Responsive image
博碩士論文 etd-0724112-190240 詳細資訊
Title page for etd-0724112-190240
論文名稱
Title
一氧化碳分子在鎢(111)和鎢奈米粒子(Wn (n=10–15))表面 之氧化行為
The Oxidation of Carbon Monoxide on W(111) surface and Wn (n=10–15) nanoparticles
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
170
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-06-15
繳交日期
Date of Submission
2012-07-24
關鍵字
Keywords
鎢(111)表面、氧化反應、一氧化碳分子、催化劑、鎢奈米粒子、密度泛函理論
DFT, oxidation, CO molecule, tungsten nanoparticles, catalysts, W(111) surface
統計
Statistics
本論文已被瀏覽 5645 次,被下載 269
The thesis/dissertation has been browsed 5645 times, has been downloaded 269 times.
中文摘要
本論文係利用密度泛函理論研究一氧化碳分子在鎢(111)和鎢奈米粒子(Wn (n=10–15))的氧化反應,分析尺寸效應和基板表面結構對一氧化碳分子的氧化行為的影響,主要分成兩個部份:

第一部份:氧氣分子和一氧化碳分子在鎢(111)和鎢奈米粒子(Wn (n=10–15))的吸附和解離行為。氧氣分子和一氧化碳分子在固態催化劑上的吸附是一氧化碳的氧化反應過程中的一個非常重要局部反應,在這個研究中我們計算了氧氣和一氧化碳分子在表面上的吸附結構、吸附能、振動頻率和電子結構以了解鎢(111)和鎢奈米粒子的活性。結果證明氧氣分子和一氧化碳分子吸附在鎢奈米粒子表面比在鎢(111)的表面上還要更穩定。本論文利用微動彈性帶方法(Nudged Elastic Band (NEB))去尋找化學反應過程的最小反應路徑和過渡態,計算獲得氧氣分子在鎢奈米粒子(Wn (n=10–15))的所需的解離能障比在鎢(111)表面的還要小,證實尺寸效應和表面結構明顯會影響吸附分子的吸附及解離性質。密度泛函理論搭配分子動力學(DFT-MD)也被利用去研究氧氣分子沉積在鎢(111)表面上的動態行為,藉由觀察沉積過程中的能量和鍵長變化發現氧氣分子與鎢原子間的交互作用將弱化氧氣分子間的鍵結,進而使氧氣分子產生解離。此外,基板表面的氧氣覆蓋率也將影響沉積氧氣分子的解離機率。

第二部份:一氧化碳分子在鎢(111)和鎢奈米粒子表面的氧化機制
一氧化碳分子的氧化在過渡金屬上一般遵循著Eley-Rideal (ER)機制及Langmuir-Hinshelwood (LH)。 ER機制的反應步驟為:(1) 氧氣分子吸附在固態催化物表面;(2)氣相中的一氧化碳分子去碰撞一個吸附的氧氣分子,產生一個二氧化碳分子在氣相。 LH機制的反應步驟為:(1)氧氣分子與一氧化碳分子共同吸附在固態催化物表面;(2)氧氣分子解離成兩個氧原子;(3)氧原子擴散並與吸附的一氧化碳分子互相靠近並形成吸附的二氧化碳分子;(4)吸附的二氧化碳分子從催化物上脫附至氣相。本論文根據這兩種機制去研究一氧化碳分子在鎢(111)和鎢奈米粒子的氧化反應,並針對以下三種反應路徑: (1) CO + O2→CO2 + O、(2) CO + O + O→CO2 + O 和 (3) CO + O→CO2找出最小反應路徑及過渡態。 研究結果表示一氧化碳分子在鎢(111)和鎢奈米粒子的氧化反應是較喜歡透過ER機制而不是LH機制。此外,一氧化碳分子的氧化在反應路徑(1)比其它兩種反應路徑更容易發生。
Abstract
This dissertation employs the density functional theory (DFT) to investigate the oxidation of carbon monoxide (CO) on the W(111) surface and on the surface of Wn (n=10–15) nanoparticles. Since the properties of materials are significantly dependent on material size, we look into the influence of both the size and surface structure of tungsten catalysts on the CO oxidation process. The work contains two parts.

Part 1: The adsorption and dissociation of O2 and CO on W(111) surface and Wn (n=10–15) nanoparticles. The chemical adsorption of O2 and CO on solid catalysts plays a very important role in heterogeneous catalysis for the CO oxidation reaction. The configurations, adsorption energies, vibration frequencies and electronic structures of adsorbates on W(111) and Wn (n=10–15) nanoparticles have been calculated to investigate their surface activity. The results indicate that adsorption of O2 and CO on Wn (n=10–15) nanoparticles are more stable compared to on the W(111) surface. The minimum energy pathways and transition states of chemical reaction processes on metal surfaces were also studied by the nudged elastic band (NEB) method. The dissociation barriers of O2 chemisorbed on Wn (n=10–15) nanoparticles are smaller those for the W(111) surface. Our results demonstrate that both the surface structure and size of metal significantly influence the adsorption and dissociation properties of adsorbates. Density functional theory-molecular dynamics (DFT-MD) simulation was also adapted to clarify the mechanism of O2 deposition on the W(111) surface. Observations of the variations of energy and bond lengths as a function of time show that the interaction between O2 and W atoms weakens the O–O bond, giving rise to the dissociation process. We conclude that the dissociation probability of an O2 molecule is affected by chemisorbed O2 coverage in the vicinity.

Part 2: The mechanism of CO oxidation on W(111) and Wn nanoparticles.
The oxidation of the CO molecule on transition metals usually follows two reaction pathways, either the Eley-Rideal (ER) mechanism or the Langmuir-Hinshelwood (LH) mechanism. In the ER mechanism, the CO molecule in the gas phase reacts directly with activated O2. The LH mechanism generally involves a few elementary steps, namely the co-adsorption of the O2 and CO molecules, O2 dissociation to form atomic oxygen, diffusion of atomic oxygen, and desorption of CO2. The oxidation of CO on a W10 nanoparticle surface and the W(111) surface are investigated by DFT calculations. Three pathways were studied in this dissertation: (i) CO + O2→CO2 + O, (ii) CO + O2→CO + O + O→CO2 + O and (iii) CO + O→CO2 via both LH and ER mechanisms. The calculated results show that CO oxidation on both the W10 nanoparticle and W(111) surfaces follow the ER rather than the LH mechanism. The CO oxidation on the W10 nanoparticle and W(111) surfaces occurs most easily via pathway (i) as compared to other two.
目次 Table of Contents
Contents ….....................................................………... ......I
List of Figures ...........................................................…......IV
List of Tables ................................................………….......X
List of Symbols ...........................……………………........XII
List of Abbreviations ……………………………..……....XIV
中文摘要…………………………………………..……..…XVI
Abstract ..………………………………………..…………XVIII
Chapter 1 Introduction …………………..………………..1
1–1 Design of catalysts ………………………………….2
1–2 Heterogeneous catalysis …....………………...……7
1–3 Tungsten (W) metal………..…………….. …………10
1–4 Motivation……………………………………..…......…14
1–5 Outline of the dissertation ………………………......16
Chapter 2 Literature Review …….………………...……..18
2–1 Chemistry of O and O2 on different transition metals …….........................................................................................18
2–2 Chemistry of CO and CO2 on different transition metals …...............................................................................25
2–3 Studies of CO oxidation on different transition metals ……….....................................................................................32
2–4 Structural and catalytic characteristics of W nanoparticles ……...............................................................34
Chapter 3 Theories and Methods ………...…………………...……….......................................36
3–1 Density Functional Theory (DFT) ……….................36
3–1–1 DFT introduction ……………………….………….36
3–1–2 Hohenberg and Kohn Theorems ………....…….38
3–1–3 Kohn and Sham Theory……………...…….…......39
3–2 Density Functional Theory-Based Molecular Dynamics (DFT-MD) ……………………………………………………42
3–2–1 Equation of motion ……………………………… 42
3–2–2 Ensembles …………………………………………44
3–2–3 Nose-Hoover thermostat………………….………46
3–3 Methods for chemical analysis …………………......47
3–3–1 Searching activation sites ……………………......47
3–3–2 Calculation of adsorption and co-adsorption energies……….......................................................................49
3–3–3 Nudged elastic band (NEB) method for finding the minimum energy pathways (MEP) ….......…50
3–3–4 Electronic structure …………………………..……51
Chapter 4 Mechanism of O2 on W(111) Surface ……… 53
4–1 Adsorption and dissociation of O2 on W(111) surface ...............................................................................................…53
4–1–1 Theoretical methods and simulation model ………….…….........................................................................53
4–1–2 Results and discussion…………...…….………54
4–2 Adsorption and dissociation of O2 on W(111) surface: a DFT-MD study …………………………………………….63
4–2–1 Theoretical methods and simulation model …..63
4–2–2 Results and discussion…………………………..63
Chapter 5 Mechanism of O2 and CO on Wn (n=10–15) nanoparticles ........................................................................69
5–1 Wn (n=10–15) nanoparticles …………………….....69
5–1–1 Theoretical methods and simulation models ...69
5–1–2 Lowest-energy structure and stabilities of Wn (n=10–15) nanoparticles ……….......................................70
5–1–3 Electronic properties…….………….……………..71
5–2 Adsorption properties of O and O2, and dissociation of O2 on Wn(n=10–15) nanoparticles……..………………..75
5–2–1 Theoretical methods and simulation models …75
5–2–2 Results and discussion…………………………..76
5–3 Adsorption properties of C and CO, and dissociation of CO on Wn (n=10–15) nanoparticles……..……………….85
5–3–1 Theoretical methods and simulation models ..85
5–3–2 Results and discussion………………… .……….86
Chapter 6 Mechanism of CO Oxidation on W metals… .94
6–1 CO oxidation on W(111) surface and W10 nanoparticle……..…...............................................................94
6–1–1 Simulation methods and model ………….……...94
6–1–2 The co-adsorption of CO + O2, CO2 + O, and CO + O ……........................................................................................95
6–1–3 Reaction profile for CO oxidation on the W10 nanoparticle and W(111) surfaces …………………..…...97
6–1–4 A comparison of CO oxidation on the W10 nanoparticle and W(111) surfaces with transition metals....................................................................................103
6–1–5 Analysis of charge and electronic state during CO oxidation ……………………………..……….….…....…...104
Chapter 7 Conclusions and Future Development ……123
7–1 Conclusions………………………………...………....123
7–1–1 Studies of the adsorption and dissociation of O2 and CO on W surfaces ………….….………….………….123
7–1–2 Studies of the CO oxidation on W surfaces…….125
7–2 Future development…………....………………..…....126
References …………………….………...….......................127
參考文獻 References
[1] P. Sabatier, “Hydrogenation and dehydrogenation by catalysis” Ber. Deut. Chemi. Gesell. 44, 1984 (1911).
[2] G. Rothenberg. “Catalysis: concepts and green applications” Wiley-VCH. p.65 (2008).
[3] H. A. Gasteiger, N. M. Markovic, and P. N. Ross Jr, “H2 and CO electrooxidation on well-characterized Pt, Ru, and Pt-Ru. 2. rotating disk electrode studies of CO/H2 mixtures at 62 .degree.C” J. Phys. Chem. 99,16757–16767 (1995).
[4] K. Y. Chen, Z. Sun, and A. C. C. Tseung, “Preparation and characterization of high-performance Pt-Ru/WO3-C anode catalysts for the oxidation of impure hydrogen” Electrochem. Solid. St. 3, 10–12 (2000).
[5] H. A. Gasteiger, N. M. Markovic, and P. N. Ross Jr, “Electrooxidation of CO and H2/CO mixtures on a well-characterized Pt3Sn electrode surface” J. Phys. Chem. 99, 8945–8949 (1995).
[6] S. Zhou, G. S. Jackson, and B. Eichhorn, “AuPt alloy nanoparticles for CO-tolerant hydroge activation: architectural effects in Au-Pt bimetallic nanocatalysts” Adv. Funct. Mater. 17, 3099–3104 (2007).
[7] Y. M. Wu, W. S. Li, J. Lu, J. H. Du, D. S. Lu, and J. M. Fu, “Electrocatalytic oxidation of small organic molecules on polyaniline-Pt-HxMoO3” J. Power Sources. 145, 286–291(2005).
[8] S. Alayoglu, A. U. Nilekar, M. Mavrikakis, and B. Eichhorn, “Ru–Pt core–shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen” Nature Materials. 7, 333–338 (2008).
[9] J. K. Norskov, T. Bligaard, J. Rossmeisl, and C. H. Christensen, “Towards the computational design of solid catalysts” Nature Chemistry. 1, 37–46 (2009).
[10] T. Engel and G. Ertl, “The Chemical Physics of Solid Surfaces and Heterogeneous Catalysis” Elsevier, New York (1982).
[11] C. H. F. Peden, “Surface Science of Catalysis: In Situ Probes and Reaction Kinetics” American Chemical Society, Washington, DC, (1992).
[12] M. R. Hoffmann, S. T. Martin; W. Choi, and D. W. Bahnemann, “Environmental applications of semiconductor photocatalysis” Chem. Rev. 95, 69–96. (1995).
[13] H.-J. Freund, “Clusters and islands on oxides: from catalysis via electronics and magnetism to optics” Surf. Sci. 500, 271–299 (2002).
[14] J. T. Kummer, “Use of noble metals in automobile exhaust catalysts” J. Phys. Chem. 90, 4747–4752 (1986).
[15] http://puregreencoatings.com/images/pgc_science.png
[16] www.cateran.com.au/cateran/data.aspx
[17] V. Khatko, E. Llobet, X. Vilanova, J. Brezmes, J. Hubalek, K. Malysz, and X. Correig, “Gas sensing properties of nanoparticle indium-doped WO3 thick films” Sens. Actuat. B-Chem. 111–112, 45–51 (2005).
[18] Y. K. Chung, M. H. Kim, W. S. Um, H. S. Lee, J. K. Song, S. C. Choi, K. M. Yi, M. J. Lee, and K. W. Chung, “Gas sening properties of WO3 thick film for NO2 gas dependent on process condition” Sens. Actuat. B-Chem. 60, 49–56 (1999).
[19] D. S. Lee, S. D. Han, J. S. Huh, and D. D. Lee, “Field effect transistor type NO2 Sensor combined with NaNO2 auxiliary phase” Sens Actuator B-Chem. 60, 57–63 (1999).
[20] M. A. Butler, “Photoelectrolysis and physical properties of the semiconducting electrode WO2” J. Appl. Phys. 48, 1914–1920 (1977).
[21] S. J. Wang, C. H. Chenm, S. C. Chang, and K. M. Uang, “Growth and characterization of tungsten carbide nanowires by thermal annealing of sputter-deposited WCx films” Appl. Phys. Lett. 85, 2358–2360 (2004).
[22] R. B. Levy, M. Boudart, “Platinum-like behavior of tungsten carbide in surface catalysis” Science, 181, 547–549 (1973).
[23] X. G. Yang and C. Y. Wang, “Nanostructured tungsten carbide catalysts f or polymer electrolyte fuel cells” Appl. Phys. Lett. 86, 224104(1)–224104(3) (2005).
[24] H. H. Hwu and J. G. Chen, “Potential application of tungsten carbides as electrocatalysts:  4. reactions of methanol, water, and carbon monoxide over carbide-modified W(110)” J. Phys. Chem. B. 107. 2029–2039 (2003).
[25] C. A. Angelucci, L. J. Deiner, and F. C. Nart, “On-line mass spectrometry of the electro-oxidation of methanol in acidic media on tungsten carbide” J. Solid state Electr. 12, 1599–1603 (2008).
[26] M. Rosenbaum, F. Zhao, U. Schroder, and F. Scholz, “Interfacing electrocatalysis and biocatalysis with. tungsten carbide: a high-performance, noble-. metal-free microbial fuel” Angew. Chem. Int. Ed. 45, 6658–6661 (2006).
[27] G. A. Tsirlina and O. A. Petrii, “Role of carbon deficiency and anodic activation in electrochemistry of carbide materials” Electrochim. Acta. 32, 637–647 (1987).
[28] B. Bozzini, G. P. De Gaudenzi, A. Fanigliulo, and C. Mele, “Electrochemical oxidation of WC in acidic sulphate solution” Corro. Sci. 46, 453–469 (2004).
[29] D. R. McIntyre, G. T. Burstein, and A. Vossen, “Effect of carbon monoxide on the electrooxidation of hydrogen by tungsten carbide” J. Power Sources. 107, 67–73 (2002).
[30] G. Hodes, D. Cahen, and J. Manassen, “Tungsten trioxide as a photoanode for a photoelectrochemical cell (PEC)” Nature. 260, 312–313 (1976).
[31] S. H. Wang, T. C. Chou, C. C. Liu, “Nano-crystalline tungsten oxide NO sensor” Sens. Actuators. B. 94, 475–485 (2003).
[32] P. Shaver, “Activated tungsten oxide gas detectors” Appl. Phys. Lett. 11, 255–257 (1967).
[33] A. A. Tomchenko, V. V. Khatko, and I. L. Emelianov, “WO3 thick films gas sensor” Sens. Actuators B. 46, 8–14 (1998).
[34] A. A. Tomchenko, I. L. Emelianov, and V. V. Khatko, “Tungsten trioxide-based thick-film NO sensor: design and investigation” Sens. Actuators B. 57, 166–170 (1999).
[35] M.A. Butler, R.D. Nasby, and R. K. Quinn, “Tungsten trioxide as an electrode for photoelectrolysis of water” Solid State Commun. 19,1011–1014 (1976).
[36] H. T. Chen, H. L. Chen, S. P. Ju, D. G. Musaev, and M. C. Lin, “Density functional studies of the adsorption and dissociation of NOx (x =1, 2) molecules on the W(111) surface” J. Phys. Chem. C. 113, 5300–5307. (2009).
[37] L. Chen, D. S. Sholl, and J. K. Johnson, “First principles study of adsorption and dissociation of CO on W(111)” J. Phys. Chem. B. 110, 1344–1349 (2006).
[38] H. L. Chen, S. P. Ju, H. T. Chen, D. G. Musaev, and M. C. Lin, “Adsorption and dissociation of the HCl and Cl2 molecules on W(111) surface : a computational study” J. Phys. Chem. C, 112, 12342–12348 (2008).
[39] H. T. Chen, D. G. Musaev, and M. C. Lin, “Adsorption and dissociation of COx (x=1, 2) on W(111) surface: a computational study” J. Phys. Chem. C, 112, 3341–3348 (2008).
[40] H. T. Chen, D. G. Musaev and M. C. Lin “Adsorption and dissociation of H2O on W(111) surface : a computational study” J. Phys. Chem. C, 111, 17333–17339 (2007).
[41] C. H. Nien, T. E. Madey, Y. W. Tai, T. C. Leung, J. G. Che, and C. T. Chan, “Coexistence of {011} facets with {112} facets on W(111) induced by ultrathin films of Pd” Phys. Rev. B. 59, 10335–10340 (1999).
[42] J. J. Kolodziej, T. E. Madey, J. W. Keister, and J. E. Rowe “Photoelectron spectroscopy studies of growth, thermal stability, and alloying for transition metal-tungsten (111) bimetallic systems” Phys. Rev. B. 65, 075413(1)–075413(12) (2002).
[43] C. H. Nien and T. E. Madey, “Atomic structures on faceted W(111) surfaces inducedby ultrathin films of Pd” Surf. Sci. Lett. 380, L527–L532 (1997).
[44] P. Ha﹐dzel, L. Jurczyszyn, and R. Kucharczyk, “Structural and electronic properties of the Ti/W(1 1 1) adsorption system” Surf. Sci. 603, 2507–2519 (2009).
[45] J. S. Luo and B. legrand, “Multilayer relaxation at surfaces of body-centered-cubic transition metals” Phy. Rev. B. 38, 1728–1733 (1988).
[46] J. Sokolov, F. Jona, and P. M. Marcus, “Multilayer relaxation of a clean bcc Fe{111} surface” Phys. Rev. B. 33, 1397–1400 (1986).
[47] H. Weidele, D. Kreisle, E. Recknagel, St. Becker, and H.-J. Kluge, “Thermionic electron emission of small tungsten cluster anions on the milliseconds time scale” J. Chem. Phys. 110, 8754–8766 (1999).
[47] A. Amrein, R. Simpson, and P. Hackett, “Multiphoton excitation, ionization, and dissociation decay dynamics of small clusters of niobium, tantalum, and tungsten: Timeresolved thermionic emission” J. Chem. Phys. 95, 1781–1800 (1991).
[47] T. Leisner, K. Athanassenas, D. Kreisle, E. Recknagel, and O. Echt, “Thermionic emission from free, photoexcited tungsten clusters” J. Chem. Phys. 99, 9670–9680 (1993).
[50] S. J. Oh, S. H. Huh, H. K. Kim, J. W. Park, and G. H. Lee, ”Structural evolution of W nano clusters with increasing cluster size” J. Chem. Phys. 111, 7402-7405 (1999).
[51] B. Baguenard, J. C. Pinare, C. Bordas, and M. Broyer, “Photoelectron imaging spectroscopy of small tungsten clusters: Direct observation of thermionic emission” Phys. Rev. A. 63, 023204(1)–023204(13) (2001).
[52] G. H. Lee, S. H. Huh,Y. C. Park, F. Hayakawa ,Y. Negishi, A. Nakajima, and K. Kaya, “Photoelectron spectra of small nanophase W metal cluster anions” Chem. Phys. Lett. 299. 309–314 (1999).
[53] Z. D. Hu, J. G. Dong, J. R. Lombardi, and D. M. Lindsay, “Optical and Raman spectroscopy of massselected tungsten dimers in argon matrices” J. Chem. Phys. 97, 8811–8812 (1992).
[54] J. B. Benziger, E. I. Ko, and Madix, “The characterization of surface carbides of tungsten” J. Catal. 54, 414–425 (1978).
[55] S. P. Cho, M. A. Bratescu, N. Saito, and O. Takai. “Microstructural characterization of gold nanoparticles synthesized by solution plasma processing” Nanotech. 22, 455701 (2011).
[56] V. A. Burtshev, N. V. Kalinin, and A. V. Luchinskii, “Electrical Explosion of Wires and Its Use in Electro-Physical Equipment” Energoatomizdat, Moscow (1980).
[57] J. E. Muňoz, J. Cervantes, R. Esparza, and G. Rosas, “Iron nanoparticles produced by high-energy ball milling” J. Nanopart. Res. 9, 945–950 (2007).
[58] G. H. Lee, S. H. Huh, and H. I. Jung, “Experimental evidence of structural transition from fcc to bulk bcc in nanophase metal clusters of (Fe)n, (Cr)n, (Mo)n and (W)n produced by CO2 laser multiphoton decomposition of metal carbonyls ” J. Mol. Struct. 440, 141–145 (1998).
[59] Wikipedia, http://en.wikipedia.org/wiki/Tungsten
[60] V. R. Stamenkovic, B. Fowler, B. S. Mun, G. F. Wang, P. N. Ross, C. A. Lucas, and N. M. Markovic, “Improved oxygen reductionactivity on Pt3Ni(111) via increased surfrce site availability” Science. 315, 493–497 (2007).
[61] V. R. Stamenkovic, B. S. Mun, M. Arenz, K. J. J. Mayrhofer, C. A. Lucas, G. F. Wang, P. N. Ross, and N. M. Markovic, “Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces” Nature. Mater. 6, 241–247 (2007).
[62] M. H. Shao, P. Liu, and R. Adzic. “Superoxide anion is the intermediate in the oxygen reduction reaction on platinum electrodes“ J. Am. Chem. Soc. 128, 7408–7409 (2006).
[63] J. Greeley and J. K. Norskov, “Combinatorial density functional theory-based screening of surface alloys for the oxygen reduction reaction” J. Phys. Chem. C. 113, 4932–4939 (2009).
[64] B. Shan, N. Kapur, J. Hyun, L. Wang, J. B Nicholas, and K. Cho. “CO-coverage-dependent oxygen dissociation on Pt(111) surface” J. Phys. Chem. C. 113, 710–715 (2009).
[65] A. Eichler and J. Hafner, “Molecular precursors in the dissociative adsorption of O2 on Pt(111)” Phys. Rev. Lett. 79, 4481–484 (1997).
[66] J. L. Gland, B. A. Sexton, and G. B. Fisher, “Oxygen interactions with the Pt(111) surface”, Surf. Sci. 95, 587–602 (1980).
[67] A. C. Luntz, M. D. Williams, and D. S. Bethune, “The sticking of O2 on a Pt(111) surface” J. Chem. Phys. 89, 4381–4395 (1988).
[68] H. Steininger, S. Lehwald, and H. Ibach, “Overtones and multiphonon processes in vibration spectra of adsorbed molecules” Surf. Sci. 117, 342–351 (1982).
[69] P. Gambardella, Ž. Šljivančanin, B. Hammer, M. Blanc, K. Kuhnke, and K. Kern, “Oxygen dissociation at Pt steps” Phys. Rev. Lett. 87, 056103(1)–056103(4) (2001).
[70] K. Honkala and K. Laasonen, “Ab initio study of O2 precursor states on the Pd(111) surface” J. Chem. Phys. 115, 2297–2302 (2001).
[71] R. Imbihl and J. Demuth, “Adsorption of oxygen on a Pd(111) surface studied by high resolution electron energy loss spectroscopy (EELS)” Surf. Sci. 173, 395–410 (1986).
[72] E. German and I. Efremenko, “Calculation of the activation energies of dissociative oxygen adsorption on the surfaces of rhodium (111), silver (111) and (110), and gold (111)” J. Mol. Struct. (Theochem), 711, 159–165 (2004).
[73] S. Schwegmann, H. Over, V. D. Renzi, and G. Ertl, “The atomic geometry of the O and CO+O phases on Rh(111)” Surf. Sci. 375, 91–106 (1997).
[74] B. Hammer and J. K. Norskov, “Theoretical surface science and catalysis - Calculations and concepts" Adv. Catal. 45, 71–129 (2000).
[75] S. Yotsuhashi, Y. Yamada, T. Kishi, W. A. Divno, H. Nakanishi, and H. Kasai, “Dissociative adsorption of O2 on Pt and Au surfaces: Potential-energy surfaces and electronic states” Phys. Rev. B. 77, 115413(1)–115413(6) (2008).
[76] N. Saliba, D. H. Parker, and B. E. Koel, “Adsorption of oxygen on Au(111) by exposure to ozone” Surf. Sci. 410, 270–282(1998).
[77] P. A. Gravil, D. M. Bird, and J. A White, “Adsorption and Dissociation of O2 on Ag( 110)” Phys. Rev. Lett. 77, 3933–3936 (1996)
[78] C. T. Campbell and M. Paffett, “The interaction of O2, CO and CO2 with Ag(110)” Surf. Sci. 143, 517–535 (1984).
[79] F. Buatier De Mongeot, A. Cupolillo, M. Rocca, U. Valbusa, H. J. Kreuzer, and S. H. Payne,” Sticking and thermal desorption of O2 on Ag(001)” J. Chem. Phys. 106, 711–719 (1997).
[80] M. Eder, K. Terakura, and J. Hafner, “stages of the oxidation of the (100) and (110) surfaces of iron caused by water” Phys. Rev. B. 64, 115426(1)–115426(7) (2001).
[81] H. L. Chen, H. T. Chen, and J. J. Ho, “Density functional studies of the adsorption and dissociation of CO2 molecule on Fe(111) surface” Langmuir, 26, 775–781 (2010).
[82] M. Sierka, T. K. Todorova, J. Sauer, S. Kaya, D. Stacchiola, J. Weissenrieder, S. Shaikhutdinov, and H. J. Freund,” Oxygen adsorption on Mo(112) surface studied by ab initio genetic algorithm and experiment” J. Chem. Phys. 126, 234710(1)- 234710(8) (2007)
[83] P. J. Feibelman, “Interpretation of O binding-site preferences on close-packed group-VIII metal surfaces” Phys. Rev. B, 59, 2327–2331 (1999).
[84] N. R.Avery, “An EELS and TDS study of molecular oxygen desorption and decomposition on Pt(111)” Chem. Phys. Lett. 96, 371–373 (1983).
[85] B. C. Stipe, M. A. Rezaei, and W. Ho, “Inducing and viewing the rotational motion of a single molecule” Science. 279, 1907–1909 (1998).
[86] T. Zambelli, J. V. Barth, J. Wintterlin, and G. Ertl, “Complex pathways in dissociative adsorption of oxygen on platinum” Nature. 390, 495–497 (1997).
[87] P. D. Nolan, B. R. Lutz, P. L. Tanaka, J. E. Davis, and C. B. M ullins,” "Molecularly chemisorbed intermediates to oxygen adsorption on Pt(111): a molecular beam and electron energy-loss spectroscopy study” J. Chem. Phys. 111, 3696–3704 (1999).
[88] Y. Suzuki and K. Yamashita, “Real-time electron dynamics simulation of the adsorption of an oxygen molecule on Pt and Au clusters” Chem. Phys. Lett. 486, 48–52 (2010).
[89] D. J. Miller, H. Oberg, L. -A. Naslund, T. Anniyev, H. Ogasawara, L. G. M. Pettersson, and A. Nilsson, “Low O2 dissociation barrier on Pt(111) due to adsorbate–adsorbate interactions” J. Chem. Phys. 133, 224701(1)–224701(7) (2010).
[90] P. Błoński, A. Kiejna, and J. Hafner, “Dissociative adsorption of O2 molecules on O-precovered Fe(110) and Fe(100): Density-functional calculations” Phys. Rev. B. 77, 155424(1)–155424(8) (2008).
[91] Y. Yang, G. Zhou, J. Wu, W. Duan, Q. K. Xue, B. L. Gu, P. Jiang, X. Ma, and S. B. Zhan, “The adsorption of O2 on Pb films and the effect of quantum modulation: A first-principles prediction” J. Chem. Phys. 128, 164705(1)–164705(5) (2008).
[92] P. Błoński, A. Kiejna, and J. Hafner, “Dissociative adsorption of O2 molecules on O-precovered Fe(110) and Fe(100): Density-functional calculations” Phys. Rev. B. 77, 155424(1) –155424(8) (2008).
[93] G. S. Blackman, M. L. Xu, D. F. Ogletree, M. A. Van Hove, and G. A. Somorjai. “Mix of molecular adsorption sites detected for disordered CO on Pt(111) by diffuse low-energy electron diffraction” Phys. Rev. Lett. 61, 2352–2355 (1988).
[94] L. K. Verheij, J. Lux, A.B. Anton, B. Poelsema, and G. Comsa,“A molecular beam study of the interaction of CO molecules with a Pt(111) surface using pulse shape analysis” Surf. Sci. 182, 390–410 (1987).
[95] P. J. Feibelman, B. Hammer, J. K. Norskov, F. Wagner, M. Scheffler, R. Stumpf, R. Watwe, and J. Dumesic, “The CO/Pt(111) puzzle” J. Phys. Chem. B, 105, 4018–4025 (2001).
[96] T. Giessel, O. Schaff, C. J. Hirschmugl, V. Fernandez, K. M. Schindler, A. Theobald, S. Bao, R. Lindsay, W. Berndt, A. M. Bradshaw, C. Baddeley, A. F. Lee, R. M. Lambert, and D. P. Woodruff, “A photoelectron diffraction study of ordered structures in the chemisorption system Pd{111}-CO” Surf. Sci. 406, 90–102 (1998).
[97] P. Sautet, M. K. Rose, J. C. Dunphy, S. Behler, and M. Salmeron, ” Adsorption and energetics of isolated CO molecules on Pd(111)” Surf. Sci. 453, 25–31 (2000).
[98] H. Unterhalt, P. Galletto, M. Morkel, G. Rupprechter, and H. J. Freund, “Sum frequency generation study of CO adsorption on palladium model catalysts” Phys. Stat. Sol. 188, 1495–1503 (2001).
[99] K. Lee, C. Song, and M. J. Janik, “Density functional theory study of sulfur tolerance of CO adsorption and dissociation on Rh–Ni binary metals” Appl. Catal. A-Gen, 389, 122–130 (2010).
[100] R. Davis, D. P. Woodruff, P. Hofmann, O. Schaff, V. Fernandez, K. M. Schindler; V. Fritzsche, and A. M. Bradshaw, “Local structure determination for low-coverage CO on Ni(111)” J. Phys.: Condens. Matter. 8, 1367–1379 (1996).
[101] J. P. Fulmer, F. Zaera, and W. T. Tysoe, “The orientation and bonding of CO on Mo(100) using angle- resolved photoelectron spectroscopy and near edge x- ray absorption fine structure” J. Chem. Phys. 87, 7265–7271 (1987).
[102] J. K. Norskov, “Effect of strain on the reactivity of metal surfaces” Phys. Rev. Lett. 81, 2819–2822 (1998).
[103] H. Over, W. Moritz, and G. Ertl, “Anisotropic atomic motions in structural analysis by low energy electron diffraction” Phys. Rev. Lett. 70, 315–318 (1993).
[104] N. Sheppard and T. T. Nguyen, “Advances in infrared and Raman spectroscopy” 5, p. 67. Heyden, London, (1978).
[105] L. C. Grabow, B. Hvolbak, and J. K. Norskov, “The effect of adsorbate-adsorbate interactions for CO oxidation over transition metals”, Top Catal. 53, 298–310 (2010).
[106] Y. H. Chen, D. B. Cao, Y. Jun, Y. W. Li, J. Wang, and H. Jiao, “Density functional theory study of CO adsorption on the Fe(111) surface”, Chem. Phys. Lett. 400, 35–41 (2004).
[107] S. P. Mehandru and P. Anderson, “Binding and orientations of CO on Fe(110), (100), and (111):  A surface structure effect from molecular orbital theory”, Surf. Sci. 201, 345–360 (1988).
[108] R. Klein, “Adsorption, diffusion, and evaporation of carbon monoxide on tungsten”, J. Chem. Phys. 31, 1306–1310(1959).
[109] S. Y. Lee, Y. D. Kim, S. N. Seo, C. Y. Park, H. T. Kwak, J. H. Boo, and S. B. Lee, “The interaction of CO and W(111) surface” Bull. Korean Chem. Soc. 20,1061–1066 (1999).
[110] C. Kohrt, and R.Gomer, “Adsorption of oxygen on the (110) plane of tungsten” J. Chem. Phys. 52, 3283–3294 (1970).
[111] S. Y. Lee, Y. D. Kim, T. S. Yang, J. H. Boo, S. C. Park, S. B. Lee, C. Y. Park, and H. T. Kwak, “Development of three dimensional neutron tomography system and its applications” Amer. Inst. Physics. 18, 1455–1459 (2000).
[112] I. Toyoshima and G. A. Somorjai, “Heats of chemisorption of O2, H2, CO, CO2, and N2 on polycrystalline and single crystal transition metal surfaces” Catal. Rev. Sci. Eng. 19, 105–159 (1979).
[113] M. Friend, J. G. Serafin, and E. K. Baldwin, P. A. Stevens, and R. J. Madix, “Bonding and adsorption structure of of CO on W(100)-(5×1)–C” J. Chem. Phys. 87. 1847–1850 (1987).
[114] J. T. Yates, Jr., T. E. Madey, N. E. Erickson, and S. D. Worley, “Adsorption and condensation of small molecules on tungsten (100) as studied using x-ray photoelectron spectroscopy” Chem. Phys. Lett. 39, 113–117 (1976).
[115] G. H. Ryu, S. C. Park, and S. B. Lee, “Molecular orbital study of the interactions of CO molecules adsorbed on a W(111) surface”, Surf. Sci. 419, 427–428 (1999).
[116] S. J. Choe, H. J. Kang, D. H. Park, D. S. Huh, and S. -B. Lee, “CO adsorption on Mo(110) studied using thermal desorption spectroscopy (TDS) and ultraviolet photoelectron spectroscopy (UPS)”, Bull. Kor. Chem. Soc. 25,1314–1320 (2004).
[117] Z. M. Liu, Y. Zhou, F. Solymosi, and J. M. White, “Spectroscopic study of K-induced activation of CO2 on Pt(111)” Surf. Sci. 245, 289–304 (1991).
[118] C. Egawa, I. Doi, S. Naito, and K. Tamaru, “Adsorption of methanol formaldehyde an formic acid on Pd(100) surface modified by a sodium and sodium oxide overlay”, Surf. Sci. 176, 491–504 (1986).
[119] E. M. Stuve, R. J. Madix, and B. A.Sexton, “An EELS study of CO2 and CO3 adsorbed on oxygen covered Ag(110)” Chem. Phys. Lett. 89, 48–53 (1982).
[120] H. Peled and M. Asscher, “Dissociative chemisorption of CO2 on a Re(0001) single crystal surface” Surf. Sci.183, 201–215 (1987).
[121] H. Behner, W. Spiess, G. Wedler, and D. Borgmann, “Interaction of carbon dioxide with Fe(110), stepped Fe(100) and Fe(111)”, Surf. Sci. 175, 276–286 (1986).
[122] Z. M. Liu,Y. Zhou, F. Solymosi, and J. M. White, “Vibrational study of carbon dioxide(1-) on potassium-promoted platinum (111)” J. Phys. Chem. 93, 4383–4385 (1989).
[123] B. Bartos, H.-J. Freund, H. Kuhlenbeck, M. Neumann, H. Lindner, and K. Muller, “Adsorption and reaction of CO2 and CO2/O CO-adsorption on Ni(110): angle resolver photo-emission (ARUPS) and electron energy loss (HREELS) studies”, Surf. Sci. 179, 59–89 (1987).
[124] L.H. Dubois and G.A. Somorjai, “The chemisorption of CO and CO2 on Rh(111) studied by high resolution electron energy loss spectroscopy” Surf. Sci. 91, 514–532 (1980).
[125] X. Y. Yang, Y. C. Wang, Z. Y. Geng, Z. Y. Liu,and H. Q. Wang, “Theoretical study on the reaction of W+ with CO2 in the gas phase” , J. Mol. Stru. (Theochem) 807, 49–54 (2007).
[126] A. Alavi, P. Hu, T. Deutsch, P. L. Silvestrelli, and J. Hutter. “CO Oxidation on Pt(111): An ab initio density functional theory study” Phys. Rev. Lett. 80, 3650–3653 (1998).
[127] S. Kandoi, A. A. Gokhale, L. C. Grabow, J. A. Dumesic, and M. Mavrikakis, “Why Au and Cu are more selective than Pt for preferential oxidation of CO at low temperature” Catal. Lett. 93, 93–100 (2004).
[128] L. Grabow, Y. Xu, and M. Mavrikakis, “Lattice strain effects on CO oxidation on Pt(111)” Phys. Chem. Chem. Phys. 8, 3369–3374 (2006).
[129] M. Nagasaka, H. Kondoh, I. Nakai, and T. Ohta, “CO oxidation reaction on Pt(111) studied by the dynamic Monte Carlo method including lateral interactions of adsorbates”, J. Chem. Phys. 126, 044704(1)–044704(7) (2007).
[130] P. J. Berlowitz, C. H. F. Peden, and D. W. Goodman, “Kinetics of CO oxidation on single-crystal Pd, Pt, and Ir” J. Phys. Chem. C. 92, 5213–5221 (1988).
[131] C. Zhang, P. Hu, and A. Alavi, “A general mechanism for CO oxidation on close-packed transition metal surfaces” J. Am. Chem. Soc. 121, 7931–7932 (1999).
[132] C. Scheffler and M. Scheffler, “Anomalous behavior of Ru for catalytic oxidation: a theoretical study of the catalytic reaction CO + 1/2O2→CO2” Phys. Rev. Lett. 78, 1500–1503 (1997).
[133] H. T. Chen, J. G. Chang, S. P. Ju, and H. L. Chen, “First-principle calculations on CO oxidation catalyzed by a gold nanoparticle” J. Comput. Chem. 31, 258–265 (2010).
[134] A. Bongiorno and U. Landman, “Water-enhanced catalysis of CO oxidation on free and supported gold nanoclusters” Phys. Rev. Lett. 95, 106102(1)–106102(4) (2005).
[135] W. T. Wallace and R. L.Whetten, “Coadsorption of CO and O2 on selected gold clusters: evidence for efficient room-temperature CO2 generation” J. Am. Chem. Soc. 124, 7499–7505(2002).
[136] H. Y. Kim, D. H. Kim, J. H. Ryu, and H. M. Lee, “Design of robust and reactive nanoparticles with atomic precision: 13Ag-Ih and 12Ag-1X (X= Pd, Pt, Au, Ni, or Cu) core-shell nanoparticles” J. Phys. Chem. C. 113, 15559–15564 (2009).
[137] F. Cirak, J. E. Cisternas, A. M. Cuitino, G. Ertl, P. Holmes, I. G. Kevrekidis, M. Ortiz, H. H. Rotermund, M. Schunack, and J. Wolff, “Oscillatory thermomechanical instability of an ultrathin catalyst” Science. 300, 1932–1936 (2003).
[138] X. Q. Gong, Z. P. Liu, R. Raval, and P. A Hu, “A systematic study of CO oxidation on metals and metal oxides: density functional theory Calculations” J. Am. Chem. Soc. 126, 8–9 (2004).
[139] J. Szanyi and D. W. Goodman, “CO oxidation on a Cu(100) catalyst” Catal. Lett. 21, 165–174 (1993).
[140] C. T. Campbell, G. Ertl, H. Kuipers, and J. Segner, “A molecular beam study of the catalytic oxidation of CO on a Pt(111) surface” J. Chem. Phys. 73, 5862–5873(1980).
[141] T. Engel and G. Ertl, “Elementary steps in the catalytic oxidation of the carbon monoxide on Pt metals” Adv. Catal. 28, 1–78 (1979).
[142] Z. P. Liu and P. Hu, “General trends in the barriers of catalytic reactions on transition metal surfaces” J. Chem. Phys. 115.4977–4951(2001).
[143] J. L. Gland and E. B. Kollin. “Carbon monoxide oxidation on the Pt111 surface: temperature programmed reaction of coadsorbed atomic oxygen and carbon monoxide” J. Chem. Phys. 78, 963–974 (1983).
[144] C. T. Campbell, S. C. Parker, and D. E. Starr, “The effect of size-dependent nanoparticle energetics on catalyst sintering” Science. 298, 811–814 (2002).
[145] G. Kresse and J. Hafner, “Ab initio molecular dynamics for liquid metals”, Phys. Rev. B. 47, 558–561 (1993).
[146] S. H. Joo, J. Y. Park, J. R. Renzas, D. R. Butcher, W. Huang, and G. A. Somorjai, “Size effect of ruthenium nanoparticles in catalytic carbon monoxide oxidation” Nano. Lett. 10, 2709–2713 (2010).
[147] J. Du, X. Sun, D. Meng, P. Zhang, and G. Jiang. “Geometrical and electronic structures of small Wn (n = 2–16) clusters” J. Chem. Phys. 131, 044313(1)-044313(10) (2009)
[148] Z. J. Wu, “Density functional study of W2 and W3 clusters” Chem. Phys. Lett. 370, 510–514 (2003).
[149] X. R. Zhang, X. L. Ding, B. Dai, and J. L. Yang, “Density functional theory study of Wn (n=2–4) clusters”, J. Mol. Struct. (Theochem) 757, 113–118 (2005).
[150] W. Yamaguchi and J. Murakami, “Geometries of small tungsten clusters”, Chem. Phys. 316, 45–52 (2005).
[151] P. Hohenberg and W. Kohn, “Inhomogeneous electron gas”, Phys. Rev. 136, B864–B871 (1964).
[152] R. G. Parr and W. Yang, “Density-functional theory of atoms and molecules”, Oxford University Press, New York, Oxford, (1989).
[153] W. Kohn and L. J. Sham, “Self-consistent equations including exchange and correlation effects” Phys. Rev. 140, A1133–A1138 (1965).
[154] R.O. Jones and O. Gunnarsson, “The density functional formalism, its applications and prospects” Rev. Mod. Phys. 61, 689–746 (1989).
[155] J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, “Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation” Phys. Rev. B. 46, 6671–6687 (1992).
[156] J. P. Perdew, K. Burke, and M. Ernzerh, “Generalized gradient approximation made simple” Phys. Rev. Lett. 77, 3865–3868 (1996).
[157] B. Hammer, L. B. Hansen, and J. K. Norskov, “Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals” Phys. Rev. B. 59, 7413–7421 (1999).
[158] A. D. Becke. “Density-functional exchange-energy approximation with correct asymptotic behavior”, Phys. Rev. A. 38. 3098–3100 (1988).
[159] S. W. Rick and S. J. Stuart, “Potentials and algorithms for incorporating polarizability in computer simulations”, Rev. Comp. Chem. 18, 89–146 (2002).
[160] D. Frenkel and B. Smit, “Understanding molecular simulation from algorithms to applications” Academic, New York, (2002).
[161] A. R. Leach, “Molecular modeling, principles and applications” 2/E., Addison Wesley Longman Limited (2001).
[162] S. Chretien, S. K. Buratto, and H. Metiu,”Catalysis by very small Au clusters”, Curr. Opin. Solid. St. M. 11, 62–75 (2007).
[163] R. G. Parr and W. Yang, “Density functional approach to the frontier-electron theory of chemical reactivity”, J. Am. Chem. Soc. 106, 4049–4050 (1984).
[164] W. Yang and W. J. Mortier, “The use of global and local molecular parameters for the analysis of the gas-phase basicity of amines” J. Am. Chem. Soc. 108, 5708–5711(1986).
[165] H. J′onsson, G. Mills, and K. W. Jacobsen, “Classical dynamics in condensed phase simulations”, World Scientific. 16, p.385 (1998).
[166] A. Ulitsky and R. Elber, “A new technique to calculate steepest descent paths in flexible polyatomic systems” J. Chem. Phys. 92, 1510–1511 (1990).
[167] G. Mills, H. Jonsson, and G. K. Schenter, “Reversible work transition state theory: application to dissociative adsorption of hydrogen” Surf. Sci. 324, 305–337 (1995).
[168] G. Mills and H. Jonsson, “Quantum and thermal effects in H2 dissociative adsorption: evaluation of free energy barriers in multidimensional quantum systems” Phys. Rev. Lett. 72, 1124–1127(1994
[169] M. Pozzo and D. Alfe, “Hydrogen dissociation on Mg(0001) studied via quantum Monte Carlo calculations” Phys. Rev. B. 78, 245313(1)–245313(5) (2008).
[170] M. R. Sorensen, K. W. Jacobsen, and H. Jonsson, “Thermal diffusion processes in metal-tip-surface interactions: contact formation and adatom mobility” Phys. Rev. Lett. 77. 5067–5070 (1996).
[171] M. Villarba and H. Jonsson, “Atomic exchange processes in sputter deposition of Pt on Pt(111)” Surf. Sci. 324, 35–46 (1995).
[172] J. Greeley, J. K. Norskov, and M. Mavrikakis, “Electronic structure and catalysis on metal surfaces”, Annu. Rev. Phys. Chem. 53, 319–348 (2002)
[173] P. E. Blochl, “Projector augmented-wave method” Phys. Rev. B. 50, 17953–17979 (1994).
[174] H. J. Monkhorst and J. D. Pack, “Special points for Brillouin-zone integrations” Phys. Rev. B. 13, 5188–5192(1976).
[175] P. Villars, L. D. Calvert, and W. B. Pearson, “Handbook of crystallographic data for informetallic phases” Acta Crystallogr. Sect. A. 40, C444–C444 (1984).
[176] H. H. Hwu, B. D. Polizzotti, and J. G. Chen, “Potential application of tungsten carbides as electrocatalysts. 2. coadsorption of CO and H2O on carbide-modified W(111)” J. Phys. Chem. B. 105, 10045–10053 (2001).
[177] W. Kohn, A. D. Becke, and R. G. Parr, “Density functional theory of electronic structure” J. Phys. Chem. 100, 12974–12980 (1996).
[178] K. A. Jackson, M. Horoi, I. Chaudhuri, T. Frauenheim, and A. A. Shvartsburg, “Unraveling the shape transformation in silicon clusters” Phys. Rev. Lett. 93, 013401(1)–013401(4) (2004).
[179] D. J. Wales and J. P. K. Doye, “Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms” J. Phys. Chem. A. 101, 5111–5116 (1997).
[180] V. Rosato, M. Guillope, and B. Legrand, “Thermodynamical and structural properties of f.c.c. transition metals using a simple tight-binding model” Philos. Mag. A-Phys. Condens. Matter. Struct. Defect. Mech. Prop. 59, 321–336 (1989).
[181] M. A. Karolewski, “Tight-binding potentials for sputtering simulations with fcc and bcc metals”, Radiat. Eff. Defects. Solids. 153, 239–255 (2001).
[182] B. Delley, “An all-electron numerical method for solving the local density functional for polyatomic molecules”, J. Chem. Phys. 92, 508-517 (1990). [183] D. C. Langreth and J. P. Perdew, “Theory of nonuniform electronic systems. I. Analysis of the gradient approximation and a generalization that works”, Phys. Rev. B. 21, 5469–5493 (1980).
[183] J. D. Gale, “GULP-A computer program for the symmetry adapted simulation of solids”, J. Chem. Soc-Faraday. Trans. 93, 629–637 (1997).
[184] M. D. Morse, “Clusters of transition-metal atoms”, Chem. Rev. 86, 1049–1109 (1986).
[185] L. Andrews and R. R. Smardzewski.”Argon matrix Raman spectrum of LiO2. bonding in the M+O2− molecules and the ionic model”, J. Chem. Phys. 58, 2258–2261(1973)
[186] G. Millsa, M. S. Gordonb, and H. Metiu, “The adsorption of molecular oxygen on neutral and negative. Aun clusters (n=2−5)” Chem. Phys. Lett. 359, 493–499 (2002).
[187] B. G. Johnson, P. M. W. Gill, and J. A. Pople, “The performance of a family of density functional methods”, J. Chem. Phys. 98 5612–5626 (1993).
[188] M. Haruta, S. Tsubota, T. Kobayashi, H. Kageyama, M. J. Genet, and B. Delmon “Low-temperature oxidation of CO over gold supported on TiO2,α-Fe2O3,and Co3O4” J. Catal. 144, 175-192 (1993).
[189] Z. P. Liu, P. Hu, and A. Alavi, “Catalytic role of gold in gold-based catalysts:  a density functional theory study on the CO oxidation on gold” J. Am. Chem. Soc. 124, 14770–14779 (2002).
[190] H. Y. Kim, S. S.Han, J. H. Ryu, and H. M. Lee, “balance in adsorption energy of reactants steers CO oxidation mechanism of Ag13 and Ag12Pd1 nanoparticles: association mechanism versus carbonate-mediated mechanism” J. Phys. Chem. C. 114, 3156–3160 (2010).
[191] I. A. Erikat, B. A. Hamad, and J. M. Khalifeh, “Catalytic oxidation of CO on Ir(100)” Phys. Status Solidi B. 248, 1425-1430 (2011).
[192] H. Y. Su, M. M. Yang, X. H. Bao, and W. X. Li, “Catalytic oxidation of CO on Ir(100)” J. Phys. Chem. C. 112, 17303–17310 (2008).
[193] A. Eichler, “CO oxidation on transition metal surfaces: reaction rates from first principle” Surf. Sci. 498. 314–320 (2002).
[194] A. Eichler and J. Hafner, “Reaction channels for the catalytic oxidationof CO on Pt(111)” Phys. Rev. B. 59, 5960–5967 (1999).
[195] M. P. Allen and D. J. Tildesley “Computer simulation of liquids” (Oxford: Oxford University Press) (1987)
[196] V. Mokrushin, V. Bedanov, W. Tsang, M. Zachariah, and V. Knyazev, ChemRate, version 1.19; NIST: Gaithersburg, MD, (2002).
[197] D. W. Blaylock, T. Ogura, W. H. Green, and G. J. O. Beran “Computational investigation of thermochemistry and kinetics of steam methane reforming on Ni(111) under realistic conditions” J. Phys. Chem. C. 113, 4898-4908 (2009).
[198] D. S. Monder and K. Karan, “Ab initio adsorption thermodynamics of H2S and H2 on Ni(111): the importance of thermal corrections and multiple reaction equilibria, J. Phys. Chem. C. 114, 22597–22602 (2010).
[199] A. F. Voter, “Classically exact overlayer dynamics: diffusion of rhodium clusters on Rh(100}” Phys. Rev. B. 34, 6819–6829 (1986).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code