Responsive image
博碩士論文 etd-0724112-144519 詳細資訊
Title page for etd-0724112-144519
論文名稱
Title
寬波段量子點太陽電池之研究
Study on Broadband Quantum Dots Solar Cells
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
83
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-06-26
繳交日期
Date of Submission
2012-07-24
關鍵字
Keywords
太陽電池、分子束磊晶(MBE)、砷化銦鎵、光伏特效應、非對稱性量子點、調變摻雜
photovoltaic effect, modulation doping, InGaAs, molecular beam epitaxy, solar cell, asymmetric quantum dots
統計
Statistics
本論文已被瀏覽 5698 次,被下載 0
The thesis/dissertation has been browsed 5698 times, has been downloaded 0 times.
中文摘要
本論文研究主旨為提升非對稱性量子點(AMQD)太陽能電池轉換效率。樣品
來源為利用實驗室分子束磊晶(MBE)儀器於砷化鎵基板上成長非對稱性量子點
結構。為了提升樣品的光伏特效應,我們引入量子井以及井內調變摻雜結構來探
討應力以及內建電場所造成的影響。
實驗分析上,我們利用光激螢光量測系統分析非對稱性量子點結構的光學性
質,接著將量測結果作 Gaussian fitting 來分析非對稱性量子點的發光特性。此外,
我們更利用量測光電流、外部量子效率、電致吸收、電調制反射光譜對磊晶結構
加以分析比對,並且在太陽光照度為 AM1.5 下得到光伏特基本參數。
由分析結果發現,量子點結構能有效地藉由吸收額外的光子來提升光電流,
然而成長量子點後所殘留的應力會導致開路電壓嚴重的損失。為了減緩應力所造
成的晶格缺陷並且增加載子的汲取,我們引入成長溫度不同的量子井結構,以及
在量子井內進行不同類型的摻雜。由數據分析顯示,高溫成長的量子井結構可有
效提升磊晶品質,減少非輻射性的複合,以及高濃度的 p 型摻雜有效提升光電流
的萃取。由上述改善磊晶品質過程,轉換效率得以超越砷化鎵基板的轉換效率。
除此之外,我們更藉由適度的表面濕蝕刻使樣品減少表面性的複合,以及將電極
圖形最佳化得到了一個最佳的轉換效率 V OC = 0.74 V,J SC = 18.82 mA/cm
2 ,FF = 0.78,η = 10.86% 。
Abstract
The purpose of the thesis is enhancing efficiency of asymmetric quantum dots
(AMQD) solar cells. The AMQD structures are grown on the n-type GaAs substrate
by (MBE). In order to enhance the photovoltaic characteristics, we introduce InGaAs
quantum well (QW) and modulation doping in the well to investigate effect of the
strain relief and built-in electric field in the active layer.
In our experiment, we analyze the optical property of AMQD structures by
photoluminescence measurement system, and then decompose emission wavelength
by Gaussian fitting to find optical characteristics of each single layer quantum dots.
Besides, we also measure photocurrent spectra, external quantum efficiency, electrical
absorption, and electro reflectance spectra to discuss carrier transition inside AMQD
structure . Finally, we acquire the photovoltaic basic parameter under one sun.
The results show that QDs provide additional photocurrent via absorbing extra
photons, but the open circuit voltage decrease seriously due to the accumulated strains.
So as to relieve the strains and enhance carriers extraction, we introduce QW layers
with different growth temperatures and change the modulation doping concentrations .
From the results, the higher growth temperature for QW diminishes accumulated
strains, and the higher p-type modulation doping concentration indicates an
extraction enhancement due to the stronger built-in electric field. By optimizing QW
growth conditions, the efficiency has overtaken GaAs baseline cells. In addition, we
improve the photon-excited current collection by using matrix pattern and wet etching
on the device surface, the best photovoltaic characteristic shows V OC = 0.74 V, J SC =
18.82 mA/cm2, FF = 0.78, η= 10.86%.
目次 Table of Contents
論文審定書............................................................................................................... i
誌謝............................................................................................................................. iii
中文摘要......................................................................................................................iv
英文摘要....................................................................................................................... v
第一章 緒論................................................................................................................. 1
1-1 前言 ............................................................................................................. 1
1-2 Ⅲ-Ⅴ族量子點太陽電池 ............................................................................ 1
1-3 實驗動機 ..................................................................................................... 3
第二章 實驗樣品與介紹............................................................................................. 5
2-1 寬波段量子點太陽電池結構 ..................................................................... 5
第三章 量測系統與架構........................................................................................... 10
3-1 光激螢光量測 ........................................................................................... 10
3-2 電調制反射光譜量測 ............................................................................... 11
3-3 電致螢光量測 ........................................................................................... 12
3-4 光電流量測 ............................................................................................... 13
3-5 電致吸收量測 ........................................................................................... 15
3-6 量測元件 mesa 製程步驟 ......................................................................... 16
第四章 實驗結果與分析........................................................................................... 21
4-1 螢光光譜比較與分析 ............................................................................... 21
4-2 元件光譜吸收分析 ................................................................................... 39
4-3 外部量子效率(EQE) ................................................................................. 55
4-5 照光 I-V curve 量測 .................................................................................. 58

第五章 結論............................................................................................................... 67
參考文獻 .................................................................................................................... 69
參考文獻 References
[1] J. Zhao, A. Wang, P.Altermatt, and M. A. Green, ”Twenty-four percent efficient
silicon solar cell with double layer antireflection coatings and reduced resistance
loss”, Appl. Phys. Lett. 66, 26(1995)
[2] O. Schultz, S.W. Glunz, G..P. Willeke, “Multicrystalline silicon solar cells
exceeding 20% efficiency,” Progress in Photovoltaics, Vol.12 (2004).
[3] R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon,
R. A. Sherif, and N. H. Karam, “40% efficient metamorphic GaInP/GaInAs/Ge
multijunction solar cells”, Appl. Phys. Lett. 90, 1835162007.
[4] W. Guter, J. Schöne, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser,
E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple-junction solar cell
reaching 41.1% conversion efficiency under concentrated sunlight”, Appl. Phys.
Lett. 94, 223504 (2009).
[5] William Shockley and Hans J. Queisser,” Detailed Balance Limit of Efficiency
of p-n Junction Solar Cells”, Appl. Phys. Lett. 32, (1961)
[6] Katsuaki Tanabe, A Review of Ultrahigh Efficiency III-V Semiconductor
Compound Solar Cells: Multijunction Tandem, “Lower Dimensional, Photonic
Up/Down Conversion and Plasmonic Nanometallic Structures”, Energies
504-530, 2(3) (2009).
[7] M. Kondow, K. Uomi, A. Niwa, T. Kitatani, S. Watahiki, Y. Yazawa, ” GaInNAs:
A Novel Material for Long-Wavelength-Range Laser Diodes with Excellent
High-Temperature Performance”, Jpn. J. Appl.Phys. 35, 1273–1275 (1996).
[8] D.B. Jackrel, S.R. Bank, H.B. Yuen, M.A. Wistey, J.S. Harris, “Dilute nitride
GaInNAs and GaInNAsSb solar cells by molecular beam epitaxy”, J. Appl.
Phys. 101,114916 (2007).
[9] L.Cuadra, A. Marti, A. Luque,” Present staus of intermediate band solar cell
research”, Thin Solid Films 451-452 (2004).
[10] A. Luque, A. Martı, “Increasing the efficiency of ideal solar cells by photon
induced transitions at intermediate levels”, Phys. Rev. Lett. 5014–5017, 78(26)
(1997)
[11] T. Sugaya, S. Furue, H. Komaki, T. Amano, M. Mori, K. Komori, S. Niki, O.
Numakami, and Y. Okano, ” Highly stacked and well-aligned In 0.4 Ga 0.6 As
quantum dot solar cells with In 0.2 Ga 0.8 As cap layer”, Appl. Phys. Lett. 97,
183104 (2010)
[12] S. M. Hubbard, C. D. Cress, C. G. Bailey, R. P. Raffaelle, S. G. Bailey, and D.
M.Wilt, ”Effect of strain compensation on quantum dot enhanced GaAs solar
cells”, Appl. Phys. Lett. 92, 123512 (2008).
[13] Denis Guimard, , Ryo Morihara, Damien Bordel, Katsuaki Tanabe,
Yuki Wakayama, Masao Nishioka, and Yasuhiko Arakawa, ”Fabrication of
InAs/GaAs quantum dot solar cells with enhanced photocurrent and without
degradation of open circuit voltage”, Appl. Phys. Lett. 96, 203507 (2010)
[14] X. D. W. H. Y. Liua, J. Wu, B. Xu, Y. Q. Wei, W. H. Jiang, D. Ding, X. L. Ye, F.
Lin. J. F. Zhang, J. B. Liang, and A. Z. G. Wang, “Structural and optical
properties of self-assembled InAs/GaAs quantum dots covered by In x Ga 1-x As”,
Appl. Phys. Lett. Vol.88, pp 3392-3395, 2000..
[15] A.J. Nozik,” Quantum dot solar cells.”, Physica E 14 (2002).
[16] M. Sugawara, “Self-assemble InGaAs/GaAs quantum dots”, Semiconductors and
Semimetals, 60, Academic press, 1999.
[17] M. J. Ludowise, R. A. LaRue, P. G. Borden, P. E. Gregory, and W. T. Dietze,”
High-efficiency organometallic vapor phase epitaxy AIGaAs/GaAs monolithic
cascade solar cell using metal interconnects”, Appl. Phys. Lett. 41, 550 (1982)
[18] Kazuhisa Uomi, Tomoyoshi Mishima and Naoki Chinone, “Modulation-Doped
Multi-Quantum Well (MD-MQW) Lasers. II. Experiment”, Jpn. J. Appl. Phys. 29,
88-94 (1990).
[19] David J.Y. Feng, C.L. Chiu, E.Y. Lin, T.S. Lay, and T.Y. Chang,
“Modulation-doped InGaAlAs/InP semiconductor optical amplifier structures
grown by molecular beam epitaxy,” Jpn. J. of Appl 45, 2426-2429 (2006).
[20] Michael Y. Levy, Christiana Honsberg, Antonio Martí, Antonio Luque, “Quantum
dots intermediate band solar cell material systems with negligible valence band
offsets”, Presented at the 31 st IEEE Photovoltaics Specialist Conference (2005)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.137.171.121
論文開放下載的時間是 校外不公開

Your IP address is 3.137.171.121
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code