Responsive image
博碩士論文 etd-0724112-030207 詳細資訊
Title page for etd-0724112-030207
論文名稱
Title
在鎵酸鋰基板上經由與氨氣擴散形成M面(10-10)氮化鎵
The formation of m-plane (10-10) GaN on LiGaO2 substrates via diffusion with NH3
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
82
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-06-05
繳交日期
Date of Submission
2012-07-24
關鍵字
Keywords
奈米多孔、氮化鎵、鎵酸鋰、氨氣、氮化反應
Nanoporous., GaN, LiGaO2, NH3, Nitridation
統計
Statistics
本論文已被瀏覽 5677 次,被下載 0
The thesis/dissertation has been browsed 5677 times, has been downloaded 0 times.
中文摘要
  本論文利用a-plane (100) 鎵酸鋰(LiGaO2,LGO)基板會與氨氣(NH3)在高溫下進行氮化反應而在表面形成m-plane (10-10)氮化鎵(Gallium Nitride,GaN),分別改變反應的溫度、氨氣流量、壓力與時間四個部分進行研究。
  試片經由各種儀器分析。由X光繞射圖譜中得知在鎵酸鋰基板上氮化反應後可形成單一晶向的氮化鎵薄膜。並隨著氮化反應的參數改變而能改進其結晶品質。由掃描式電子顯微鏡影像中發現氮化鎵為奈米多孔結構。在拉曼光譜中,氮化鎵E2(high)模式的紅位移說明了相較於氮化鎵單晶,多孔氮化鎵中是存有壓縮應力的。光致螢光光譜中可看出隨著參數改變,光致螢光光譜的強度比(INBE/IYL)變大,也就是改善了氮化鎵的光學與結晶品質。霍爾量測的結果發現其為p-type氮化鎵,具有高載子濃度,不錯的遷移率與低電阻率。利用歐傑電子能譜中分析多孔氮化鎵的各種元素縱深分布。在穿透式電子顯微鏡的量測中觀察到多孔氮化鎵的高倍率橫截面影像,與從選區繞射圖中確認當zone axis為[0001]時,多孔氮化鎵與鎵酸鋰基板具有[100]LGO//[10-10]GaN與[0-10]LGO//[11-20]GaN的晶向關係。
Abstract
  In this thesis, the formation of m-plane (10-10) Gallium nitride (GaN) on the surface of a-plane (100) lithium gallate (LiGaO2, LGO) substrates via nitridation with ammonia (NH3) at high temperature. The parameters in this research were mainly focus on temperature, ammonia flow rate, reaction pressure, and growth time.
  Specimens were analyzed with various instruments. X-ray Diffraction patterns showed that the nitridation process on LGO substrate resulted in the formation of the GaN single crystalline films. The crystalline quality of the GaN film could be improved by changing parameters of nitridation process. Scanning electron microscope image showed that the structure of GaN films was nanoporous. A red shift in the E2(high) phonon peak of GaN from micro-Raman indicates a compressive stress in the porous GaN with respect to the single crystalline epitaxial GaN. PL intensity ratio (INBE/IYL) of the porous GaN was found to be increased as changing parameters of nitridation process, namely the optical and crystalline quality of porous GaN was improved. Hall measurement showed that the porous GaN was p-type, and it had high hole concentration, good mobility, and low resistivity. Analyses of the elements depth profile by Auger electron spectroscopy. Transmission electron microscopy was used to observe the high resolution cross-section of porous GaN. From the selected area electron diffraction patterns, the orientation relationship between porous and LGO was determined as [100]LGO//[10-10]GaN and [0-10]LGO//[11-20]GaN when zone axis was [0001].
目次 Table of Contents
論文審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 v
表目錄 vii
圖目錄 viii

第一章 序論 1
第二章 文獻回顧與理論基礎 3
2.1 文獻回顧 3
2.2 氮化鎵(GaN)的結構與特性 8
2.3 鎵酸鋰(LiGaO2)的結構與特性 12
2.4 研究動機 14
第三章 實驗方法與步驟 15
3.1 實驗介紹 15
3.2 實驗裝置 17
3.2.1 反應氣體輸送裝置 17
3.2.2 高溫反應爐 17
3.2.3 真空及排氣裝置 18
3.3 實驗步驟 19
3.3.1 基板裁切與清洗 19
3.3.2 放置試片於高溫爐內 19
3.3.3 生長前抽氣並通氮氣清潔管內 19
3.3.4 控壓與升溫至反應溫度進行反應 20
3.3.5 降溫與取出試片 20
3.4 量測系統簡介 21
3.4.1 X光繞射分析儀(X-Ray Diffraction, XRD) 21
3.4.2 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 22
3.4.3 拉曼光譜儀(Raman Spectroscopy) 22
3.4.4 光致螢光光譜儀(Photoluminescence Spectroscopy, PL) 23
3.4.5 霍爾效應量測(Hall effect measurement) 23
3.4.6 歐傑電子能譜儀(Auger Electron Spectroscopy, AES) 25
3.4.7 穿透式電子顯微鏡(Transmission Electron Microscope, TEM) 26
第四章 結果與討論 28
4.1 反應溫度對鎵酸鋰基板與氨氣反應的影響 28
4.1.1 X光繞射分析 29
4.1.2 掃描式電子顯微鏡分析 32
4.2 氨氣流量對鎵酸鋰基板與氨氣反應的影響 36
4.2.1 X光繞射分析 36
4.2.2 掃描式電子顯微鏡分析 38
4.3 反應壓力對鎵酸鋰基板與氨氣反應的影響 39
4.3.1 X光繞射分析 39
4.3.2 掃描式電子顯微鏡分析 41
4.3.3 拉曼光譜分析 43
4.3.4 光致螢光光譜分析 46
4.3.5 霍爾效應量測分析 48
4.3.6 歐傑電子能譜分析 52
4.3.7 穿透式電子顯微鏡分析 54
4.4 反應時間對鎵酸鋰基板與氨氣反應的影響 58
4.4.1 X光繞射分析 58
4.4.2 掃描式電子顯微鏡分析 60
第五章 結論 63
參考文獻 65
參考文獻 References
[1] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Room-temperature continuous-wave operation of InGaN multi-quantum-well structure laser diodes with a lifetime of 27 hours”, Appl. Phys. Lett., 70, 1417 (1997).
[2] S. M. Kang, T. I. Shin, D. V. Dihn, J. H. Yang, S. Kim, and D. H. Yoon, “Synthesis and properties of triangular-shaped GaN nanorods via growth mode control”, J. Cryst. Growth, 311, 490 (2009).
[3] X. Wang and A. Yoshikawa, “Molecular beam epitaxy growth of GaN, AlN and InN”, Prog. Cryst. Growth Charact. Mater., 48/49, 42 (2004).
[4] Y. Nanishi, Y. Saito, and T. Yamaguchi, “RF-Molecular Beam Epitaxy Growth and Properties of InN and Related Alloys”, Jpn. J. Appl. Phys., 42, 2549 (2003).
[5] J. Wu and W. Walukiewicz, “Band gaps of InN and group III nitride alloys”, Superlattices Microstructures, 34, 63 (2003).
[6] H. X. Jiang, S. X. Jin, J. Li, J. Shakya, and J. Y. Lin, “III-nitride blue microdisplays”, Appl. Phys. Lett., 78, 1303 (2001).
[7] T.Ishii, Y. Tazoh, and S. Miyazawa, “Single-crystal growth of LiGaO2 for a substrate of GaN thin films”, J. Cryst. Growth, 186, 409 (1998).
[8] X.M. Cai, A.B. Djurišić, and M.H. Xie, “GaN nanowires: CVD synthesis and properties”, Thin Solid Films, 515, 984 (2006).
[9] J. I. Pankove, “ Gallium Nitride (GaN) I ”, New York: Academic Press, (1998).
[10] H. P. Maruska and J. J. Tietjen, “THE PREPARATION AND PROPERTIES OF VAPOR-DEPOSITED SINGLE-CRYSTAL-LINE GaN”, Appl. Phys. Lett., 15, 327 (1969).
[11] S. Yoshida, S. Gonda, and S. Misawa,“Improvements on the electrical and luminescent properties of reactive molecular beam epitaxially grown GaN films by using AlN‐coated sapphire substrates”, Appl. Phy. Lett., 42, 427 (1983).
[12] S. Pal and C. Jacob, “Silicon—a new substrate for GaN growth”, Bull. Mater. Sci., 27, 501 (2004).
[13] H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer”, Appl. Phys. Lett., 48, 353 (1986).
[14] H. Amano, M. Kito, K. Hiramatsu, and Akasaki, “P-Type Conduction in Mg-Doped GaN Treated with Low-Energy Electron Beam Irradiation (LEEBI)”, Jpn. J. Appl. Phys., 28, L2112 (1989).
[15] S. Nakamura, “GaN Growth Using GaN Buffer Layer”, Jpn. J. Appl. Phys., 30, L1705 (1991).
[16] S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, “Thermal Annealing Effects on P-Type Mg-Doped GaN Films”, Jpn. J. Appl. Phys., 31, L139 (1992).
[17] S. Nakamura, M. Senoh, and T. Mukai, “High‐power InGaN/GaN double‐heterostructure violet light emitting diodes”, Appl. Phys. Lett., 62, 2390 (1993).
[18] S. Nakamura, T. Mukai, and M. Senoh, “Candela‐class high‐brightness InGaN/AlGaN double‐heterostructure blue‐light‐emitting diodes”, Appl. Phys. Lett., 64, 1687 (1994).
[19] P. Kung, A. Saxler, X. Zhang, D. Walker, R. Lavado, and M. Razeghi, “Metalorganic chemical vapor deposition of monocrystalline GaN thin films on β‐LiGaO2 substrates”, Appl. Phys. Lett., 69, 2116 (1996).
[20] T. Ishii, Y. Tazoh, and S. Miyazawa, “LiGaO2 single crystal as a lattice-matched substrate for hexagonal GaN thin films”, J. Cryst. Growth, 189/190, 208 (1998).
[21] P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. H. Ploog, “Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes.”, Nature , 406, 865 (2000).
[22] C. K. Inoki, T. S. Kuan, C. D. Lee, A. Sagar, R. M. Feenstra, D. D. Koleske, D. J. Diaz, P. W. Bohn, and I. Adesida, “Growth of GaN on Porous SiC and GaN Substrates.”, J. Electron. Mater., 32, 855 (2003).
[23] D. H. Lee, J. J. Jang, B. H. Kong, H. K. Cho, and O. Nam, “Regrowth of Semipolar GaN on Nanoporous GaN Template by Metal Organic Chemical Vapor Deposition”, Jpn. J. Appl. Phys., 49, 058001 (2010).
[24] M. G. Mynbaeva and D. V. Tsvetkov, in Compound Semiconductors 1996, Institute of Physics Publishing, Philadelphia, 365 (1997)
[25] D. Kisailus and F. F. Lange, “Growth of epitaxial GaN on LiGaO2 substrates via a reaction with ammonia”, J. Mater. Res., 16, 2077 (2001).
[26] X. Li, Y. W. Kim, Paul W. Bohn and I. Adesida, “In-plane bandgap control in porous GaN through electroless wet chemical”, Appl. Phys. Lett. 80, 980 (2002)
[27] M. Losurdo, D. Giuva, G. Bruno, S. Huang, Tong-Ho Kim, and April S. Brown, “The surface modification and reactivity of LiGaO2 substrates during GaN epitaxy”, J. Cryst. Growth, 264, 139 (2004).
[28] C. F. Lin, J. H. Zheng, Z. J. Yang, J. J. Dai, D. Y. Lin, C. Y. Chang, Z. X. Lai, and C. S. Hong, “High-efficiency InGaN-based light-emitting diodes with nanoporous GaN:Mg structure”, Appl. Phys. Lett., 88, 083121 (2006).
[29] S. Ohira, M. Yoshioka, T. Sugawara, K. Nakajima, and T. Shishido, “Fabrication of hexagonal GaN on the surface of β-Ga2O3 single crystal by nitridation with NH3”, Thin Solid Films, 496, 53 (2006).
[30] H. J. Lee, T. I. Shin, and D. H. Yoon, “Influence of NH3 gas for GaN epilayer on β-Ga2O3 substrate by nitridation”, Surface & Coatings Technology, 202, 5497 (2008).
[31] Mitch M.C. Chou, Chenlong Chen, D.R. Hang, and Wen-Ting Yang, “Growth of nonpolar m-plane GaN epitaxial film on a lattice-matched (100) β-LiGaO2 substrate by chemical vapor deposition”, Thin Solid Films, 519, 5066 (2011).
[32] 廖帥吾,「氫化物汽相磊晶法生長氮化鎵(0002)於LiGaO2基板之研究」,國立中山大學材料與光電科學學系碩士論文, (2011).
[33] T. Lei, M. Fanciulli, R. J. Molnar and T. D. Moustakas, “Epitaxial growth of zinc blende and wurtzitic gallium nitride thin films on (001) silicon”, Appl. Phys. Lett., 59, 944 (1991).
[34] J. Karpinski and S. Porowski, “High pressure thermodynamics of GaN”, J. Cryst. Growth, 66, 11 (1984).
[35] J.A. Van Vechten, “Quantum Dielectric Theory of Electronegativity in Covalent Systems. III. Pressure-Temperature Phase Diagrams, Heats of Mixing, and Distribution Coefficients”, Phys. Rev. B, 7, 1479 (1973).
[36] P. Lefebvre, A. Morel, M. Gallart, T. Taliercio, J. Allegre, B. Gil, H. Mathieu, B. Damilano, N. Grandjean, and J. Massies, “High internal electric field in a graded-width InGaN/GaN quantum well: Accurate determination by time-resolved photoluminescence spectroscopy”, Appl. Phys. Lett. 78, 1252 (2001).
[37] C.Q. Chen, M. E. Gaevski, W. H. Sun, E. Kuokstis, J. P. Zhang, R. S. Q. Fareed, H. M. Wang, J. W. Yang, G. Simin, M. A. Khan, Herbert-Paul Maruska, David W. Hill, Mitch M. C. Chou, and Bruce Chai, “GaN homoepitaxy on freestanding (1-100) oriented GaN substrates”, Appl. Phys. Lett. 81, 3194 (2002).
[38] E. Kuokstis, C. Q. Chen, M. E. Gaevski, W. H. Sun, J. W. Yang, G. Simin, M. Asif Khan, H. P. Maruska, D. W. Hill, M. C. Chou, J. J. Gallagher, and B. Chai, “Polarization effects in photoluminescence of C- and M-plane GaN/AlGaN multiple quantum wells”, Appl. Phys Lett. 81, 4130 (2002).
[39] M. D. Craven, S. H. Lim, F. Wu, J. S. Speck, and S. P. DenBaars, “Structural characterization of nonpolar (110) a-plane GaN thin films grown on (102) r-plane sapphire”, Appl. Phys. Lett. 81, 469 (2002).
[40] H. M. Ng, “Molecular-beam epitaxy of GaN/AlxGa1−xN multiple quantum wells on R-plane (102) sapphire substrates”, Appl. Phys. Lett. 80, 4369 (2002).
[41] L. Liu and J.H. Edgar, “Substrates for gallium nitride epitaxy”, Materials Science and Engineering R, 37, 61 (2002).
[42] T. Kuykendall, P. J. Pauzauskie, Y.F. Zhang, J. Goldberger, D. Sirbuly, J. Denlinger, and P. Yang, “Crystallographic alignment of high-density”, Nature Materials, 3, 524 (2004).
[43] A. Kuramata, K. Horino, and K. Domen., “GaN-based Blue Laser Diodes Grown on SiC Substrate as Light Source of High-density Optical Data Storage”, FUJITSU Sci. Tech. J., 34, 191 (1998).
[44] H. Morkoc, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, “Large‐band‐gap SiC, III‐V nitride, and II‐VI ZnSe‐based semiconductor device technologies”, J. Appl. Phys. 76, 1363 (1994).
[45] M. Marezio, “The crystal structure of LiGaO2”, Acta Cryst., 18, 481 (1965).
[46] 黃瑞蓮、陳俊龍,「AES/ESCA表面分析技術於工業材料研究之應用」, 工業材料, 80 ,57 (1993).
[47] O. Madelung, Semiconductors: Data Handbook, 106 (2003).
[48] J. Neugebauer and C. G. Van de Walle, “Gallium vacancies and the yellow luminescence in GaN”, Appl. Phys. Lett. 69, 503(1996).
[49] X. G. Qiu, Y. Segawa, Q. K. Xue, Q. Z. Xue, and T. Sakurai, “Influence of threading dislocations on the near-bandedge photoluminescence of wurtzite GaN thin films on SiC substrate”, Appl. Phys. Lett. 77, 1316 (2000).
[50] R. Armitage, W. Hong, Q. Yang, H. Feick, J. Gebaur, E. R. Weber, S. Hautakangas, and K. Saarinen, “Contributions from gallium vacancies and carbon-related defects to the “yellow luminescence” in GaN”, Appl. Phys. Lett. 82, 3457 (2003).
[51] Y. Aoyagi, M. Takeuchi, S. Iwai, and H. Hirayama, “Formation of AlGaN and GaN epitaxial layer with high p-carrier concentration by pulse supply of source gases”, AIP Advances, 2, 012177 (2012).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.138.134.107
論文開放下載的時間是 校外不公開

Your IP address is 3.138.134.107
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code