Responsive image
博碩士論文 etd-0724114-223823 詳細資訊
Title page for etd-0724114-223823
論文名稱
Title
沉積氧化鋅薄膜於可撓性PI基板上以研製壓電發電系統之研究
Investigation of ZnO Thin Films Deposited on Flexible Polyimide Substrates for Piezoelectric Generators Application
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
129
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-28
繳交日期
Date of Submission
2014-08-26
關鍵字
Keywords
壓電、懸臂樑、氧化鋅、可撓性換能器、PI基板
ZnO thin film, PI substrate, Piezoelectric, Cantilever beam, Flexible generator
統計
Statistics
本論文已被瀏覽 5667 次,被下載 0
The thesis/dissertation has been browsed 5667 times, has been downloaded 0 times.
中文摘要
本研究擬研製出高品質之ZnO壓電薄膜,並將其沉積於可撓性聚醯亞胺基板上以建立出一可撓性獵能元件,以研製出可將環境中之微振動能源轉換成電能之再生能源技術。
本研究使用三種不同的金屬(鉬、鈦及鉑),作為可撓性壓電換能器之底電極進行探討;最終,本研究採用具有低電阻率(130.9 Ω.nm)及低表面粗糙度(0.96 nm)之鉑薄膜,作為底電極使用。本研究使用反應性射頻磁控濺鍍法於可撓性聚醯亞胺基板上沉積氧化鋅壓電薄膜,調變製程參數,以期獲得高品質及具有較高發電效益之氧化鋅薄膜。接著,本研究使用不同厚度的基板以研製可撓性壓電換能器,將基板厚度與懸臂樑臂長進行調變及匹配以提升壓電獵能元件之轉換效益。
最終,本研究採用基板厚度50 μm與懸臂樑臂長7 mm之結構,並以工作壓力10 mTorr及射頻功率140 W之最佳參數於此結構上沉積出高品質之氧化鋅薄膜;於共振頻率65 Hz、元件擺幅16 mm及質量負載0.5 g之匹配下,可得到最大開路電壓為15.2 V,經由整流濾波電路並匹配4 MΩ負載電阻下,直流輸出電壓為3.53 V,單位面積之輸出功率可達1.20 μW/cm2。
Abstract
A flexible piezoelectric energy harvesting device, a unimorph ZnO cantilever with mass loading of 0.5 g, was designed for low vibration frequency environment. ZnO thin films were deposited by a two-step sputtering method on PI substrates for flexible piezoelectric generators in this study.
The Ti and Pt thin films were chosen as adhesion layer and bottom electrode of the flexible piezoelectric generator, because the resulted Pt film has the relatively flat surface roughness of 0.96 nm, the lowest resistivity of 130.9 Ω∙nm and the highest intensity of ZnO (002) orientation on Pt film when comparing those with Mo and Ti bottom electrodes. For flexible piezoelectric generators, high quality ZnO thin film is required, which is favorable to obtain output resulting voltage. The high quality of ZnO thin film is deposited under working pressure of 10 mTorr and RF power of 140 W at room temperature by the reactive RF magnetron sputtering system. This study investigated the effects of different thickness of PI substrates and various cantilever lengths. Open circuit voltage varies with thickness of PI substrate and cantilever length and reaches the maximum when they match.
Finally, the optimal generator with a vibration area of 0.7 cm2 resulted in an open circuit voltage of 15.2 V and output power of 0.84 μW or 1.2 μW/cm2 with a load resistance of 4 MΩ at its resonant frequency of 65 Hz.
目次 Table of Contents
致謝 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 vii
表目錄 x
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機與目的 6
1.3 換能器簡介 8
1.3.1 振動能轉換方式 8
1.3.2 壓電換能器之結構 10
1.3.3 懸臂樑壓電換能器之發展現況 13
1.4 章節介紹 15
第二章 相關理論與文獻探討 16
2.1 壓電換能器之材料 16
2.1.1 可撓性基板材料 16
2.1.2 電極材料 20
2.1.3 壓電材料 22
2.1.3.1 氧化鋅結構與特性 24
2.2 壓電換能器之發電原理 27
2.2.1 壓電效應 27
2.2.2 壓電操作模式 30
2.2.3 懸臂樑壓電換能器之能量轉換模型 31
2.3 製程原理 36
2.3.1 薄膜沉積原理 36
2.3.2 反應性磁控濺鍍法 38
2.3.3 輝光放電原理 38
2.3.4 射頻濺鍍原理 39
2.3.5 磁控濺鍍原理 40
2.3.6 反應性濺鍍原理 41
2.4 整流濾波電路 42
2.4.1 橋式整流電路工作原理 42
2.4.2 電容濾波工作原理 44
第三章 研究方法 45
3.1 實驗流程 45
3.1.1 氧化鋅壓電換能器之設計與製作 47
3.2 製程步驟 48
3.2.1 基板的製備與清洗 48
3.2.2 底電極層之沉積 49
3.2.3 氧化鋅壓電層沉積 51
3.3 物性分析 54
3.3.1 X-ray繞射分析 54
3.3.2 掃描式電子顯微鏡分析 57
3.3.3 原子力顯微鏡分析 58
3.3.4 X-ray光譜之成份分析 59
3.4 電性量測 60
3.4.1 共振頻率量測 62
3.4.2 元件擺幅量測 63
3.4.3 整流濾波電壓量測 64
3.4.4 片電阻量測 66
第四章 結果與討論 67
4.1 不同底電極之探討 68
4.2 沉積氧化鋅薄膜於PI基板之探討 72
4.2.1 工作壓力對氧化鋅薄膜之影響 72
4.2.2 射頻功率對氧化鋅薄膜之影響 80
4.2.3 整流濾波電壓及輸出功率之量測 85
4.3 可撓式氧化鋅換能元件之最佳化 88
4.3.1 探討懸臂樑臂長與PI基板厚度之影響 88
4.3.2 整流濾波電壓及輸出功率之量測 95
4.4 可撓性氧化鋅換能元件之電性量測 98
4.4.1 元件之共振頻率及最佳擺幅量測 98
4.4.2 整流濾波電壓及輸出功率之量測 101
第五章 結論與未來展望 104
5.1 研究結論 104
5.2 未來展望 106
參考文獻 107
參考文獻 References
參考文獻
[1] M.A. Green, K. Emery, Y. Hishikawa, W. Warta, and E.D. Dunlop, "Solar cell efficiency tables (version 39)," Progress in Photovoltaics: Research and Applications, vol. 20, pp. 12-20, 2012.
[2] N. Hatziargyriou, and A. Zervos, "Wind power development in Europe", Proceedings of the IEEE, vol. 89, pp. 1765-1782, 2001.
[3] C. Penche, "Guide on how to develop a small hydropower plant," ESHA, Brussels, 2004.
[4] J. Behrens, N. Rakowsky, W. Hiller, D. Handorf, M. Läuter, J. Päpke, and K. Dethloff, "amatos: Parallel adaptive mesh generator for atmospheric and oceanic simulation," Ocean Modelling, vol. 10, pp. 171-183, 2005.
[5] M. Tolga Balta, I. Dincer, and A. Hepbasli, "Thermodynamic assessment of geothermal energy use in hydrogen production," International Journal of Hydrogen Energy, vol. 34, pp. 2925-2939, 2009.
[6] K. Openshaw, "Biomass energy: employment generation and its contribution to poverty alleviation," Biomass and Bioenergy, vol. 34, pp. 365-378, 2010.
[7] E.J. Carlson, K. Strunz, and B.P. Otis, "A 20 mV input boost converter with efficient digital control for thermoelectric energy harvesting," IEEE Journal of Solid-State Circuits, vol. 45, pp. 741-750, 2010.
[8] E. Bouendeu, A. Greiner, P.J. Smith, and J.G. Korvink, "A low-cost electromagnetic generator for vibration energy harvesting," IEEE Sensors Journal, vol. 11, pp. 107-113 , 2011.
[9] 鄭世裕,"壓電材料之發電器應用",工業材料雜誌,263期,頁111-120,2008。
[10] 黃玉婷,唐敏注,"磁電式能量擷取發電裝置",工業材料雜誌,263期,頁121-129,2008。
[11] 黃家聖,"超薄可撓玻璃於卷對卷生產觸控面板之應用",工業材料雜誌,329期,頁144-150,2014。
[12] 李珣瑛,"工研院推觸控殺手級產品",經濟日報,2013。
[13] T. Hanada, T. Negishi, I. Shiroishi, T. Shiro, "Plastic substrate with gas barrier layer and transparent conductive oxide thin film for flexible displays," Thin Solid Films, vol. 518, pp. 3089, 2010.
[14] Konstantinos A. Sierros, Darran R. Cairns, J. Stuart Abell, Stephen N. Kukureka, "Pulsed laser deposition of indium tin oxide films on flexible polyethylene naphthalate display substrates at room temperature, " Thin Solid Films, vol. 518 , pp. 2623, 2010.
[15] M.A. Green, K. Emery, Y. Hishikawa, W. Warta, and E.D. Dunlop, "Solar cell efficiency tables (version 39), " Progress in Photovoltaics: Research and Applications, vol. 20, pp. 12-20, 2012.
[16] J.S. Cho, S. Baek, J.C. Lee, "Surface texturing of sputtered ZnO:Al/Ag back reflectors for flexible silicon thin-film solar cells," Sol. Energy Mater. Sol. Cells, vol. 95, pp. 1852-1858, 2011.
[17] Y.-Y. Yu, W.-C. Chien, C.-Y. Ciou, and H.-C. Wu, "Preparation and characterization of regioregular poly(3-octylthiophene-2,5-diyl)/copper indium disenillide/titania heterojunction polymer solar cells," Thin Solid Films, vol. 519, pp. 4721-4730, 2011.
[18] E. Zampetti, L. Maiolo, A. Pecora, F. Maita, S. Pantalei, A. Minotti, A. Valletta, M. Cuscunà, A. Macagnano, G. Fortunato, and A. Bearzotti, "Flexible sensorial system based on capacitive chemical sensors integrated with readout circuits fully fabricated on ultra thin substrate," Sensors and Actuators B: Chemical, vol. 155, pp. 768-774, 2011.
[19] F.-Y. Chang, R.-H. Wang, H. Yang, Y.-H. Lin, T.-M. Chen, and S.-J. Huang, "Flexible strain sensors fabricated with carbon nano-tube and carbon nano-fiber composite thin films," Thin Solid Films, vol. 518, pp. 7343-7347, 2010.
[20] K.-H. Cho, M.-G. Kang, S.-M. Oh, C.-Y. Kang, Y. Lee, S.-J. Yoon, "Low voltage ZnO thin-film transistors with Ti-substituted BZN gate insulator for flexible electronics," Thin Solid Films, vol. 518, pp. 6277-6279, 2010.
[21] 鄭志龍,蔡政禹,呂常興,”高密度軟性印刷電路板用之感光型聚亞醯胺保護膜”,電子與材料雜誌,28期,頁75-82,2005。
[22] L. Sun, G. Qin, H. Huang, H. Zhou, N. Behdad,W. Zhou, and Z. Ma, "Flexible high-frequency microwave inductors and capacitors integrated on a polyethylene terephthalate substrate," Applied Physics Letters, Lett. 96, 013509, 2010.
[23] D. Zhao, D. A. Mourey, and T. N. Jackson, "Fast flexible plastic substrate ZnO circuits," IEEE Electron Device Letters, vol. 31, pp. 323–325, 2010
[24] S.Y. Xiao, L.F. Che, X.X. Li, Y.L. Wang, "A novel fabrication process of MEMS devices on polyimide flexible substrates," Microelectron. Eng, vol. 85, pp. 452-457, 2008.
[25] Thomas Lemke, Giovanni Biancuzzi, Hagen Feth, Jochen Huber, Frank Goldschmidtböing, and Peter Woias, "Fabrication of normally-closed bidirectional micropumps in silicon–polymer technology featuring photopatternable silicone valve lips," Sens. Actuators A, vol. 168 , pp. 213-222, 2011.
[26] E.J. Geiger, A.P. Pisano, and F. Svec, "A Polymer-Based Microfluidic Platform Featuring On-Chip Actuated Hydrogel Valves for Disposable Applications," Microelectromechanical Systems, vol. 19, pp. 944-950, 2010.
[27] 張致吉,"PI在軟性銅箔基板(FCCL)的應用與市場,材料世界網",2014。
[28] B. Lahey, A. Girouard, W. Burles on and R.Vertegaal, PaperPhone: Understanding the Use of Bend Gestures in Mobile Devices with Flexible Electronic Paper Displays, CHI May, 2011, Vancouver, BC, Canada.
[29] Nokia 888 The Perfect Form” Nokia, January, 2011. http://www.cellphoneshopper.net/nokia-888-the-perfect-form-is-here.html
[30] C.B. Williams, and R.B. Yates, "Analysis of a micro-electric generator for microsystems," Sensors and Actuators A: Physical, vol. 52, pp. 8-11, 1996.
[31] C.B. Williams, R.C. Woods, and R.B. Yates, "Feasibility study of a vibration powered micro-electric generator," Proceedings of IEE Colloquim on Compact Power Sources, London, UK, pp. 7/1-7/3, 1996.
[32] C. Shearwood, and R.B. Yates, "Development of an electromagnetic microgenerator," Electronics Letters, vol. 33, pp. 1883-1884, 1997.
[33] R. Amirtharajah, and A.P. Chandrakasan, "Self-powered signal processing using vibration-based power generation," IEEE Journal of Solid-State Circuits, vol. 33, pp. 687-695, 1998.
[34] W.J. Li, T.C.H. Ho, G.M.H. Chan, P.H.W. Leong, and H.Y. Wong, "Infrared signal transmission by a laser-micromachined, vibration-induced power generator," Proceedings of the 43rd IEEE Midwest Symposium on Circuits and Systems, vol. 1, pp. 236-239, 2000.
[35] P. Glynne-Jones, M.J. Tudor, S.P. Beeby, and N.M. White, "An electromagnetic, vibration-powered generator for intelligent sensor systems," Sensors and Actuators A: Physical, vol. 110, pp. 344-349, 2004.
[36] B.H. Stark, and T.C. Green, "Comparison of SOI power device structures in power converters for high-voltage, low-charge electrostatic microgenerators," IEEE Transactions on Electron Devices, vol. 52, pp. 1640-1648, 2005.
[37] E.O. Torres, and G.A. Rincón-Mora, "Long-lasting, self-sustaining, and energy-harvesting system-in-package (SiP) wireless micro-sensor solution," International Conference on Energy, Environment and Disasters, Charlotte, NC, USA, Jul. 24-30, 2005.
[38] N.M. White, P. Glynne-Jones, and S.P. Beeby, "A novel thick-film piezoelectric micro-generator," Smart Materials and Structures, vol. 10, pp. 850-852, 2001.
[39] P. Glynne-Jones, S.P. Beeby, and N.W. White, "Towards a piezoelectric vibration-powered microgenerator," IEE Proceedings: Science, Measurement and Technology, pp. 68-72, 2001.
[40] Kim S., "Low power energy harvesting with piezoelectric generators," PhD Dissertation, University of Pittsburgh, 2002.
[41] J.Y. Kang, H.J. Kim, J.S. Kim, and T.S. Kim, "Optimal design of piezoelectric cantilever for a micro power generator with microbubble," The 2nd annual international IEEE-EMBS special topic conference on micro-technologies in medicine and biology, Madison, Wisconsin, USA, May 2-4, pp. 424-427, 2002.
[42] R.K. Sood, "Piezoelectric micro power generator (PMPG): A MEMS-based energy scavenger," Master Thesis, Massachusetts Institute of Technology, 2003.
[43] Y.B. Jeon, R. Sood, J.-h. Jeong, and S.-G. Kim, "MEMS power generator with transverse mode thin film PZT," Sensors and Actuators A: Physical, vol. 122, pp. 16-22, 2005.
[44] J.Q. Liu, H.B. Fang, Z.Y. Xu, X.H. Mao, X.C. Shen, D. Chen, H. Liao, and B.C. Cai, "A MEMS-based piezoelectric power generator array for vibration energy harvesting," Microelectronics Journal, vol. 39, pp. 802-806, 2008.
[45] H.B. Fang, J.Q. Liu, Z.Y. Xu, L. Dong, L. Wang, D. Chen, B.C. Cai, and Y. Liu, "Fabrication and performance of MEMS-based piezoelectric power generator for vibration energy harvesting," Microelectronics Journal, vol. 37, pp. 1280-1284, 2006.
[46] S.J. Jeong, M.S. Kim, J.S. Song, and H. Lee, "Two-layered piezoelectric bender device for micro-power generator," Sensors and Actuators A: Physical, vol. 148, pp. 158-167, 2008.
[47] S. Priya, "Advances in energy harvesting using low profile piezoelectric transducers," Journal of Electroceramics, vol. 19, pp. 167-184, 2007.
[48] M. Marzencki, Y. Ammar, and S. Basrour, "Integrated power harvesting system including a MEMS generator and a power management circuit," Sensors and Actuators A: Physical, vol. 145, pp. 363-370, 2008.
[49] F. Lu, H.P. Lee, and S.P. Lim, "Modeling and analysis of micro piezoelectric power generators for micro-electromechanical-systems applications," Smart Materials and Structures, vol. 13, pp. 57-63, 2004.
[50] A. Lawver, "Thunder®: A new frontier in research for smart materials," Smart Materials Bulletin, vol. 2001, pp. 5-9, 2001.
[51] H.W. Kim, A. Batra, S. Priya, K. Uchino, D. Markle, R.E. Newnham, and H.F. Hofmann, "Energy Harvesting Using a Piezoelectric “Cymbal” Transducer in Dynamic Environment", Japanese journal of applied physics, vol. 43, pp. 6178-6183, 2004.
[52] P. Glynne-Jones, S.P. Beeby, and N.W. White, "Towards a piezoelectric vibration-powered microgenerator," IEE Proceedings: Science, Measurement and Technology, pp. 68-72, 2001.
[53] Rajendra K. Sood, "Piezoelectric Micro Power Generator (PMPG) - a MEMS-based energy scavenger," Department of electrical engineering and computer science at the Masachusetts Institute of Technology, 2003.
[54] Y.B. Jeon, R. Sood, J.-h. Jeong, and S.-G. Kim, "MEMS power generator with transverse mode thin film PZT," Sensors and Actuators A: Physical, vol. 122, pp. 16-22, 2005.
[55] H.B. Fang, J.Q. Liu, Z.Y. Xu, L. Dong, L. Wang, D. Chen, B.C. Cai, and Y. Liu, "Fabrication and performance of MEMS-based piezoelectric power generator for vibration energy harvesting," Microelectronics Journal, vol. 37, pp. 1280-1284, 2006.
[56] Dongna Shen, J.H. Park, J. Ajitsaria, S.Y. Choe, Howard C Wikle III and D.J. Kim, "The design, fabrication and evaluation of a MEMS PZT cantilever with an integrated Si proof mass for vibration energy harvesting," Journal of Micromechanics and Microengineering, vol. 18, pp. 055017, 2009.
[57] J.Q. Liu, H.B. Fang, Z.Y. Xu, X.H. Mao, X.C. Shen, D. Chen, H. Liao, and B.C. Cai, "A MEMS-based piezoelectric power generator array for vibration energy harvesting," Microelectronics Journal, vol. 39, pp. 802-806, 2008.
[58] B.S. Lee, S.C. Lin, W.J. Wu, X.Y. Wang, P.Z. Chang, and C.K. Lee, "Piezoelectric MEMS generators fabricated with an aerosol deposition PZT thin film," Journal of Micromechanics and Microengineering, vol. 19, pp. 065014, 2008.
[59] P. Muralta, M. Marzencki, B. Belgacema, F. Calamea,and S. Basrour, "Vibration Energy Harvesting with PZT Micro Device," Procedia Chemistry, vol. 1, pp. 1191–1194, 2009.
[60] R. Elfrink, T.M. Kamel, M. Goedbloed, S. Matova, D. Hohlfeld, Y. Van Andel, and R. Van Schaijk, "Vibration energy harvesting with aluminum nitride-based piezoelectric devices," Journal of Micromechanics and Microengineering, vol. 19, pp. 049005, 2009.
[61] 吳秉融,"氧化鋅薄膜成長於 PET 基板上並應用於壓電換能器之研究,國立中山大學電機工程學系碩士論文",2009。
[62] 朱育賢,"雙面式氧化鋅壓電換能器之研究",國立中山大學電機工程學系碩士論文,2011。
[63] Ziping Cao, Jinya Zhang, and Hiroki Kuwano, "Design and characterization of miniature piezoelectric generators with low resonant frequency," Sensors and Actuators A: Physical, vol. 179, pp. 178-184, 2012.
[64] 鐘宜展,"沉積氮化鋁薄膜於不鏽鋼基材以應用於雙面壓電換能器之研究",國立中山大學電機工程學系碩士論文,2012。
[65] 孟杰新,"可撓曲軟性電子元件之設計製造與電性分析",國立交通大學材料科學與工程學系博士論文,2012。
[66] 金進興,"軟板材料與產業之現況與未來",工業材料雜誌,214期,頁96-104,2004。
[67] 陳麒麟,張榮芳,張加強,"軟性顯示器發展及關鍵技術現況",機械工業雜誌,258期,頁110-121,2004。
[68] 呂奇明,"軟性顯示器用透明基板材料技術",工業材料雜誌,246期,頁172-179,2007。
[69] 李淑幸,傅傳旭,何家充,"應用於軟性AMOLED之觸控技術發展",工業材料雜誌,329期,頁67-72,2014。
[70] 林志成,呂奇明,邱秋燕,"CIGS用軟性塑膠基板材料技術",材料世界網工研院電子報,10007期,2011。
[71] 李言榮,恽正中,"電子材料導論",清華大學出版社,北京市,2001。
[72] F.S. Ohuchi and S.C. Freilich, "Metal polyimide interface: A titanium reaction mechanism, Journal of Vaccum Science Technology, A 4, pp.1039, 1986.
[73] Girardeaux, C. Demoncy, P. Delamar, M., "The polyimide(PMDA/ODA) - titanium interface. Part 1. Untreated PMDA/ODA:An XPS, AES, AFM and Raman study," vol. 70, pp. 11-21, 1994.
[74] European Union, Waste Electrical and Electronic Equipment (WEEE) Regulations, "EU-Directive 96/EC" 2002.
[75] European Union, Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment (RoHS) Regulations, "EU-Directive 95/EC, " September 2002.
[76] Zhu, G., Yang, R., Wang, S., and Wang, Z. L., "Flexible High-Output Nanogenerator Based on Lateral ZnO Nanowire Array," Nano letters, vol. 10, pp. 3151-3155, 2010.
[77] Seung Nam Cha, Ju-Seok Seo, Seong Min Kim, Hyun Jin Kim, Young Jun Park, Sang-Woo Kim, and Jong Min Kim, "Sound Driven Piezoelectric Nanowire Based Nanogenerators, " Adv Mater, vol. 22, pp. 4726-4730, 2010.
[78] Lei Sun, Guoxuan Qin, Hai Huang, Han Zhou, Nader Behdad, Weidong Zhou, and Zhenqiang Ma, "A two-port ZnO/silicon Lamb wave resonator using phononic crystals," Applied Physics Letters, vol. 97, pp. 031913, 2010.
[79] I K Bdikin, J Gracio1, R Ayouchi, R Schwarz, and A L Kholkin, "A. Local piezoelectric properties of ZnO thin films prepared by RF-plasma-assisted pulsed-laser deposition method. Nanotechnology, " vol. 21, pp. 235703, 2010.
[80] Sökmen, Ü. et al. "Evaluation of resonating Si cantilevers sputter-deposited with AlN piezoelectric thin films for mass sensing applications," J Micromech Microengineering, vol. 20, pp. 064007, 2010.
[81] Hernando, J. et al. "Characterization and displacement control of low surface-stress AlN-based piezoelectric micro-resonators," Microsystem Technologies, vol. 16, pp. 855-861, 2010.
[82] Doll, J. C., Petzold, B. C., Ninan, B., Mullapudi, R., and Pruitt, B. L., "Aluminum nitride on titanium for CMOS compatible piezoelectric transducers, " J Micromech Microengineering, vol. 20, pp. 025008, 2010.
[83] Iwata, K. et al, "Improvement of ZnO TCO film growth for photovoltaic devices by reactive plasma deposition (RPD), " Thin Solid Films, vol. 480, pp. 199-203, 2005.
[84] 劉吉卿,"以兩階段濺鍍法沉積氧化鋅壓電薄膜於薄膜體聲波共振器之應用",國立中山大學電機工程學系碩士論文,2006。
[85] Faÿ, S., Steinhauser, J., Nicolay, S., and Ballif, C., "Polycrystalline ZnO: B grown by LPCVD as TCO for thin film silicon solar cells, " Thin Solid Films, vol. 518, pp. 2961-2966, 2010.
[86] Baxter, J. B., Walker, A., Van Ommering, K. & Aydil, E., "Synthesis and characterization of ZnO nanowires and their integration into dye-sensitized solar cells," Nanotechnology 17, S304, 2006.
[87] Luther, J. M. et al, "Stability Assessment on a 3% Bilayer PbS/ZnO Quantum Dot Heterojunction Solar Cell, " Adv Mater, 2010.
[88] Fernández, M. J. et al, "Discrimination of volatile compounds through an electronic nose based on ZnO SAW sensors," Sensors Actuators B: Chem, vol. 127, pp. 277-283, 2007.
[89] Wei, C. L. et al, "Highly sensitive ultraviolet detector using a ZnO/Si layered SAW oscillator, " Thin Solid Films, vol. 518, pp. 3059-3062, 2010.
[90] Kim, H. J., Lee, C. H., Kim, D. W. & Yi, G. C, "Fabrication and electrical characteristics of dual-gate ZnO nanorod metal–oxide semiconductor field-effect transistors, " Nanotechnology 17, S327, 2006.
[91] Fleischhaker, F., Wloka, V., and Hennig, I. "ZnO based field-effect transistors (FETs): solution-processable at low temperatures on flexible substrates," J.Mater.Chem., 2010.
[92] 林盈旭,"壓電式振動微發電機之設計與製作",國立中興大學機械工程學系碩士論文,2002。
[93] 毛俊凱,"雙模態氧化鋅薄膜應用於壓電換能器之研究",國立中山大學電機工程學系碩士論文,2012。
[94] S.R. Anton, and H.A. Sodano, "A review of power harvesting using piezoelectric materials (2003–2006)", Smart Materials and Structures, vol. 16, pp. R1-R21, 2007.
[95] D. Charnegie, "Frequency tuning concepts for piezoelectric cantilever beams and plates for energy harvesting," Master Thesis, University of Pittsburgh, 2007.
[96] 廖偉翔,"壓電換能器於低頻發電應用之設計與分析",國立成功大學機械工程學系碩士論文,2006。
[97] N.E. Du Toit, "Modeling and design of a mems piezoelectric vibration energy harvester," Master Thesis, Massachusetts Institute of Technology, 2005.
[98] 莊達人,"VLSI製造技術",高立圖書股份有限公司,台北市,2003。
[99] R.W. Berry, P.M. Hall, and M.T. Harris, "Spectroscopic investigation of tantalum nitride thin film deposition by reactive sputtering in a triode system," Thin Film Technology, Van Nostrand Princeton, New Jersey, 1968.
[100] J.L. Vossen, and W. Kern, "Thin Film Processes II," Academic Press, New York, 1991.
[101] E. Janczak-Bienk, H. Jensen, and G. Sørensen, "The influence of the reactive gas flow on the properties of AIN sputter-deposited films," Materials Science and Engineering: A, vol. 140, pp. 696-701, 1991.
[102] A.S. Sedra, and K.C. Smith, "KC's Problems and Solutions," Microelectronic Circuits, Oxford University Press, USA, 1998.
[103] J. Bjurstrom, D. Rosen, I. Katardjiev, V. M. Yanchev, and I. Petrov, "Dependence of the electromechanical coupling on the degree of orientation of c-textured thin AlN films," IEEE Trans. on Ultrason., Ferroelect., and Freq. Contr., vol. 51, pp. 1347-1353, 2004.
[104] H.Jin, J.Zhou, et al, "Deposition of c-axis orientation aluminum nitride films on flesible polymer substrates by reactive direc-current magnetron sputtering," Thin Solid Films, vol. 520, pp. 4863-4870, 2012.
[105] 廖珮淳,"以AlN/Si3N4/Si結構製作第四代通訊用表面聲波元件",國立中山大學電機工程學系碩士論文,2013。
[106] 林素霞,"氧化鋅薄膜的特性改良及應用之研究",國立成功大學材料科學與工程研究所博士論文,2003。
[107] J. Paradiso, C. Abler, K. Hsiao, and M. Reynolds, "The magic carpet: physical sensing for immersive environments," In: Proc. of the CHI 1997 Conference on Human Factors in Computing Systems, Atlanta, Georgia, Mar. 22-27, 1997.
[108] F. Moll, and A. Rubio, "An approach to the analysis of wearable body-powered systems," in Proceedings of the Mixed Design of Integrated Circuits and Systems Conference, Gdynia, Poland, Jun. 15-17 , 2001.
[109] N.S. Shenck, and J.A. Paradiso, "Energy scavenging with shoe-mounted piezoelectrics," Micro, IEEE, vol. 21, pp. 30-42, 2001.
[110] J. Feenstra, J. Granstrom, and H. Sodano, "Energy harvesting through a backpack employing a mechanically amplified piezoelectric stack," Mechanical Systems and Signal Processing, vol. 22, pp. 721-734, 2008.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 34.230.35.103
論文開放下載的時間是 校外不公開

Your IP address is 34.230.35.103
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code