Responsive image
博碩士論文 etd-0724115-145643 詳細資訊
Title page for etd-0724115-145643
論文名稱
Title
以水熱法製備氧化鋅奈米柱應用於乙醇氣體感測
Hydrothermal growth of ZnO nanorods for ethanol gas sensing application
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
102
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-27
繳交日期
Date of Submission
2015-08-24
關鍵字
Keywords
乙醇氣體感測器、氧化鋅、氧化鋅奈米柱、水熱法、指叉式電極
hydrothermal method, ethanol gas sensor, zinc oxide nanorods, interdigital transducer electrodes, Zinc oxide
統計
Statistics
本論文已被瀏覽 5737 次,被下載 61
The thesis/dissertation has been browsed 5737 times, has been downloaded 61 times.
中文摘要
本研究主要係利用氧化鋅奈米柱製備乙醇氣體感測器。藉由調變氧化鋅薄膜之沉積參數來製備出具有C軸優選取向之晶種層,並以水熱法於晶種層上沉積氧化鋅奈米柱之結構來提升其感測靈敏度。利用黃光微影及直流磁控濺鍍法於SiO2/Si基板上製作IDT感測器電極,再使用射頻磁控濺鍍法沉積氧化鋅晶種層及使用水熱法成長氧化鋅奈米柱,並藉由X光繞射儀與掃描式電子顯微鏡進行物性分析。
研究結果顯示,當元件在工作溫度150℃、乙醇氣體濃度為100 ppm時,其感測靈敏度約為67.8%;當氣體濃度提升至500 ppm時,其靈敏度約為93.65%。
Abstract
In this study, the ethanol gas sensor was prepared by using zinc oxide nanorods. The zinc oxide seed layer with c-axis preferred orientation was prepared by modulating the deposition parameters of zinc oxide films. Then the zinc oxide nanorod structure was grown on the seed layer by using hydrothermal method, where the nanorod structure can enhance the sensing sensitivity. In this study, the interdigital transducer (IDT) electrodes were fabricated on SiO2/Si substrates by photolithography and DC sputtering system. Then, the zinc oxide seed layer was deposited by using RF magnetron sputtering and the zinc oxide nanorods were grown on the seed layer by using hydrothermal method. The crystalline structures and morphologies were examined by X-ray diffraction and field emission scanning electron microscope analyses, respectively.
According to the experimental results, it shows that the ethanol gas sensor exists 67.8% sensitivity when it works at the temperature of 150 ℃ and the ethanol gas concentration of 100 ppm. When the gas concentration increased to 500 ppm, the sensitivity was enhanced to 93.65%.
目次 Table of Contents
目 錄
論文審定書 i
誌謝 iii
中文摘要 iv
Abstract v
目 錄 vi
圖目錄 xi
表目錄 xiv
第一章 緒論 1
1-1 前言 1
1-2 氣體感測器與奈米結構 4
1-3 研究目的及內容 6
第二章 理論 7
2-1 氧化鋅的結構與特性 7
2-3 反應式射頻磁控濺鍍原理 12
2-3-1 輝光放電(Cathode glow discharge) 12
2-3-2 磁控濺鍍 14
2-3-3 射頻濺鍍 15
2-3-4 反應性濺鍍 15
2-4 薄膜成長機制 17
2-4-1 薄膜沉積階段 17
2-4-2 薄膜表面與剖面結構 20
2-5 氣體感測器感測原理 22
2-6 水熱法 24
2-7 比表面積 25
第三章 實驗方法及步驟 26
3-1 實驗步驟 26
3-2 晶圓清洗 30
3-3 阻擋層之成長 30
3-4 試片清洗 31
3-5 電極的製備流程 31
3-5-1 微加熱器及電極圖案定義 32
3-6 薄膜沉積 35
3-6-1 射頻磁控濺鍍系統 35
3-6-2 直流磁控濺鍍系統 37
3-7 水熱法製備流程 38
3-7-1 溶液之配製 39
3-7-2 以水熱法成長氧化鋅奈米柱 39
3-8 物性分析 39
3-8-1 X光繞射(X-ray Diffraction, XRD)分析 39
3-8-2 掃描式電子顯微鏡(Scenning Electron Microscopy, SEM)分析 41
3-9 電性量測 42
第四章 結果與討論 44
4-1 氧化鋅沉積參數分析 44
4-1-1 調變濺鍍功率之氧化鋅X光繞射分析 44
4-1-2 調變濺鍍功率之氧化鋅SEM分析 45
4-1-3 調變濺鍍壓力之氧化鋅X光繞射分析 47
4-1-4 調變濺鍍壓力之氧化鋅SEM分析 48
4-2 氧化鋅晶種層厚度分析 50
4-3 氧化鋅奈米柱參數分析 57
4-3-1 基板放置方式 57
4-3-2 前置溶液濃度之調變 59
4-3-3 水熱法成長時間之調變 62
4-3-3 水熱法成長溫度之調變 65
4-4 電性量測 68
4-4-1 感測器的工作溫度分析 68
4-4-2 不同製程參數之感測器分析 72
4-4-3 通入氣體濃度分析 80
第五章 結論 85
參考文獻 86
參考文獻 References
[1] 陳一誠、劉旭禎,“一氧化碳氣體感測技術”,工業材料227期94年11月
[2] 邱碧秀,“氣體感測器:半導體型氣體感測器”,科儀新知,第6卷第6期第67-71頁
[3] 張希誠,“感測器的基礎與應用:工廠與機器人篇”,第49-51頁
[4] 鄭煜騰,“氣體感測器的市場分析與發展概況”,科儀新知,第18卷第5期第76-84頁
[5] 蔡嬪嬪,“氣體感測器的新動向”,工業材料150期98頁
[6] P. B. Weisz, “Effects of Electronic Charge Transfer between Adsorbate and Solid on Chemisorption and Catalysis”, J. Chem. Phys, (1953), pp.1531-1538
[7] T. Seiyama, A. Kato, K. Fujiishi, M. Nagatani, “A New Detector for Gaseous Components Using Semiconductive Thin Films” Anal. Chem.,(1962), pp. 1502–1503
[8] 葉陶淵,“化學感測器中氣體感測器的新動向”,科儀新知,第20卷第4期第7頁
[9] 蔡嬪嬪、曾明漢,“氣體感測器之簡介、應用及市場”,材料與社會,第68期第50-56頁
[10] H. Y. Bae , G. M. Choi, “Electrical and reducing gas sensing properties of ZnO and ZnO–CuO thin films fabricated by spin coating method” ,Sens. Actuators B,55 (1999), pp.47–54
[11] H. W. Ryua, B.-S. Park, S. A. Akbar, W.-S. Lee, K.-J. Honga, Y.-J. Seo, D.-C. Shin, J.-S. Park, G.-P. Choi, “ZnO sol–gel derived porous film for CO gas sensing” Sens. Actuators B, 96 (2003), pp.717–722
[12] T. J. Hsueh, C.-L. Hsu, S.-J. Chang, I.-C. Chen "Laterally grown ZnO nanowire ethanol sensors" Sens. Actuators B, 126 (2007), pp. 473–477
[13] N. V. Hieu, N.D. Chien "Low-temperature growth and ethanol-sensing characteristics of quasi-one-dimensional ZnO nanostructures" Sens. Actuators B, 403 (2008), pp. 50–56
[14] R. C. Singha, O. Singha, M.P. Singh, P.S. Chandic "Synthesis of zinc oxide nanorods and nanoparticles by chemical route and their comparative study as ethanol sensors" Sens. Actuators B, 135 (2008), pp. 352–357
[15] P. Feng, Q. Wan, T.H. Wang, "Contact-controlled sensing properties of flowerlike ZnO nanostructures" Appl. Phys. Lett., 87 (2005), p. 213111
[16] Z. Zing, J. Zhan "Fabrication and gas-sensing properties of porous ZnO nanoplates" Adv. Mater., 20 (2008), pp. 4547–4551
[17] Y. H. Choi, D.-H. Kim, S.-H. Hong, K. S. Hong " H2 and C2H5OH sensing characteristics of mesoporous p-type CuO films prepared via a novel precursor-based ink solution route" Sens. Actuators B 178 (2013), pp.395– 403
[18] C. Yang, X. Su, F. Xiao, J. Jian, J. Wang "Gas sensing properties of CuO nanorods synthesized by a microwave-assisted hydrothermal method" Sensors and Actuators B, 158 (2011), pp. 299–303
[19] R. Li, J. Du, Y. Luan, Y. Xue, H. Zou, G. Zhuang, Z. Li "Ionic liquid precursor-based synthesis of CuO nanoplates for gas sensing and amperometric sensing applications" Sensors and Actuators B, 168 (2012), pp. 156–164
[20] X. L. Li, T.-J. Lou, X.-M. Sun, Y.-D. Li "Highly sensitive WO3 hollow-sphere gas sensors" Inorg. Chem., 43 (2004), pp. 5442–5449
[21] B. R. Huang, J.C. Lin "Core–shell structure of zinc oxide/indium oxide nanorod based hydrogen sensors" Sens. Actuators B, 174 (2012), pp. 389–393
[22] 隆彥先,李承龍,馬正先,梁家禎,陳憲良,高明哲, “呼氣酒精計量品保追溯語認證在鑑識領域之應用”,台灣警察專科學校警專學報,第5卷第4期第161-178頁
[23] H. L. Hartnagel, A. K. Jain and C. Jagadish,“Semiconducting TransparentThin Films,”published by Institute of Physics Publication, (1995).
[24] P. Nunes, D. Costa, E. Fortunato and R. Martins, “Performances presented by zinc oxide thin films deposited by rf magnetron sputtering,” Vacuum, 64 (2002), pp. 293-297.
[25] Y. Igasaki and H. Saito, “The effects of zinc diffusion on the electrical and optical properties of ZnO: Al films prepared by rf reactive sputtering,” Thin Solid Films,199 (1991), pp. 223-230.
[26] T. Y. Ma and D.K. Shim, “Effects of rapid thermal annealing on the morphology and electrical properties of ZnO/In films.” Thin Solid Films, 410 (2002), pp. 8-13,.
[27] Abu Z. Sadek, S. Choopum, W.Wlodarski, J. Samuel, “Ippolito and Kourosh Kalantar-zadeh” , IEEE SENSORS JOURNAL,7(2007), pp. 919
[28] 施敏,張俊彥,“半導體元件之物理與技術”,儒林,(1990)
[29] G. Heiland, D. Kohl, in: T. Seiyama (Ed.), “Chemical Sensor Technology”, kodansha, Tokyo, l (1998), pp. 15-38
[30] R. W. Berry, P.M. Hall and M.T. Harris, “Thin film technology,” Van Nostrand Princeton, New Jersey, (1968).
[31] J. L. Vossen and W. Kern, “Thin film processes II,”Academic Pr, (1991).
[32] B. Chapman, ”Glow Discharge Processes”, John Wiley and Sons, NewYork, (1980).
[33] E. Janczak-Bienk, H. Jensen and G. Sørensen, “The influence of the reactive gas flow on the properties of AIN sputter-deposited films,” Materials Science and Engineering: A, 140 (1991), pp. 696-701.
[34] I. Petrov, P. B. Barna, L. Hultman, and J. E. Greene, “Microstructural evolution during film growth,” Journal of Vacuum Science and Technology, 21, pp. S117-S128.
[35] John A. Thornton, Journal of Vacuum Science & Technology A ,11 (1974), pp.666
[36] Gardner, Julian W Awadelkarim原著,溫榮弘譯,微機電元件
[37] L. Lin,C. R. Corla, S. Ling, “Utraviolet detectors based on epitaxial ZnO films grown by MOCVD.”Chemistry and electronic materials, 29 (2000),pp. 69-74
[38] Y. C. Kong, D.P. Yu and B.Zhang, “Utraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach.” Applied physics letters ,4 (2001), pp.78
[39] X. Liu, Z. Jin , S. Bu, J. Zhao, Z. Liu , “Effect of buffer layer on solution deposited ZnO films”, Materials Letters, 53 (2005), pp.3994 – 3999
[40] S. Brunauer, P. H.Emmett and E.Teller, “Adsorption of Gases in Multimolecular Layers.” Journal of the American Chemical Society, 66 (1938), pp.309-319
[41] B. Y.JL.Huang and.D.F.Lii, “Effect of R.F.Bias and Nitrogen Flow Rate on the Reactive Sputtering of TiAlN Films”, Thin Solid films, 293 (1997), pp.212.
[42] S. J. Kwon, J. G. park,“Theoretical analysis of growth of ZnO nanorods on the amorphous surfaces,” The Journal of Chemical Physics , 122 (2005)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code