Responsive image
博碩士論文 etd-0724115-004213 詳細資訊
Title page for etd-0724115-004213
論文名稱
Title
鈦金屬線之無模抽製成形研究
Study of Dieless Drawing of Titanium Wires
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
115
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-24
繳交日期
Date of Submission
2015-08-24
關鍵字
Keywords
高溫成形、微結構、成形極限、有限元素分析、無模抽製成形、二級鈦線
grade.2 titanium wires, hot forming, microstructure, forming limit, F.E. analysis, dieless drawing
統計
Statistics
本論文已被瀏覽 5678 次,被下載 422
The thesis/dissertation has been browsed 5678 times, has been downloaded 422 times.
中文摘要
本研究致力於鈦金屬細線之無模抽製成形探討,由於近期微小化產品的蓬勃發展,各種新穎的抽製成形技術被提出,但礙於加工設備尺寸的限制,一般傳統加工技術不易獲得極細之金屬線材產品,加上鈦金屬具有高降伏強度的特性,難以在常溫下進行塑性成形,因此本研究利用無模抽製成形技術,並將現有之無模抽製機台加以改裝,使其可對直徑1mm之二級鈦線(Gr.2 Ti)進行一系列的成形探討。而主要大綱可分別為:(1)定義出極限的成形溫度與抽製速度範圍;(2)探討抽製速度與加熱溫等參數對線材成形性影響;(3)觀察線材經由無模抽製成形後,其微結構之變化與對硬度、降伏強度等機械性質的影響;(4)藉由有限元素軟體DFORM-3D,建立細線之無模抽製有限元素析模型,並將分析結果與實驗結果進行比較驗證其正確性。
經由實驗結果可知:(a)極限之抽製速度會隨著抽製溫度的升高(800°C~1200 °C)而上升,最高可達到2.18 mm/s (R=30%)。而 僅發現於抽製溫度為900°C與抽製速度為0.26mm/s之條件下;(b)由金相觀察可發現隨著抽製溫度升高,鈦線之微結構會由α相(HCP)逐漸轉為β相(BCC),且抽製後線材之抗拉強度與硬度皆有下降的趨勢;(c)當線材成品為α與β相共存之結構(抽製溫度約1000°C),其成形輪廓易出現不穩定的變化;(d)由模擬結果可知,抽製加速度控制可有效減少初始變形區產生頸縮,且其成形趨勢與實驗結果相同。
Abstract
This study focuses on the dieless drawing of titanium wires. Due to miniaturization is being demanded in many industrial products, a variety of novel techniques were proposed. But it is not easy to conduct the wires drawing forming of micro-size because of the micro tools or dies are difficult fabricated. In addition, yield
strength of titanium is too high to draw at normal temperature. Therefore, this study used dieless drawing techniques to solve these problems. Dieless drawing machine was modified for thin wires drawing forming and the formability of the dieless drawing processes of grade 2 titanium wires of 1mm diameter was investigated. The outlines this these are: (1) finding the forming temperature range and limit drawing velocity of dieless drawing processes of titanium wires; (2) Discussion of the effect of drawing velocity, acceleration and heating temperature on formability of titanium wires; (3) Discussion of the effect of dieless drawing processes on mechanical properties of titanium wires; and (4) comparisons of product profiles between experimental results and FE simulation results by DEFORM 3D.
The experimental results can be summarized as follows: (a) As the drawing temperature increased from 800°C to 1200 °C and the maximum drawing velocity can achieve 2.18mm/s or area reduction of 30%,however, due to instability of the drawing temperature control, maximal area reduction of this study was 63% at a drawing velocity of 0.26mm/s and drawing temperature of 900°C; (b) The microstructure of α- phase can be observed in a range of drawing temperature of 800°C to 900°C and β-phase precipitates at drawing temperature of 1000°C. In addition, the yield strength and hardness of titanium wires decreased after dieless drawing processes; (c) When microstructure of titanium wires have α-β phase, unstable profiles of the wires were found at drawing temperature of 1000°C; and (d) Simulation results were quite close to the experimental results, which verified the validity of the finite element modeling, and when the drawing acceleration decreased, the necking shape disappeared and a smooth sound product was obtained.
目次 Table of Contents
論文審定書 i
誌謝 ii
摘要 iii
Abstract iv
總目錄 vi
圖目錄 ix
表目錄 xiii
符號表 xiv
第一章 緒論 1
1-1 前言 1
1-2 鈦金屬特性及應用簡介 3
1-3 抽製成形技術簡介 6
1-3-1 有模抽製法 6
1-3-2 有模金屬抽製產生之缺陷 9
1-3-3 無模抽製法 11
1-3-4 斷面縮減率定義 12
1-3-5 無模抽製成形之極限縮減率理論 14
1-4無模拉製成形文獻回顧 14
1-4-1線材無模抽製成形技術 15
1-4-2管材無模抽製成形技術 18
1-4-3非圓截面之無模抽製成形技術 21
1-4-4無模壓縮成形技術應用 21
1-5 研究目的 22
1-6 本文架構 23
第二章 無模抽製成形機台簡介 24
2-1實驗機台組成 24
2-1-1無模抽製成形機之加熱系統建立與簡介 24
2-1-2無模抽製成形機之感測系統建立與簡介 28
2-1-3無模抽製成形機之傳動系統簡介 30
2-1-4無模抽製成形機之控制系統與運轉機制 31
第三章 無模抽製成形實驗與產品機械性質檢測 34
3-1實驗規劃與試件製備 34
3-2無模抽製成形實驗 35
3-2-1無模抽製成形實驗之作動方式與線材成形區定義 35
3-2-2無模抽製成形實驗之操作流程與注意事項 37
3-3不同製程參數對純鈦線之無模抽製成形影響探討 37
3-3-1不同抽製溫度與抽製速度對線材成影響 37
3-3-2無模抽製二級鈦線之成形溫度與極限抽製速度範圍 42
3-3-3不同縮減率與抽製加速度控制對線材成形影響 45
3-3-4抽製溫度控制與鈦線相傳換對線材成形的影響 49
3-4 應變速率敏感係數對二級鈦線之無模抽製成形影響 52
3-4-1二級純鈦之熱壓縮試驗 52
3-4-2壓縮試驗之實驗結果與應變速率敏感係數之計算 57
3-5金相觀察 63
3-5-1金相試驗流程與參數 63
3-5-2金相試驗結果與討論 66
3-6拉伸試驗 71
3-6-1拉伸試驗流程與結果討論 71
3-7 硬度試驗 77
3-7-1硬度試驗流程與參數 78
3-7-2硬度試驗結果與討論 80
第四章 無模抽製成形之有限元素分析 82
4-1有限元素分析軟體DEFORM簡介 82
4-1-2無模抽製成形之模型建立與製程作動方式轉換 83
4-2 解析結果討論 85
4-2-1有限元素模擬與實驗值比較 85
第五章 結論 89
5-1 研究成果與概要 89
5-2 今後研究之建議 93
參考文獻 94
參考文獻 References
[1] 塑性加工技術シリ一ズ6-引抜き加工,日本塑性加工學會(1990)。
[2] 日本塑性加工学会編,チタンの基礎と加工,コロナ社,pp.1-2。
[3] 洪胤庭,純鈦及鈦合金特性及製程介紹,中工高雄會刊,第21卷,第1期,民
國102年9月。
[4] 鈦金屬牙套介紹,http://www.drdonaseely.com.
[5] 鈦色合金材料有限公司,鈦金屬彈簧,http://www.ticolor.com.tw.
[6] Morris Co. Ltd,鈦金屬釣線,http://www.varivas.co.jp.
[7] Uromed,醫療用導線, http://www.uromed.eu.
[8] Burls Bicycles,鈦金屬車架,http://burls.co.uk.
[9] 鈦金屬高爾夫球頭介紹,http://www.iseekgolf.com.
[10] 裕強生技股份有限公司,鈦金屬義肢,http://www.eupl.com.
[11] 鈦金屬眼鏡框架,http://www. jandan.com.tw。
[12] ASTM B863-10, “Standard Specification for Titanium and Titanium Alloy
Wire” (2010) .
[13] 張翥,王群驕,莫畏,鈦的金屬學和熱處理,冶金工業出版社,頁31(2009)。
[14] 賴耿陽,抽線抽管塑性加工,復漢出版社印行,頁9-21,民國90年11月再刷
版。
[15] 賴耿陽,抽線抽管塑性加工,復漢出版社印行,頁94-95,民國90年11月再刷
版。
[16] K. Siegert, J. Ulmer, “Superimposing ultrasonic waveson the dies in tube and
wire drawing,” Journal of Engineering Materials and Technology, Vol. 123,
pp. 517-523 (2001).
[17] P. J. McAllen, P. Phelan, “Numerical analysis of axisymmetric wire drawing
by means of a coupled damage model,” Journal of Materials Processing
Technology, Vol. 183, pp. 210-218 (2007).
[18] P. Schade, “Wire drawing failures and tungsten fracture phenomena,”
International Journal of
Refractory Metals & Hard Materials, Vol. 24, pp. 332-337 (2006).
[19] T. Furushima, S. Hirose, K. Manabe, “Effective temperature distribution and
drawing speed control for stable dieless drawing process of metal tubes,”
Journal of Solid Mechanics and Materials Engineering, Vol. 191, pp. 310-213
(2007).
[20] E. Twohig, P. Tiernan, “Experimental study on dieless drawing of Nickel–
Titanium alloy,” Journal of The Mechanical behavior of Biomed Materials,
Vol. 3, No. 2, pp. 236-246 (2009).
[21] 池田拓真,金属管のダイレス引抜きにおける変形挙動に及ぼす材料特性と加工
条件の影響,首都大学東京理工学研究科機械工学専攻修士学位論文(2011)。
[22] 村橋守,線材の連続ダイレステーパー加工法の開発”, 日本塑性加工学会誌,
第31捲,第355號,pp. 978-983 (1990)。
[23] R. Fortunier, H. Sassoulas, F. Montheillet, “A thermo-mechanical analysis of
stability in dieless wire drawing,” International Journal of Mechanical
Sciences, Vol. 39, No. 5, pp. 615-627 (1997).
[24] Y. Li, N. R. Quick, A. Kar, “Dieless laser drawing of fine metal wires,” Journal
of Materials Processing Technology, Vol. 123, pp. 451-458 (2002).
[25] P. Tiernan, M. T. Hillery, “Dieless wire drawing an experimental and
numerical analysis,” Journal of Materials Processing Technology, Vol. 155-
156, pp. 1178-1183 (2004).
[26] R. Carolan, P. Tiernan, “Computer controlled system for dieless drawing of
tool steel bar,” Journal of Materials Processing Technology, Vol. 209, pp.
3335-3342 (2009).
[27] M. D. Naughton, P. Tiernan, “An experimental approach to continuous
dieless wire drawing (Variant A) using ELI T-6Al-V Alloy,” Journal of
Engineering Materials Technology, Vol. 131, pp.021005-1─021005-10
(2009).
[28] M. Kaltenbrunner, G. Liedl, A. Kratky, R. Bielak, “Lawd-laser assisted wire
drawing,” Laser Assisted Net shape Engineering 4, pp. 1175-1181 (2004).
[29] Y. Huh, B. Keun Ha, J. S. Kimi, “Dieless drawing steel wires using a
dielectric heating method and modeling the process dynamics,” Journal of
Materials Processing Technology, Vol. 210, pp. 1702-1708 (2010).
[30] 關口秀夫,ダイレス引抜き加工法,日本塑性加工学会誌,第7巻,第180号,
pp.67-71 (1976)。
[31] Z. T. Wang, G.F. Luan, G.R. Bai, “Study of the deformation velocity field and
drawing force during the dieless drawing of tube”, Journal of Materials
Processing Technology, Vol.94, pp.73-77 (1999).
[32] Z. T. Wang, S. H. Zhang, Y. Xu, G. F. Luan, G.R. Bai, “Experiment study on
the variation of wall thickness during dieless drawing of stainless steel tube,”
Journal of Materials Processing Technology, Vol. 120, pp. 90-93 (2002).
[33] 古島剛,真鍋健一,本酒井孝,超塑性ダイレス引抜きによるマイクロチューブの
創成実験,日本塑性加工学会誌,第47巻,第548号,pp. 870-874 (2006)。
[34] T. Furushima, K. Manabe, “Experimental study on multi-pass dieless drawing
process of superplastic Zn–22%Al alloy microtubes,” Journal of Materials
Processing Technology, Vol. 187-188, pp. 236-240 (2007).
[35] T. Furushima, K. Manabe, “Experimental and numerical study on
deformation behavior in dieless drawing process of superplastic microtubes,”
Journal of Materials Processing Technology, Vol.191, pp. 59-63 (2007).
[36] 古島剛,真鍋健一,ダイレス引抜きによるAZ31マグネシウム合金極細管の創
製,日本塑性加工学会誌,第51巻,第597号,pp. 67-71 (2010)。
[37] S. Supriadi, K. Manabe, “Enhancement of dimensional accuracy of dieless
tube-drawing process with vision-based fuzzy control,” Journal of Materials
Processing Technology, Vol. 213, pp. 905- 912 (2013).
[38] T. Furushima, Y. Imagawa, S. Furusawa, K. Manabe, “Deformation profile in
rotary laser dieless drawing process for metal microtubes,” Procedia
Engineering, Vol. 81, pp. 700-705 (2014).
[39] T. Furushimaa , Y. Imagawa, S. Furusawa, K. Manabe, “Development of
Rotary Laser Dieless Drawing Apparatus for Metal Microtubes,” Vol. 626, pp.
372-376 (2015).
[40] T. Furushima, K. Manabe, “Dieless drawing process of extruded non-circular
aluminum alloy tubes with double hollow section,” Journal of Japan Institute
of Light Metals, Vol. 57, No. 8, pp. 351-356 (2007).
[41] T. Furushitna, K, Manabe, “Experimental and numerical study on dieless
drawing process of aluminum alloy extruded tubes with double hollow
section,” Journal of the Chinese Society of Mechanical Engineers, Vol. 31,
No. 2 pp. 99-105 (2010).
[42] T. Furushima, A. Shirasaki, K. Manabe, “Fabrication of noncircular multicore
microtubes by superplastic dieless drawing process,” Journal of Materials
Processing Technology, Vol. 214, pp.29-35 (2014).
[43] T. Furushima, N. Q. Hung, K. Manabe, O. Sasaki, “Fabrication of metal
bellows by dieless compression technique,” Japanese Joint Conference for
the Technology of Plasticity, Vol. 61, pp.87-88 (2010).
[44] T. Furushima, N. Q. Hung, K. Manabea, O. Sasaki, “Development of semi-
dieless metal bellows forming process,” Journal of Materials Processing b
Technology, Vol. 213, pp. 1406-1411 (2013).
[45] 古島 剛,北村 凌,古澤周作,真鍋健一,金属マイクロチューブのレーザダイレ
スベローズ成形,塑性加工連合講演會,pp. 237-238 (2014)。
[46] 郭宗育,無模拉製成形雛形機之設計與製作,國立中山大學與機電工程系碩士
論文,民國100年六月。
[47] 李宗憲,無模拉製成形之熱傳解析及無模線材拉製系統設計,國立中山大學與
機電工程系碩士論文,民國102年六月。
[48] 周坤成,高周波的基礎與應用,文笙書局,頁5,民國79年。
[49] 周坤成,高周波的基礎與應用,文笙書局,頁109,民國79年。
[50] Optris 紅外線感測器操作手冊,頁22。
[51] 二級鈦放射率參數,http://www.matweb.com.
[52] 二級鈦化學成分參數,http://www.ticolor.com.tw.
[53] M. Greger, M. Widomská, L. Kander, “Structure Mechanical properties of
ultra-fine grain titanium,” Trends in the Development of Machinery and
Associated Technology, 13 , pp. 753-756 (2009).
[54] M. J. Tan, X. J. Zhu, “Microstructure ecolution of CP titanium during high
temperature deformation,” Archives of Materials Science and Engineering,
Vol. 28, No. 1, pp. 5-11 (2007).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code