in both plants and lower than the current national drinking water quality standards 80 μg / L. But for anther typical DPBs (HAAs compounds), the average concentrations were 17.67±14.50μg/L and 33.03±16.24μg/L of HAA5 for plant A and plant B, respectively. DCAA and TCAA were the two major species of HAAs found in the two water samples under study. The sums of the two species represented in finished water were about 67% and 83% of HAA5 in A and plant B, respectively. The results showed that HAA5 concentration of all samples could meet current USEPA standards for drinking water quality.
Importantly, our work show the advanced treatment processes have good removal on DPBs of treated water. In organic compounds removal, there is high efficiency by using post-ozonation combined with BAC, but low efficiency for membrane process due to the inhibition of electrical charge happened on surface of membrane. This inhibition is caused probably by high hardness and high ion strength in water. We found by combining BAC with membrane filtration process will effectively remove the organic compounds and lower the concentration of AOC for passing the limit value suggested in related researches of the world.
目次 Table of Contents
目 錄
頁數
摘要 I
目錄 Ⅲ
圖目錄 Ⅷ
表目錄 XII
第一章 緒論 1
1-1 前言 1
1-2 研究緣起 3
1-3 研究目的及內容 4
第二章 文獻回顧 6
2-1飲用水水源現況 6
2-1-1淨水流程 8
2-1-2高級淨水處理程序 10
2-2自然水體中有機物之分類及其性質 23
2-2-1有機物之分類及其性質 23
2-2-2水中有機物之來源與影響 26
2-2-3原水中有機物質之替代參數 29
2-3配水管網水質之生物穩定性問題 30
頁數
2-3-1配水管網微生物後生長之影響因子及控制方法 32
2-4生物可分解有機質之測定 34
2-4-1生物可利用有機碳AOC(Assimilable Organic Carbon)34
2-5消毒副產物 43
2-5-1含氯消毒副產物 44
2-5-2鹵化乙酸與鹵化乙酸生成潛勢 47
2-5-3鹵化乙酸的來源 49
2-5-4鹵化乙酸生成因素 50
2-5-5鹵化乙酸之危害性質 53
2-5-6鹵化乙酸之法規管制標準 55
2-5-7鹵化乙酸生成潛勢 56
2-6三鹵甲烷與三鹵甲烷生成潛勢 57
2-6-1三鹵甲烷之分類 57
2-6-2三鹵甲烷之來源 59
2-6-3三鹵甲烷之危害性質 59
2-6-4三鹵甲烷之法規管制標準 60
2-6-5三鹵甲烷之生成潛勢 61
2-7薄膜介紹及其應用 61
頁數
2-7-1薄膜的分類與材質特性 62
2-7-2薄膜的結構特性與選擇 64
2-7-3薄膜過濾機制 65
2-7-4薄膜處理所面臨之問題 66
2-7-5薄膜於淨水廠的應用 68
2-8薄膜生物反應器起源 70
2-8-1 MBR之種類 72
2-8-2 MBR之優點 73
2-8-3薄膜生物反應器與粉末型活性碳 78
第三章 研究方法 80
3-1高級與傳統淨水場處理效能比較 80
3-2高級淨水單元之成效評估 83
3-3水質項目與分析方法 83
3-4鹵化乙酸(Haloacetic acids, HAAs) 84
3-4-1 HAAs分析藥品 85
3-4-2分析儀器及設備 86
3-4-3採樣與保存 87

頁數
3-4-4 HAAs分析步驟 88
3-4-5氣相層析儀分析條件 91
3-4-6檢量線之建立 91
3-5三鹵甲烷(Trihalomethane, THMS) 92
3-5-1THMs分析藥品 92
3-5-2分析儀器及設備 92
3-5-3採樣與保存 93
3-5-4 THMs分析步驟 94
3-5-5氣相層析儀分析條件 96
3-5-6檢量線之建立 96
3-6消毒副產物生成潛勢 97
3-6-1鹵化乙酸生成潛勢 97
3-6-2三鹵甲烷生成潛勢 97
3-7非揮發性溶解性有機碳 98
3-8 AOC分析 99
3-8-1純菌菌液的預先培養 101
3-8-2菌種活化與培養 103
3-8-3菌種純種鑑定與特性分析 105
頁數
3-8-4 AOC器皿之清洗方式 108
3-8-5 AOC使用菌種其生長曲線與產率之求得 109
3-8-6水樣AOC之檢測方式 111
3-9生物活性碳薄膜實驗設備 113
3-9-1微生物馴養 113
3-9-2分析儀器與設備 114
第四章 結果與討論 116
4-1菌種特性鑑定及產率(Yield)計算 116
4-1-1 P17及NOX菌種鑑定特性 116
4-1-2 P17及NOX之生長曲線及產率(Yield)值 117
4-2高級淨水場水質分析 123
4-2-1濁度 124
4-2-2總溶解固體物 125
4-2-3硬度 125
4-3消毒副產物及其潛勢 126
4-3-1總三鹵甲烷生成潛勢 126
4-3-2鹵化乙酸生成潛勢 129頁數
4-3-3總三鹵甲烷 133
4-3-4鹵化乙酸 135
4-4有機物 138
4-4-1溶解性有機碳 138
4-4-2生物可利用有機碳 141
4-5生物薄膜反應程序 145
4-5-1微生物馴養 145
4-5-2生物薄膜反應程序 148
4-6 AOC值在淨水流程及水質分析上之意義 153
第五章 結論與建議 155
5-1結論 155
5-2建議 157
參考文獻 參-1

圖目錄
頁數
圖2.1 傳統淨水場處理流程圖 10
圖2.2 高級淨水處理流程圖Ⅰ 11
圖2.3 高級淨水處理流程圖Ⅱ 11
圖2.4 高級淨水處理流程圖Ⅲ 11
圖2.5 鹵化乙酸之結構式 49
圖2.6 三鹵甲烷之結構式 58
圖2.7 各物種粒徑大小與各式薄膜孔徑之分佈圖 64
圖2.8 過濾機制示意圖 66
圖2.9 薄膜過濾機制圖 68
圖2.10 側流式與沉浸式薄膜生物反應槽 73
圖2.11 薄膜單元取代之二級生物程序設施項目圖 78
圖3.1 研究流程圖Ⅰ 81
圖3.2 研究流程圖Ⅱ 82
圖3.3 HAAs之實驗分析步驟 90
圖3.4 THMs之實驗分析步驟 95
圖3.5 AOC分析之流程圖 100
圖3.6 P. fluorescens strain P17 104
圖3.7 Spirillum sp.strain NOX 105
圖3.8 AOC檢量線分析流程圖 110
圖3.9 AOC水樣處理之流程圖 112
圖3.10生物活性碳薄膜裝置設備圖 113
圖4.1 Pseudomonas fluorescence strain P17於各濃度之μg acetate-C濃度下之生長曲線 119
圖4.2 Spirillum spexies strain NOX於各濃度之μg acetate-C 濃度下之生長曲線 120
圖4.3 Pseudomonas fluorescence strain P17之最大菌落數μg acetate-C之產率關係 121
圖4.4 Spirillum spexies strain NOX 之最大菌落數與μg
acetate-C之產率關係 122
圖4.5 A流程原水總三鹵甲烷潛勢(THMFP)成份分析圖 128
圖4.6 B流程原水總三鹵甲烷潛勢(THMFP)成份分析圖 128
圖4.7 A流程原水五種鹵化乙酸潛勢(HAA5FP)成份分析圖 131
圖4.8 A流程原水九種鹵化乙酸潛勢(HAA9FP)成份分析圖 131
圖4.9 B流程原水五種鹵化乙酸潛勢(HAA5FP)成份分析圖 132
圖4.10 B流程原水九種鹵化乙酸潛勢(HAA9FP)成份分析圖 132
圖4.11 A流程原水總三鹵甲烷(THMs)成份組成分析圖 134
圖4.12 B流程原水總三鹵甲烷(THMs)成份組成分析圖 134
圖4.13 A流程清水五種鹵化乙酸(HAA5)成份組成分析圖 136
圖4.14 B流程清水五種鹵化乙酸(HAA5)成份組成分析圖 136
圖4.15 A流程清水五種鹵化乙酸(HAA9)成份組成分析圖137
圖4.16 B流程清水五種鹵化乙酸(HAA9)成份組成分析圖137
圖4.17 A淨水流程溶解性有機碳(DOC)變化趨勢圖140
圖4.18 B淨水流程溶解性有機碳(DOC)變化趨勢圖140
圖4.19 A淨水流程生物可利用有機碳(AOC)變化趨勢圖143
圖4.20 B淨水流程生物可利用有機碳(AOC)變化趨勢圖143
圖4.21 A淨水流程AOC-Total、AOC-NOX、AOC-P17比例圖 144
圖4.22 A淨水流程AOC-Total、AOC-NOX、AOC-P17比例圖144
圖4.23微生物馴養PAC濃度與DOC相關圖 146
圖4.24微生物馴養PAC濃度與AOC相關圖 146
圖4.25連續式生物活性碳薄膜反應HRT與DOC圖152
圖4.26連續式生物活性碳薄膜反應HRT與AOC關係152
圖4.27 HRT與AOC-Total、AOC-NOX、AOC-P17比例153

表目錄
頁數
表2.1 NOM組成物種 28
表2.2 P. fluorescens strain P17及Spirillum sp. strain NOX之特性 36
表2.3 P. fluorescens strain P17及Spirillum sp. strain NOX菌屬利用基質之差異性比較 37
表2.3 P. fluorescens strain P17及Spirillum sp. strain NOX菌屬利用基質之差異性比較(續) 38
表2.3 P. fluorescens strain P17及Spirillum sp. strain NOX 菌屬利用基質之差異性比較(續) 39
表2.4 AOC分析方法比較 41
表2.5 AOC-P17及AOC-NOX產率之比較Cell yield (CFU/μg C-Equivalent) 42
表2.6 加氯消毒副產物種類 46
表2.7 鹵化乙酸化合物之物理性質 48
表2.8 各國HAA單一物種之法規值 56
表2.9 三鹵甲烷化合物之物理性質 58

頁數
表2.10國內外飲用水三鹵甲烷之管制值 61
表2.11薄膜之分類與功能 63
表2.12各式膜組優缺點比較 65
表2.13生物薄膜程序與傳統活性污泥法之比較 72
表3.1 水質分析方法彙整 84
表3.2 Strain P17及Strain NOX之鑑定結果 108
表3.3 Chemostat medium 培養液成分 114
表4.1 P. fluorescence strain P17及Spirillum sp.strain NOX 兩株純菌之生化鑑定結果 117
表4.2 P17與NOX對基質利用率之相關研究比較 118
表4.3 高級淨水流程原水水質 123
表4.4 高級淨水流程清水水質 124
表4.5 Chemostat medium成分 145
表4.6 生物活性碳薄膜反應程序進出流水質特性 151
參考文獻 References
AWWARF (1993a), Characterization of natural organic matter and its relationship to treatability, AWWA Research Foundation and American Water Works Association, Denver, CO.
AWWARF (1993b), Assimilable organic carbon measurement techniques, AWWA Research Foundation and American Water Works Association, Denver, CO.
Arbuckle, T. E., Hrudey, S. E., Krasner, S. W., Nuckols, J. R., Richardson, S. D., Singer, P., Mendola, P., Dodds, L., Weisel, C., Ashley, D. L., Froese, K. L., Pegram, R. A., Schultz, I. R., Reif, J., Bachand, A. M., Benoit, F. M., Lynberg, M., Poole, C. & Waller, K. (2002), Assessing exposure in epidemiologic studies to disinfection by-products in drinking water: report from an international workshop, Environmental Health Perspectives, 110 (1), 53-60.
Bull, R. J. & Kopfler, F. C. (1991), Health effects of disinfectants and disinfection by-products. Denver, CO: American Water Works Association Research Foundation.
Berthold, G. & Karlheinz, K. (1998), Replacement of secondary clarification by membrane separation – results with plate and hollow fiber modules, Water Science and Technology, 38(4-5), 383-393.
Berthold et al. (1999), Replacement of secondary clarification by membrane separation-results with tubular, plate and hollow fibre modules, Water Science Technology, 40(4-5), 311-320.
Bolto, B., G. Abbt-Braun, D. Dixon, R. Eldridge, F. Frimmel, S. Hesse, King, S. & Toifl, M. (1999), Experimental evaluation of cationic polyelectrolytes for removing natural organic matter from water, Water Science and Technology, 40(9), 71-79.
Batterman, S., Zhang, L. & Wang, S. (2000), Quenching of chlorination disinfection by-products formation in drinking water by hydrogen peroxide, Water Research, 34(5), 1652-1658.
Bouhabila, E. H., Aïm, R. B. & Bouhabila, H. B. (2001), Fouling characterisation in membrane bioreactors, Separation and Purification Technology, 22-23, 123-132.
Becker, W. C. & O`Mellia, C. R. (2001), Ozone: its effect on coagulation and filtration, Water Science & Technology: Water Supply, 1(4), 81-88.
Bank, J. & Wilson, D. (2002), Low cost solution for trihalomethanes Compliance, Journal of the Chartered e Institution of Water and Environmental Management, 16(4), 264-269.
Boccelli, D. L., Tryby, M. E., Uber, J. G. & Summers, R. S. (2003), A reactive species model for chlorine decay and THM formation under rechlorination conditions, Water Research, 37(11), 2654-2666.
Cicmanec, J. L., Condie, L. W., Olson, G. R. & Wang, S. R. (1991), 90-day toxicity study of dichloroacetate in dogs, Toxicological Sciences, 17(2), 376-389.
Crozes, G., White, P. & Marshall, M. (1995), Enhanced coagulation: its effect on NOM removal and chemical costs, Journal American Water Works Association, 87(1), 78-89.
Cuy, L. L., Frank, M. B. & Davud, T. W. (1997), A one-year survey of halogenated disinfection by-products in the distribution system of treatment plants using three different disinfection processes, Water Science and Technology, 34(11), 2301-2317.
Cantor, K. P., Lynch, C. F., Hildesheim, M. E., Dosemeci, M., Lubin, Alavanja, J. & Craun, G., (1998), Drinking water source and chlorination by-products: I. Risk of bladder cancer, Epidemiology, 9(1), 21–28.
Cicek, N., Franco, J. P., Suidan, M. T., Urbain, V. & Manem, J. (1999) Characterization and comparison of a membrane bioreactor and a conventional activated-sludge system in treatment of wastewater containing high-molecular-weight compounds, Water Environmental Research, 71, 64-70.
Chang, I. S., Bag, S. O. & Lee, C. H. (2001), Effects of membrane fouling on solute rejection during membrane filtration of activated sludge, Process Biochemistry, 36, 855-860.
David, T. W., Guy, L. L. & Frank, M. B. (1997), Disinfection by-products in Canadian drinking water, Chemosphere., 34(2), 299-316.
Dosoretz, C.G. & Boddeker, K.W. (2004), Removal of trace organics from water using a pumped bed-membrane bioreactor with powdered activated carbon, Journal Membrane Science, 239, 81-90.
Edzwald, J. K., Beker, W. C. & Wattier, L. (1985), Surrogate parameters for monitoring organic matter and THM precursor, Journal American Water Works Association, 71(4), 122-131.
Escobar, I. C., Hong, S. & Randall, A. A. (2000), Removal of assimilable organic carbon and biodegradable dissolved organic carbon by reverse osmosis and nanofiltration membrane, Journal of Membrane Science, 175, 1-17.
Escobar, I. C. & Randall, A. A. (2001), Ozone and distribution system biostability, Journal American Water Works Association, 93(10), 77-89.
Escobar, I.C. & Randall, A.A. (2000), Sample storage impact on the assimilable organic carbon (AOC) and biostability, Water Research, 34(5), 1680-1686.
Fuscoe, J. C., Afshari, A. J., George, M. H., DeAngelo, A. B., Tice, R. R., Salman, T. & Allen, J. W. (1996), In vivo genotoxicity of dichloroacetic acid: Evaluation with the mouse peripheral blood micronucleus assay and the single cell gel assay, Environmental and Molecular Mutagenesis, 27(1), 1-9.
Fan, F. S. & Zhou, H. D. (2007), Interrelated effects of aeration and mixed liquor fractions on membrane fouling for submerged membrane bioreactor processes in wastewater treatment, Environmental Science and Technology, 41(7), 2523-2528.
Grossman, L. H., Manka, J., Relis, B. L., & Rebhum, M. (1993), Formation and Distribution of Haloacetic Acids, THM and TOX in Chlorination of Bromide-Rich Lake Water, Water Research, 27(8), 1323-1331.
Garcia-Villanova, R. J., Gacia, C., Gomes, J. A., Gacia, M. P. & Ardanuy R. (1997), Formation, Evolution and Modeling of Trihalomethanes in the Drinking Water of a Town: I- at the Municipal Treatment Utilities, Water Research, 31(6), 1299-1308.
Giller, S., Le, C. F., Erb, F. & Marzin, D. (1997), Comparative genotoxicity of halogenated acetic acids found in drinking water, Mutagenesis, 12(5), 321-328.
Günder, B.(2001), The membrane-coupled activated sludge process in municipal wastewater treatment, Technomic Publishing Co. Inc., Lancaster, PA, USA .
George, S. E., Wolf, D. C., Brooks, L. R., Bailey, K. C., Hooth, M. J. & Nelson, G. M. (2004), Changes in cecal microbial metabolism of rats
induced by individual and a mixture of drinking water disinfection by-products. Cancer Letters, 204, 15-21.
Gai, X. J. & Kim, H. S. (2008), The role of powdered activated carbon in enhancing the performance of membrane systems for water treatment, Desalination, 225, 288-300.
Hsu, C. H., Jeng, W. L., Chien, R. M. & Ham, B. C. (2001), Estimation of potential lifetime cancer risks for trihalomethanes from consuming chlorinated drinking water in Taiwan. Environmental Research, 85(2), 77-82.
Hong, S., Escobar, I. C., Hershey-Pyle, J., Hobbs, C. & Cho, J. (2005), Biostability characterization in a full scale nanofiltration / reverse osmosis (NF/RO) treatment system, Journal American Water Works Association. 97(5), 101-110.
Huang, H., Lee, N. H., Young, T., Gary, A., Lozier, J. C. & Jacangelo, J. G. (2007), Natural organic matter fouling of low-pressure, hollow-fiber membranes: effects of NOM source and hydrodynamic conditions, Water Research, 41(17), 3823-3832.
Isabel C. E, Seungkwan H.,& Andrew A. R. (2000), Removal of assimilable organic carbon and biodegradable dissolved organic carbon by reverse osmosis and nanofiltration membranes. Journal of Membrane Science, 175, 1-17.
Janssens, J. G., Meheus, J. & Dirickx, J. (1985), Ozone enhanced biological activated carbon filtration and its effect on organic matter removal and in particular on AOC reduction, Water Science and Technology, 17, 1055-1068.
Johnson, J. D. & Jensen J. M. (1986), THM and TOX Formation: routes, rates and precursors, Journal American Water Works Association, 78(4), 156-162.
Jacangelo, J. G., Demarco, J., Owen, D. M. & Randtke, S. J. (1995), Selected processes for removing NOM: an overview, Journal American Water Supply Work Association, 87(1), 64-77.
Jekel, M. R. (1998), Effects and mechanisms involved in preoxidation and particle separation processes, Water Science and Technology, 37(10), 1-7.
Johnson, P. D., Dawson, B. V. & Goldberg, S. J. (1998), Cardiac teratogenicity of trichloroacetate on carbonhydrate metabolism in B6C3F1 mice, Toxicology, 130, 141-154.
Krasner, S. W., Croue, J. P., Buffle, J. & Perdue, E. M. (1996), Three approaches for characterizing NOM, Journal American Water Works Association, 88(6), 66-79.
Korshin G. V., Benjamin, M. M. & Sletten, R. S. (1997), Adsorption of natural organic matter(NOM) on iron oxide: effect on NOM compounds and formation of organo-halide compounds during chlorination, Water Research, 31(7), 1643-1650.
Khan, E., R. W. Babcock, Suffet I. H. & Stenstorm, M. K. (1998), Biodegradable dissolved organic carbon for indicating wastewater reclaimation plant performance and treated wastewater quality, Water Environmental Research, 70(5), 1033-1040.
Krasner, S.W. (1999), Chemistry of disinfection by-products formation on formation and control of disinfection by-products in drinking water, Chapter 2. American Water Works Association.
Keith, W. W., Ellen, H. R. & Hunter, E. S. (2000), Comparative pathogenesis of haloacetic acid and protein Kinase inhibitor embryotoxicity in mouse whole embryo culture, Toxicological Sciences, 53(1), 118-126.
Kitis, M., Karanfil, T., Wigton, A. & Kilduff, J. E. (2002), Probing Reactivity of dissolved organic matter for disinfection by-product formation using XAD-8 resin adsorption and ultrafiltration fractionation, Water Research, 3834-3848.
Langlais, B. & Reckhow, D. A. (1991), Ozone in water treatment: application and engineering, Lewis Publisher, Inc., Chelsea, MI (Eds.).
Linder, R. E., Klinefelter, G. R., Strader, L. F., Suarez, J. D. & Dyer. C. J. (1994), Acute spermatogenic effects of bromoacetic acids, Toxicological Sciences, 22(3), 422-430.
Leenheer, J. A., Brown, G. K., Maccarthy P. & Cabaniss, S. E. (1998), Models of Metal Binding Structures in Fulvic Acid From the Suwannee River, Georgia, Environmental Science & Technology, 32(16) , 2410-2416.
Li, X.Y. & Chu, H. P. (2003) Membrane bioreactor for drinking water treatment of polluted surface water supplies, Water Research, 37(19), 4781-4791.
Liang, L, & Singer, P. C. (2003), Factors Influencing the formation and relative distribution of haloacetic acids and trihalomethanes in drinking water, Water Science and Technology, 2920-2928.
Martin, M. B., Croue, J. P., Lefebvre, E. & Legube, B. (1997), Distribution and characterization of dissolved organic matter of surface waters, Water Research, 31, 541-553.
Membrane Products Dept. b. Polyethylene Microporous Hollow fiber Membrane. Mitsubishi Rayon Co., LTD.
Marhaba T. F. & Washington M. B. (1998), Drinking water disinfection and byproducts: history and current practice, Advances in Environmental Research, 2(1), 103-115.
Martin, M. B., Croue, J. P., Lefebvre, E. & Legube, B. (1997), Distribution and characterization of dissolved organic matter of surface waters, Water Research, 31, 541-553.
Membrane Products Dept. b. Polyethylene Microporous Hollow fiber Membrane. Mitsubishi Rayon Co., LTD.
Miller, J. H., Minard, K., Wind, R. A., Oener, G. A., Sasser, L. B. & Bull, R. J. (2000), In vivo MRI measurements of tumor growth induced by dichloroacetate. Implications for mode of action, Toxicology, 145(2-3), 115-125.
Nobel, P.A., Clark, D.L. & Olson, B.H. (1996), Biological stability of groundwater, Journal American Water Works Associatio, 88(5), 87-96.
Nazim, C., Hans, W., Makram, T. S. , Brian, E. W., Vincent, U. & Jacque , M. (1998), Effectiveness of the membrane bioreactor in the biodegradation of high molecular weight compounds, Water Research, 32(5), 1553-1563.
Nishilima, W., Kim, W. H., Shoto, E. & Okada, M. (1998), The performance of an ozonation-biological activated carbon process under long term operation, Wat. Sci. Tech. 38(6), 163-169.
Noblet, J., L. Schweitzer, E. Ibrahim, K. D. Stolzenbach, L. Z. & Suffet, I. H. (1999), Evaluation of a Taste and Odor Incident on The Ohio River, Water Science and Technology, 40(6), 185-193.
Ogoshi, M. & Suzuki, y. (1999), Application of membrane separation to an easily installed municipal wastewater treatment plant, International Specialized Conference on Membrane Technology in Environmental Management, Tokyo, Japan, 250-255.
Parrish, J. M., Austin, E. W., Stevens, D. K., Kinder, D. H. & Bull, R. J. (1996), Haloacetate-induced oxidative damage to DNA in the liver of male B6C3F1 mice, Toxicology, 110(1-3), 103-111.
Pierre Cote Herve Buisson (1997), Charles pound immersed membrane activated sludge for the reuse of municipal wastewater, Desalination, 113, 189-196.
Pempkowial, J., Kozuch J. & Grzegowska, H. (1999), Biological vs. Chemical Properties of Natural Organic Matter Isolated From Selected Norwegian Lakes, Environment International, 25(2-3) , 357-366.
Pearce, G. K., Heijnen, M. & Reckhouse, J. (2002), Using ultrafiltration membrane technology to meet UK Cryptosporidium regulations, Membrane Technology, 2002(1), 6-9.
Stacpoole, P. W. (1989), The pharmacology of dichloroacetate, Metabolism, 38(11), 1124-1144.
Stevens, A. A., Moore, L. A. & Miltner, R. J. (1989), Formation and control of non trihalomethane disinfection by-products, Journal American Water Works Association, 81(8), 54-59.
Scholler, M., van Dijk, J. C. & Wilms, D. (1991), Fluidized bed pellet reactor to recover metals or anions, Metal Finishing, 11, 46-50.
Singer, P. (1994), Control of disinfection by-products in drinking water, Journal of environment Engineering, 120(4), 727-774.
Siddiqui, M. S., Amy, G. L. & Murphy, B. D. (1997), Ozone enhance removal of organic matter from drinking water sources, Water Research, 31(12), 3098-3106.
Seo, G.T., Lee, T., Moon, B. H., Lim, J. H., Lee, K.S., Ohgaki, S. (1999), Two stage intermittent aeration membrane bioreactor for simultaneous or nic, nitrogen and phosphorus removal, International specialized conference on membrane technology in environmental management, Tokyo, Japan, 234-241.
Schneider, O. D. & Tobiason, J. E. (2000), Preozonation effects on coagulation, Journal American Water Works Association, 92(10), 74-87.
Sadiq, R. & Rodriguez, M. J. (2004), Disinfection by-products (DBPs) in drinking water and predictive models for their occurrence: a review, Science of The Total Environment, 321, 21-46.
Seo, G. T., Moon, C. D., Chang, S. W. & Lee, S. H. (2004), Long term operation of high concentration powdered activated carbon membrane bioreactor for advanced water treatment, Water Science Technology, 50(8), 81-87.
Su, D. J. & Gao, N. Y. (2005), A study of removing organic matters in slightly -polluted water by an ozone-active carbon combined process, Ind.WaterWaste-water, 32, 26-28.
Sagbo, O., Sun, Y. X., Hao, A. L., & Gu, P. (2008), Effect of PAC addition on MBR process for drinking water treatment, Separation and Purification Technology, 58(3), 320-327.
Thurman, E. M. & Malcolm, R. L. (1981), Preparative isolation of aquatic humic substance, Environmetal Science & Technology, 15(4), 463-466.
Thurman, E. M. (1985), Organic geochemistry of natural water, Martinus Nijhoff, Dr. W. Junk Publisher, Dordrecht, The Netherl, 15-17.
Toth, G. P., Kelty, K. C., George, E. L., Read, E. J. & Smith, M. K. (1992), Adverse male reproductive effects following subchronic exposure of rats to sodium dichloroacetate, Funfamental & Applied Toxicology, 19(1), 57-63.
Thompson , D., Mourato , D., Penny , J. (1998), Demonstration of the ZenoGem process for municipal wastewater treatment, WEF Annual Conference, Chicago.
Tatsuki Ueda and Kenji Hata (1999), Domestic wastewater treatment by a submerged membrane bioreactor with gravitational filtration, Water Research, 33(12), 2888-2892.
Tom, S., Simon, J., Bruce, J. & Keith, B. (2000), Membrane bioreactors for wastewater treatment, IWA, LONDON.
Tsai, H. H., Ravindran, V., Williams, M. D. & Pirbazari, M. (2004), Forecasting the performance of membrane bioreactor process for groundwater denitrification, Journal of Environmental Engineering and Science, 3(6), 507-521.
Tian, J. Y., Liang, H., You, S. J., Tian, S. & Li ,G. B. (2008), Membrane coagulation bioreactor(MCBR) for drinking water treatment, Water Research, 42, 3910-3920.
Tiana, J. Y., Liang, H., Yang, Y. L., Tian, S.& Li, G. B. (2008), Membrane adsorption bioreactor (MABR) for treating slightly polluted surface water supplies: as compared to membrane bioreactor (MBR), Journal Membrane Science, 325, 262-270.
Urbansky, E.T. & Magnuson, M. L. (2002), Analyzing drinking water for disinfection byproducts, Analytical Chemistry, 5(1), 261A-267A.
Van Der Kooij, D., Visser, A. and Hijnen, W. A. M. (1982) Determining the concentration of easily assimilable organic carbon in drinking water, Journal American Water Works Association. Vol. 74, No. 10, 540-545.
Van der Kooij, D., Hijnen, W.A.M. & Kruithof, J.C. (1989), The effect of ozonation, biological filtration and distribution on the concentration of easily assimilable organic carbon (AOC) in drinking water, Ozone: Science & Engineering, 11, 297-311.
Van Der Kooij, D. (1990) Assimilable organic carbon (AOC) in drinking Water, Drinking Water Microbiology, G. A. Mcfeter, ed.,Springer-Verlag, New York.
Van Der Kooij, D. & Veenendaal, H.R. (1995) Determination of the concentration of easily assimilable organic carbon (AOC) in drinking water with growth measurements using pure bacterial cultures, SWE 95.002, KIWA, Nieuwegein, Netherlands.
Van der Kooij, D., van Lieverloo, J.H.M., Schellart, J.A. & Hiemstra (1999) Distributing drinking water without disinfectant highest achievement or height of folly, Journal of Water Supply: Research and Technology Aqua.Vol. 48, No.1, 31-37.
Villanueva, C. M., Kogevinas, M. & Grimalt, J. O. (2003), Haliacetic acids and trihalomethanes in fished grinking waters from heterogeneous sources, Water Research, 37, 953-958.
Williams, D., LeBel, G.L. & Benoit, F. (1997), Disinfection by-products in Canadian drinking water, Chemosphere, 34(29), 299-316.
Wisniewski, C. & Grasmick, A. (1998), Floc size distribution in a membrane bioreactor and consequences for membrane fouling, Colloid Surfaces, 138(2-3), 403-411.
Wen, C., Huang, X. & Qian, Yi. (1999), Domestic wastewater treatment using an anaerobic bioreactor coupled with membrane filtration, Process biochemistry, 35, 335-340.
Wang, X. D., Wang, L., Liu, Y. & Duan, W. S. (2007), Ozonation pretreatment for ultrafiltration of the secondary effluent, Journal of Membrane Science, 287(2), 187-191.
Xing, C.H., Qian, Y., Wen, X.H. Wu, W.Z. & Sun, D. (2001), Physical and biological characteristics of a tangential-flow MBR for municipal wastewater treatment, Journal Membrane Science, 191, 31-42.
Xie, Y. F. (2004), Disinfection by-products in drinking water: formation, analysis and control, Lewish Publishers. USA.
Yamamoto K. (1994),Membrane filtration in rapid filtration, Biological Filtration and Membrane Filtration, Gihodo Shuppan, Tokyo, 255.
Zhang, B., Yamamoto, K., Ohgaki, S. & Kamiko, N. (1997), Floc size distribution and bacterial activities in membrane separation activated sludge processes for small-scale wastewater treatment reclamation, Water Science and Technology, 35(6), 37-44.
Zhou, H. J. & Y. F. Xie, (2002a), Using BAC.for HAA removal part 1: batch study, Journal American Water Works Association, 94(4), 194-200.
Zhou, H. J. & Xie, Y. F. (2002b), Using BACfor HAA removal part 2: column study, Journal American Water Works Association, 94(5), 126-134.
Zhang, M. M., Li, C., Benjamin, M. M. & Chang, Y. J. (2003), Fouling and natural organic matter removal in adsorbent/membrane systems for drinking water treatment, Environmental Science and Technology, 37(8), 1663-1669.
唐瑋彥,(2003),以加強混凝去除三鹵甲烷前質,國立台灣大學環境工程研究所碩士論文。
賴文亮,(2002),各種淨水程序對生物可分解有機質及消毒副產物之控制,國立成功大學環境工程研究所。
樓基中,(2005),大高雄地區自來水水質提升之調查研究第二年,台灣省自來水股份有限公司委託計畫報告(93MOEATWC201)。
樓基中、蔣本基,(1991),飲用水中腐植酸氯化反應生成機制之研究, 中國環境工程學刊,1(2),57-64。
李丁來,(2003),大高雄地區自來水後續改善工程計畫簡介,自來水會刊。
黃文鑑,(1997),混凝、吸附對溶解性有機物去除及受預氯影響之研究,國立成功大學環境工程研究所博士論文。
黃鈺茹、黃登福,(2007),自來水中氯化消毒副產物之飲用安全性,自來水協會會刊,26(3),23-37。
蔣本基,(1985),加氯池水力改進對三鹵甲烷生成量及消毒效率影響之研究(Ι),國立台灣大學環境工程研究所研究報告。
蔣本基、樓基中、孫昀,(1986),改變前加氯位置對淨水廠三鹵甲烷生成量影響之研究(II),國立台灣大學環境工程研究所研究報告。
張慧?隉A(2004),台灣地區飲用水中含鹵乙酸之分析與流佈調查,國立台灣大學公共衛生學院環境衛生研究所碩士論文。
張慧?隉A2003,台灣地區飲用水中含鹵乙酸之分析與流佈調查,臺灣大學環境衛生研究所碩士論文。
曾四恭、劉志仁,(1997),優養化水源消毒副產物之研究,自來水會刊,16(3),35-46。
葉宣顯,(1998),本省自來水水源溶解性有機物成份之分析及現有淨水程序對其去除率之評估,國立成功大學環境工程學系研究報告。
飲用水水質標準(2004), http://www.epa.gov.tw/j/drinkwater/law/law04.htm.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 44.200.169.91
論文開放下載的時間是 校外不公開

Your IP address is 44.200.169.91
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code