Responsive image
博碩士論文 etd-0724114-130243 詳細資訊
Title page for etd-0724114-130243
論文名稱
Title
鋼鐵業煙道排放粒狀物之物化指紋特徵分析
Physicochemical Fingerprints of Particulate Matter Emitted from Stacks in a Steel Plant
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
164
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-06-06
繳交日期
Date of Submission
2014-08-24
關鍵字
Keywords
固定污染源、化學成份分析、指紋特徵、鋼鐵業、粒狀物、污染源解析
chemical analysis, stationary pollution source, particulate matter, Steel industry, physicochemical fingerprint, source identification
統計
Statistics
本論文已被瀏覽 5693 次,被下載 0
The thesis/dissertation has been browsed 5693 times, has been downloaded 0 times.
中文摘要
位於高雄小港區的臨海工業區為我國已開發規模最大的工業區之一,屬於綜合性工業區,而鋼鐵業係小港臨海工業區重要的固定污染源之一,包含一貫作業鋼鐵廠、電弧爐煉鋼廠等,並以懸浮微粒為主要排放污染物。目前針對國內鋼鐵業之固定污染源排放管道仍相當缺乏,因此盼能藉由採集鋼鐵業排放管道之粒狀污染物,分析其物化特性,並建立不同製程之指標元素,俾提供環保相關單位及研究機關規劃控制對策之參考,將有助於污染來源之判斷。
本研究首先蒐集鋼鐵工廠之製程排放管道懸浮微粒污染排放相關文獻,藉以瞭解小港工業區主要生產製程之粒狀物排放量,並針對小港工業區污染排放量較大之製程排放管道進行粒狀物採樣及化學成份分析。本研究採取排放管道排氣中之粒狀污染物測定其濃度或組成份含量時,係採用NIEA A101.73C「排放管道中粒狀污染物採樣及其濃度之測定方法」,進行粒狀污染物採樣,並瞭解其污染源排放污染物特徵與鋼鐵工業區之相關性。
各製程排放管道後端設有空氣污染控制設施,分別為袋式集塵器、靜電集塵器及脫硝設備等,操作條件大多數皆符合許可範圍,而各製程排放管道排放之粒狀污染物濃度約介於2.0-62.9 mg/Nm3之間,其中部份排放管道之粒狀污染物濃度遠低於排放標準及歷年檢測數值。
由各製程之排放管道粒狀物中水溶性離子成份分析結果顯示,陰離子平均濃度以SO42-為最高,其次為Cl-及F-,而陽離子平均濃度則以Ca2+為最高,其次為Na+及K+,Cl/Na比介於0.43-2.43之間,陰陽離子比則介於0.38-1.18之間;金屬元素成份分析結果,各排放管道平均濃度以Al為主要元素,其次為Fe、Ca、Zn、K等金屬元素;碳成份分析結果,有機碳(OC)平均濃度高於元素碳(EC)平均濃度,OC/EC比值介於0.68-4.58之間。
各製程排放粒狀物中水溶性離子SO42-之濃度偏高,其成因可能與物料成份有關,因原物料(如:煤、助熔劑、回收物料)及燃料(如:4-6號重油)所含硫份氧化後形成了二氧化硫,經過一些製程進行而轉化成硫酸鹽成份。另在煉鋼過程中,必須先去除雜質,故添加脫硫劑形成爐渣浮除,使得SO42-濃度偏高。燒結製程之Cl-及K+濃度較其他製程偏高,可能係原物料含廠內回收細料所致,因燒結製程中使用含氯及含鉀的化合物,造成高濃度Cl-及K+的釋出。
各製程排放管道中金屬元素Al成份為最高,可能係還原精煉過程中,鋼液內含有大量的氧,利用添加脫氧劑使與氧反應產生氧化鋁,以達脫氧目的。金屬元素Fe濃度僅次於Al,係因鋼鐵廠之主要原料成份含鐵礦石、廢鋼鐵及合金鐵,故Fe可視為煉鋼或煉鐵之重要金屬特徵元素。
燒結製程排放粒狀物中金屬元素K濃度高於其他製程,可能係原物料添加助熔劑所造成,導致金屬元素K偏高;金屬元素Fe及Ca之排放濃度偏高,係因燒結廠排放粒狀物中Fe2O3及CaO比例較高,粒狀物之電阻也較大,故無法藉由空氣污染防制設備來提高收集效率;煉焦製程金屬元素Ca濃度偏高,可能係原物料含有大量石灰石所致,故煉焦製程排放粒狀物中之指標金屬元素為Al、Fe及Ca。
燃煤鍋爐特徵元素為Al、Ca及Fe,金屬元素Ti濃度較其他製程排放管道高,因燃煤底灰含有金屬氧化物與微量元素,而Al、Fe、Ti為主要提煉回收金屬,故Ti可視為燃煤鍋爐之特徵元素之一。轉爐脫硫設備以電石當作脫硫劑,並添加副原料來促進製程反應,故Ca可視為轉爐煉鋼製程之特徵金屬元素。在電弧爐製程中,金屬元素Ni可視為製造不鏽鋼之特徵元素,金屬Zn及Pb則可視為製造碳鋼之特徵元素。
Abstract
Kaohsiung Lin-hai Industrial Park is an industrial complex and one of the largest industrial areas in Taiwan. Iron works is one of the important stationary sources in Kaohsiung Lin-hai Industrial Park, including an integrated iron and steel plant and several electric arc furnace plants, in which main air pollutants emitted are particulate matter. Currently the stack emission data is rather rare for the steel plants in Taiwan. Thus, this study aims to collect particulate matter emitted from the stacks of steel plants and further analyze its physical and chemical properties, in order to establish the elemental indicator(s) of different manufacturing processes. The results could provide valuable stack emission data to the environmental related governments and research institutes, for establishing air pollution control strategies and identifying potential emission sources.
In this study, we initially reviewed literature related to particulate matter emitted from the stacks of steel plants, and then conducted stack sampling and chemical analysis of particulate matter emitted from the stacks in Kaohsiung Lin-hai Industrial Park. This study applied a method for sampling and analysis of particulate matter from a stack (NIEA A101.73C) issued by The National Institute of Environmental Analysis for stacks sampling, and further correlated the characteristics of particulate matter with emission sources in the steel plant industrial park.
The air pollution control devices set up in the front of the stacks in the iron and steel manufacturing processes include fabric filter, electrostatic precipitator, and flue gas denitrification (FGDN) device, which mostly operated with the stack emission standard. The concentration of particulate matter emitted from the manufacturing processes ranged between 2.0-62.9 mg/Nm3, which were lower than the stack emission standards and previously detected data.
Results obtained from water-soluble ionic species of particulate matter in the flue gases emitted from stacks showed that the most abundant anion was SO42- and followed by Cl- and F-, while the most abundant cation was Ca2+ and followed by Na+ and K+. The molar ratio of Cl- to Na+ (Cl/Na) ranged between 0.43 and 2.43, while the molar ratio of anion to cation (A/C) ranged between 0.38 and 1.18. Elemental analysis of metals showed that Al was the major metallic element. In addition, the averaged OC concentration was higher than EC, and the OC/EC ratio ranged between 0.68 and 4.58.
Among all chemical species, SO42- was the major species of particulate matter in the steel manufacturing processes. It probably due to raw materials containing sulfur content, which could be oxidized to form sulfur dioxide and further converted to sulfate. Moreover, desulfurizer was generally added to remove impurities in the steelmaking processes, resulting in high concentration of SO42-. Using the recycling fines containing chloride and potassium ions caused higher concentrations of K+ and Cl- in the sintering process while compared to other manufacturing processes.
Aluminum was the most abundant metallic element of particulate matter emitted from the stacks. It possibly resulted from the reduction process for using aluminum oxide to remove oxygen form aluminum oxide ( or alumina). Iron was the second richest metal since steel plants used iron ore, waste steel, and alloy steel as raw materials. Therefore, iron was another elemental indicator of particulate matter emitted from iron and steel manufacturing processes.
Concentration of potassium in particulate matter emitted from sintering process was higher than those from other processes due to the usage of flux in the sintering process. The percentages of iron oxide (Fe2O3) and calcium oxide (CaO) in the particulate matter emitted from the sintering process were the highest. Accordingly, the concentration of iron and calcium elements became relatively higher. The particulate matter emitted from the sintering process with relatively high resistivities made it difficult to achieve high removal efficiency of particulate matter by applying electrostatic precipitators. High calcium concentration of particulate matter emitted from the coking process resulted from the use of huge amount of limestone in the process. Thus, aluminum, iron, and calcium were the elemental indicators of particulate matter emitted from the coking process.
Furthermore, the indicating elements of particulate matter emitted from the coal burning boiler were aluminum, calcium, and iron. Titanium had higher concentration due to the existence of metallic oxide and trace elements in the bottom ash. Aluminum, iron, and titanium were the major recycling metals, and thus titanium can be treated as the indicating element of particulate matter emitted from the coal burning boiler. In the basic oxygen furnace (BOF) process, we served calcium carbide (CaC2) as the desulfurization medium. Therefore, calcium could be the indicating element of particulate matter emitted from the BOF process. Furthermore, nickel was the indicating element of stainless steel, while zinc and lead played as the indicating elements of carbon steel manufacturing process.
目次 Table of Contents
論文審定書 i
謝誌 ii
中文摘要 iii
英文摘要 v
目錄 viii
表目錄 xi
圖目錄 xiii
第一章 前言 1-1
1-1 研究緣起 1-1
1-2 研究目的 1-2
1-3 研究範圍及架構 1-2
第二章 文獻回顧 2-1
2-1 懸浮微粒之特性 2-1
2-1-1 懸浮微粒之定義及種類 2-1
2-1-2 懸浮微粒之生成機制及物化特性 2-4
2-1-3 懸浮微粒對人體健康之影響 2-12
2-1-4 水溶性離子成份特性 2-14
2-1-5 金屬元素成份特性 2-17
2-1-6 碳成份特性 2-19
2-2 工業製程排放管道粒狀物之化學指紋特徵 2-21
2-2-1 鋼鐵業排放管道粒狀物之化學成份 2-21
2-2-2 石化業排放管道粒狀物之化學成份 2-27
2-2-3 電力業排放管道粒狀物之化學成份 2-29
2-3 固定污染源管制相關法規 2-30
2-3-1 空氣污染防制法 2-30
2-3-2 固定污染源設置與操作許可證管理辦法 2-30
2-3-3 固定污染源空氣污染物排放標準 2-31
2-3-4 固定污染源空氣污染物連續自動監測設施管理辦法 2-31
2-3-5 鋼鐵業燒結工場空氣污染物排放標準 2-31
2-3-6 煉鋼業電弧爐粒狀污染物排放標準 2-31
2-3-7 檢查鑑定公私場所空氣污染物排放狀況之採樣設施規範 2-32
2-4 鋼鐵業製程污染源 2-32
2-4-1 煉焦製程 2-32
2-4-2 燒結製程 2-35
2-4-3 高爐製程 2-40
2-4-4 轉爐製程 2-42
2-4-5 電弧爐製程 2-44
2-5 排放管道之資料蒐集與彙整 2-48
第三章 研究方法 3-1
3-1 排放管道中粒狀污染物採樣方法及流程 3-1
3-2 排放管道中粒狀污染物採樣設備 3-2
3-3 粒狀污染物之化學成份分析方法 3-6
3-3-1 水溶性離子成份分析 3-6
3-3-2 金屬元素成份分析 3-7
3-3-3 碳成份分析 3-8
3-4 品保與品管 3-9
第四章 結果與討論 4-1
4-1 排放管道污染源操作情形及粒狀污染物排放濃度 4-1
4-2 排放管道粒狀污染物之化學成份 4-10
4-2-1 水溶性離子成份特徵 4-10
4-2-2 金屬元素成份特徵 4-22
4-2-3 碳成份特徵 4-33
4-3 粒狀污染物之化學成份比例 4-37
4-3-1 水溶性離子成份比例 4-37
4-3-2 金屬元素成份比例 4-41
4-3-3 碳成份比例 4-45
4-3-4 水溶性離子成份、金屬元素成份及碳成份各佔製程管道排放粒狀污染物之比例
4-48
4-4 製程管道排放粒狀污染物之指紋特徵 4-51
第五章 結論與建議 5-1
5-1 結論 5-1
5-2 建議 5-2
參考文獻 R-1
附錄A QA/QC A-1
附錄B 原始分析數據 B-1
參考文獻 References
Ahn Y.C., Lee J.K., Physical, chemical, and electrical analysis of aerosol particles generated from industrial plants, Journal of Aerosol Science, 37, pp.187-202, 2006.
Appel, B.R., Hoffer, E.M., Kothny, E.L., Wall, S.M., Haik, M., and Knights, R.L., Analysis of carbonaceous material in southern California atmospheric aerosols, Environmental Science and Technology, 13, pp.98-104, 1979.
Central Pollution Control Board, (CPCB) Highlights (2005). Parivesh News Letter, 2005.
Chang, C.C., Tsai, S.S., Ho S.C., and Yang, C.Y., Air pollution and hospital admissions for cardiovascular disease in Taipei, Taiwan, Environmental Research, 98, pp.114-119, 2005.
Christen, K.A., H. Livebjerg, A field study of submicron particles from the combustion of straw, Aerosol Science and Technology, 25, pp.185-199, 1996.
Dall’Osto, M., Booth, M.J., Smith, W., Fisher, R., and Harrison, R.M., A study of the size distributions and the chemical characterization of airborne particles in the vicinity of a large integrated steelworks, Aerosol Science and Technology, 42, pp.981–991, 2008.
Dongarrà, G, Manno, E., Varrica, D., Lombardo, M., and Vultaggio, M., Study on ambient concentrations of PM10, PM10-2.5, PM2.5 and gaseous pollutants -Trace elements and chemical speciation of atmospheric particulates, Atmospheric Environment, 44, pp.5244-5257, 2010.
Dyremark, A. and Westerholm, R., Polycyclic aromatic hydroxycarbon (PAH) emission from charcoal grilling, Atmospheric Environment, 29, pp.1553-1558, 1995.
Favez, O., Cachier, H., Sciare, J., Alfaro S.C., El-Araby, T.M., Harhash, M.A., and Abdelwahab, M.M., Seasonality of major aerosol speciesand their transformations in Cairo megacity, Atmospheric Environment, 42, pp.1503-1516, 2008.
Goodarzi F., Morphology and chemistry of fine particles emitted from a Canadian coal-fired power plant, Fuel, 85, pp.273-280, 2006.
Hleis, D., Fernández-Olmo, I., Ledoux, F., Kfoury, A., Courcot, L., Desmonts, T. and Courcot, D., hemical profile identification of fugitive and confined particle emissions from an integrated iron and steelmaking plant, Journal of Hazardous Materials, 250-251, pp.246-255, 2013.
Kappos A.D., Bruckmann P., Eikmann T., Englert N., Heinrich U., Höppe P., Koch E., Krause G.H.M., Kreyling W.G., Rauchfuss K., Rombout P., Schulz-Klemp V., Thiel W.R., and Wichmann H-E. Health effects of particles in ambient air, International Journal of Hygiene Environmental Health, 207, pp.399-407, 2004.
Kong, S.F., Han, B., Bai, Z.P., Chen, L., Shi, J.W., and Xu, Z., Receptor modeling of PM2.5, PM10 and TSP in different seasons and long-range transport analysis at a coastal site of Tianjin, China, Science of the Total Environment, 408, pp.4681-4694, 2010.
Kulshrestha, A., Satsangi, P.G., Masih, J., and Taneja, A., Metal concentration of PM2.5 and PM10 particles and seasonal variations in urban and rural environment of Agra, India, Science of the Total Environment, 407, pp.6196-6204, 2009.
Lee, R.E., Crist, H.L., Riley, A.E. and MacLead, K.E., Concentration and size of trace metal emissions from a power plant, a steel plant, and a cotton gin, Environmental Science and Technology, 9, pp.643-647, 1975.
Lim, J.M., Lee, J,H., Moona, J.H., Chung, Y.S., and Kim, K.H., Airborne PM10 and metals from multifarious sources in an industrial complex area, Atmospheric Research, 96, pp.53-64, 2010.
Lin, J.J., Characterization of water-soluble ion species in urban particles, Environment International, 28, pp.55-61, 2002.
Lundgren D.A., Burton R.M., Effect of particle size distribution on the cut point between fine and coarse ambient mass fractions, Inhalation Toxicology, 7(1), pp. 131~148, 1995.
Manahan, S.E., Environmental Chemistry, 5th Edition, Lewis Publishers, Chelsea, 1991.
Mangelson, N.F., Lewis, L., Joseph, J.M., Wilkerson, T., and Jensen, D.T., The contribution of sulfate and nitrate to atmospheric fine particles during winter inversion fogs in Cache Valley, Journal of Air & Waste Management Association, 47, pp.167-175, 1997.
Mu, L., Peng, L., Liu, X., Bai, H., Song, C., Wang, Y., and Li, Z., Emission characteristics of heavy metals and their behavior during coking processes, College of Environmental Science and Engineering, 46, pp.6425–6430, 2012.
Olmez, I., Instrumental neutron activation analysis of atmospheric particulate matter, Methods of Air Sampling and Analysis, Lewis Publishers, Chelsae, MI, pp.143-150, 1989.
Pakkanen, T.A., Study of formation of coarse particle nitrate asrosol, Atmospheric Environment, 30, pp.2475-2482, 1996.
Peter, A., H. E. Wichmann, T. Tuch, J. Heinrich, and J. Heyder, Respiratory effects are associated with the number of ultrafine particles, American Journal of Respiratory & Critical Care Medicine, 155, pp.1376- 1383,1997.
Sammut M.L., Noack Y., Rose J., Hazemann J.L., Proux O., Depoux M., Ziebel A., and Fiani E., Speciation of Cd and Pb in dust emitted from sinter plant, Chemosphere, 78, pp.445-450, 2010.
Seaton, A., MacNee, W., Donaldson, K., and Godden, D., Particulate air pollution and acute health effects, Lancet. 345, pp.176-178, 1995.
Terzi, E., Argyropoulos, G., Bougatioti, A., Mihalopoulos, N., Nikolaou, K., and Samara, C., Chemical composition and mass closure of ambient PM10 at urban sites, Atmospheric Environment, 44, pp.2231-2239, 2010.
Tsai, J.H., Lin, K.H., Chen, C.Y., Ding, J.Y., Choa, C.G., and Chiang, H.L., Chemical constituents in particulate emissions from an integrated iron and steel facility, Journal of Hazardous Materials, 147, pp.111–119, 2007.
Turpin, B.J. and Huntzicker, J.J., Identification of secondary organic aerosol episodes and quantification of primary and secondary organic aerosol concentrations during SCAQR, Atmospheric Environment, 29, pp.3527-3544, 1995.
Wicken, A.J. and Buck, S.F., Report on a study of Environmental Factors Associated with Lung Cancer and Bronchitis Mortality in Areas of North east England, Research Paper No. 8. Tobacco Research Council, London, 1964.
Wikipedia, http://en.wikipedia.org/wiki/Particulates, 2013.
Wu, Y., Hao, J., Fu, J., Wang, Z., and Tang, U., Chemical characteristics of airborne particulate matter near major roads and at background locations in Macao, China, Science of the Total Environment, 317, pp.159-172, 2003.
Yatin, M., Tuncel, S., Aras, N.K., Olmez, I. and Aygun, S., Atmospheric trace element in Ankara, Turkey:1. Factors affecting chemical composition of fine particle, Atmospheric Environment, 34, pp.1305-1318, 2000.
Zhang, H., An assessment of heavy metals contributed by industry in urban atmosphere from Nanjing, China, Environmental Monitoring Assessment, 154, pp.451-458, 2009.
江森雄,「石化工業區揮發性有機氣體改善管理之研究-以頭份工業區為例」,中華大學工業工程與管理研究所碩士論文,2000。
王根樹,「汽油及液化石油氣(LPG)引擎排放污染物比較分析之研究」,液化石油氣加氣站協會期末報告,2004。
行政院環境保護署,「空氣污染防制-空氣品質標準」,中華民國101年5月14修正,2012。
高雄市政府環境保護局,「99暨100 年度空氣品質管理暨污染總量管制計畫」,2011。
行政院環境保護署,「台灣細懸浮微粒(PM2.5)成因分析與管制策略研擬」,2013。
郭育良等,「職業病概論」,華杏出版股份有限公司,1998。
盧達溶,「工業系統概論」,清華大學出版社,2005。
高雄市政府環境保護局,「高雄市空氣品質管理計畫」,2010。
黃堯聖,「大氣懸浮微粒化學組成及來源推估」,輔英科技大學環境工程與科學系碩士班碩士論文,2006。
黃美倫,「中部空品區大氣氣膠中水溶性離子微粒之特性探討」,國立中興大學環境工程學系碩士論文,2001。
劉山豪,「高雄都會區消光係數與能見度量測及細微粒污染源貢獻量解析」,國立中山大學環境工程研究所碩士論文,2000。
鄭曼婷,「台中沿海及都會區氣膠特性及來源分析」,國科會/環保署科技合作研究計劃期末報告,1999。
劉育甫、蔡協宏、袁中新、洪崇軒、林啟燦、錢立行,「海島地區懸浮微粒物化特性分析-以琉球嶼為例」,第六屆海峽兩岸氣膠技術研討會論文,2009。
黃鈴珺,「彭佳嶼海域大氣懸浮微粒中金屬元素的濃度、來源及粒徑分佈研究」,國立台灣大學海洋研究所碩士論文,2001。
鐘博章,「東海南部大氣中金屬元素之濃度、來源及通量研究」,國立台灣大學海洋研究所碩士論文,2002。
蔡士鳴,「大氣中懸浮微粒含碳成分之分佈與來源」,國立成功大學環境工程學系碩士論文,2002.
底宗鴻,「高雄地區陸域及鄰近海域懸浮微粒物化特性分析及時空分佈探討」,國立中山大學環境工程研究所碩士論文,2008。
蔡協宏,「南台灣陸域及鄰近海域受海陸風及東北季風影響之空氣污染物傳輸及擴散研究」,國立中山大學環境工程研究所博士論文,2010。
陳昭忞,「重油鍋爐煙道排放之PM2.5及PM10微粒的特性及化學組成」,國立中興大學環境工程學系碩士論文,2002。
謝徨麒、楊錫賢、陳瑞仁、謝祝欽,「固定污染源煙道廢氣粒狀物中金屬元素之特徵」,第十七屆空氣污染控制技術研討會論文,2000。
賴順安、李文智、楊錫賢、陳瑞仁、薛宏榮、趙雯蕙,「鋼鐵工業煙道排放金屬元素之特徵」,第十六屆空氣污染控制技術研討會論文,1999。
謝徨麒,「固定污染源排放金屬元素之特徵」,國立成功大學環境工程學系碩士論文,2001。
蕭綱衡,「鐵礦及燒結製程」,台灣大學材料所鐵礦及燒結製程課程講義,2009。
武漢工程職業技術學院教學資料。
陳有志,「產業減廢與資源化」,高立圖書,2013。
魏明通,「化學與人生」,五南圖書出版,2013。
蘇宜春,「煉焦工藝學」,冶金工業出版社,1994。
朱樹恭,「工業化學概論」,台灣商務印書館,1991。
董國安、黃瀚緯,「鋼鐵冶煉與生活」,國立自然科學博物館館訊第274期,2010。
經濟部工業局,「電弧爐煉鋼還原渣資源化應用技術手冊」,2001。
東和鋼鐵企業股份有限公司產品型錄及相關資料。
經濟部工業局,「電弧爐煉鋼業污染防治技術」,1994。
行政院環保署,「行業別污染排放清潔指標及規範建立計畫」,2000。
楊鍚賢,「大氣環境中多環芳香烴化合物與金屬元素之特徵」,國立成功大學環境工程研究所博士論文,1998。
潘復華、李長平、郭安甫、陳麗霞、陳元武、陳信雄、葉玉珍、蔡坤龍、李其欣、陳明妮、曹明浙、劉素妙、鄭先佑,「電弧爐煉鋼業廢棄物指紋特徵與鑑識技術之探討」,環境檢驗所第4次技術路徑規劃論壇,2011。
宜科(天津)電子有限公司,「編碼器促進高爐捲揚控制系統的安全性發展」,2013。
苗伯霖、潘昌林、蔣克成、吳秉駿,「台電底灰氯離子含量及在利用途徑之調查研究」,台電工程月刊,2000。
楊澤民,「曾幾何時,連呼吸都不再是自由?」,自從六輕來了,2012。
廖嘉政,「鋼鐵工廠周界及鄰近敏感點之懸浮微粒物化特性分析及污染源解析」,國立中山大學環境工程研究所碩士論文,2012。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.145.130.31
論文開放下載的時間是 校外不公開

Your IP address is 3.145.130.31
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code