Responsive image
博碩士論文 etd-0724115-151623 詳細資訊
Title page for etd-0724115-151623
論文名稱
Title
利用分子束磊晶法生長非極性氧化鋅薄膜於鎵酸鋰基板
Growth of nonpolar ZnO films on LiGaO2 substrate by molecular beam epitaxy
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
89
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-08
繳交日期
Date of Submission
2015-08-24
關鍵字
Keywords
磊晶層、鎵酸鋰、分子束磊晶、穿透式電子顯微鏡、氧化鋅
LiGaO2 (LGO), ZnO, Epilayer, Transmission Electron Microscope (TEM), Molecular beam epitaxy (MBE)
統計
Statistics
本論文已被瀏覽 5680 次,被下載 4
The thesis/dissertation has been browsed 5680 times, has been downloaded 4 times.
中文摘要
本文利用電漿輔助分子束磊晶(MBE)成長非極性氧化鋅(ZnO)於鎵酸鋰(LiGaO2, LGO)基板,由於氧化鋅與鎵酸鋰基板之間的晶格失配度很小,應可在分子束磊晶成長過後得到高品質的氧化鋅薄膜,然而氧化鋅薄膜磊晶卻意外的失敗了,推論預期之外的失敗原因是前處理對鎵酸鋰基板的不良影響,尤其是分子束磊晶預抽室(Load Lock chamber)內利用活化氫氣清潔基板表面的步驟,為了證明氫氣與氧化鋅成長的關係,本文後段對非極性氧化鋅薄膜有無氫氣處理步驟之差異並進行討論,主要研究成果將分成兩大部分。
第一部分為去除氫氣清潔步驟後,首次成功利用分子束磊晶在鎵酸鋰基板上成長非極性氧化鋅薄膜,非極性m-plane氧化鋅與鎵酸鋰基板間的晶向關係藉由穿透式電子顯微鏡(TEM)分析可確認為(11 ̅00) ZnO // (100) LGO, [0001] ZnO // [001] LGO,X光繞射(XRD)數據顯示氧化鋅薄膜在較高成長溫度具有較好結晶性質,然而氧化鋅成長在這階段不具規律性,很有可能是取消氫氣清潔步驟導致鎵酸鋰基板表面仍然存在殘留團簇物進而影響後續氧化鋅成長。
第二部分進一步探討活化氫氣對鎵酸鋰基板表面的影響,由原子力顯微鏡(AFM)分析其結果,過量的氫氣清潔步驟破壞鎵酸鋰基板表面並導致氧化鋅晶體成長失敗,對照不同氫氣清潔參數的結果,鎵酸鋰基板上的殘留團簇物在適當的清潔條件下可由活化氫氣去除並保留基板的完整性,在此條件下成長於(100)鎵酸鋰基板的m-plane氧化鋅薄膜具有良好的晶體性質,m-plane氧化鋅較佳成長溫度為600℃,X光繞射分析顯示其(11 ̅00)ZnO半高寬為0.07°,並由穿透式電子顯微鏡分析其微結構缺陷,室溫光致螢光(photoluminescence)分析氧化鋅磊晶層的光學性質。
Abstract
This thesis is focused on the growth of nonpolar ZnO film on LiGaO2 (LGO) substrate by plasma assisted molecular beam epitaxy (PAMBE) method. According to small lattice mismatch between ZnO and LGO substrate, high-quality ZnO film should be acquired after MBE growth process. However, the growth of ZnO film suffered undesired failure. The inference of this failure was attributed to the influence of pretreatments on LGO substrate, the surface cleaning process using activated hydrogen in Load Lock chamber of MBE system in particular. In order to prove the relationship between H2 and growth of ZnO, the comparison of nonpolar ZnO film adopting with and without H2 cleaning process is investigated. Therefore, this thesis reports in two major parts.

In first part, nonpolar ZnO films were successfully grown on LGO substrate by MBE method as we removed H2 cleaning process. The orientation relationship between nonpolar m-plane ZnO and LGO substrate was confirmed as (11 ̅00) ZnO // (100) LGO, [0001] ZnO // [001] LGO by selected area electron diffraction patterns (SAED). X-ray diffraction (XRD) patterns have indicated that higher growth temperature of ZnO epilayer leads to better crystal qualities. Nevertheless, the irregular ZnO growth might be induced by residual clusters on the surface of LGO substrate since H2 cleaning process was canceled.

The second part further discusses the influence of activated H2 on the surface of LGO substrate by atomic force microscope (AFM). The excessive H2 cleaning process destroyed the surface of LGO and resulted in the failure of ZnO crystal growth. By comparing H2 cleaning process with different parameters, the residual clusters on surface of as-received LGO substrate can be removed by activated H2 under appropriate cleaning conditions and preserve the completeness of substrate. Under such condition, m-plane ZnO films grown on (100) LGO substrate possess good crystal quality. The optimal growth temperature of m-plane ZnO is around 600℃ and the FWHM of (11 ̅00) ZnO X-ray rocking curve is around 0.07°. The microstructure defects of m-plane ZnO is investigated by transmission electron microscope (TEM). Optical properties of ZnO epilayer are characterized by room temperature photoluminescence (PL).
目次 Table of Contents
中文摘要 i
English Abstract ii
Contents iv
Table Captions vi
Figure Captions vii
ChapterⅠ Introduction 1
Chapter Ⅱ Literature Review 3
2.1 Characterization of Zinc Oxide 3
2.2 Substrates for ZnO epitaxy 4
2.2.1 Sapphire (α-Al2O3) 4
2.2.2 ScAlMgO4 (SCAM) 5
2.2.3 Lithium aluminate (γ-LiAlO2, LAO) 5
2.2.4 Lithium gallate (LiGaO2, LGO) 5
2.2.5 (La,Sr)(Al,Ta)O3, LSAT 6
2.3 Molecular Beam Epitaxy, MBE 6
2.4 ZnO growth by MBE method 8
2.4.1 ZnO grown on sapphire substrate 8
2.4.2 ZnO grown on other substrates 13
2.5 Epitaxial growth of ZnO film on LiGaO2 substrate 15
Chapter Ⅲ Experimental Method 18
3.1 Epitaxial growth 18
3.1.1 Substrate preparation 18
3.1.2 Growth parameters 18
3.2 Experiment analyses 18
3.2.1 Reflection high energy electron diffraction (RHEED) 18
3.2.2 X-ray Diffraction (XRD) 19
3.2.3 Scanning Electron Microscope (SEM) 19
3.2.4 Atomic Force Microscope (AFM) 19
3.2.5 Photoluminescence (PL) 20
3.2.6 Cathodoluminescence (CL) 20
3.2.7 Transmission Electron Microscope (TEM) 21
Chapter Ⅳ Epitaxial Growth of Nonpolar ZnO 22
4.1 Modification of ZnO epitaxial growth process 22
4.2 Growth parameters of ZnO epitaxy 26
4.2.1 X-ray diffraction results 26
4.2.2 Scanning electron microscope results 28
4.2.3 Atomic force microscope results 29
4.2.4 Photoluminescence results 29
4.2.5 Transmission Electron Microscope 30
4.3 Conclusion 31
Chapter Ⅴ Optimal Growth of Nonpolar M-plane ZnO 32
5.1 Influence of Hydrogen on LGO substrate 32
5.2 Crystal properties of m-plane ZnO 34
5.3 Microstructure of m-plane ZnO 36
5.4 Conclusion 38
Chapter Ⅵ Conclusions 40
References 42
List of Publications 77
參考文獻 References
[1] S. Nakamura, T. Mukai, and M. Senoh, J. Appl. Phys., 76, 8189 (1994)
[2] M. M. C. Chou, D. R. Hang, H. Kalisch, R. H. Jansen, Y. Dikme et al., J. Appl. Phys., 101, 103106 (2007)
[3] K. Xu, P. Deng, J. Xu, G. Zhou, W. Liu, Y. Tian, J. Cryst. Growth, 216, 343 (2000)
[4] O. Kryliouk, M. Reed, T. Dann, T. Anderson, B. Chai, Materials Science and Engineering, B66, 26 (1999)
[5] 李居安,以柴式提拉法生長大尺寸鎵酸鋰晶體以及以氫化物氣相磊晶法在鎵酸鋰基板上生長氮化銦,國立中山大學材料與光電科學學系博士論文研究計畫書, 中華民國一百年
[6] http://en.wikipedia.org/wiki/File:Wurtzite_polyhedra.png
[7] D. P. Norton, Y. W. Heo, M. P. Ivill, K. Ip, S. J. Pearton, M. F. Chisholm, and T. Steiner, Materials Today, 7, 34 (2004)
[8] K. Maeda, M. Sato, I. Niikura and T. Fukuda, Semicond. Sci. Technol. 20, S49 (2005)
[9] M. Mikami, T. Eto, J. Wang, Y. Masa, M. Isshiki, J. Cryst. Growth, 276, 389 (2005)
[10] A. Mycielski, L. Kowalczyk, A. Szadkowski, B. Chwalisz, A. Wysmołek, R. St˛epniewski, J.M. Baranowski, M. Potemski, A. Witowski, R. Jakieła, A. Barcz, B. Witkowska, W. Kaliszek, A. J˛edrzejczak, A. Suchocki, E. Łusakowska, E. Kamin ́ska, J. Alloys Compd. 371, 150 (2004)
[11] M. Marezio, Acta. Cryst., 19, 36 (1965)
[12] M. Marezio, Acta. Cryst., 18, 481 (1965)
[13] T. Ishii, Y. Tazoh, S. Miyazawa, J. Cryst. Growth, 189, 208 (1998)
[14] C.J. Rawn, J. Chaudhuri, J. Cryst. Growth, 225, 214 (2001)
[15] D. Mateika, H. Kohler, H. Laudan, E. Volkel, J. Cryst. Growth, 109, 447 (1991)
[16] 王仕泉,利用化學氣相沉積法生長非極性之氧化鋅(11-20)薄膜在(La,Sr)(Al,Ta)O3基板上,國立中山大學材料與光電科學學系研究所碩士論文,中華民國九十九年
[17] A. Y. Cho and J. R. Arthur, Prog. Solid State Chem., 10, 157 (1975)
[18] W. Braun, Applied RHEED: Reflection High-Energy Electron Diffraction During Crystal Growth, Springer (1999).
[19] Y. Chen, D. M. Bagnall, H. J. Koh, K. T. Park, K. Hiraga et al., J. Appl. Phys., 84, 3912 (1998)
[20] S. Bethke, H. Pan, and B. W. Wessels, Appl. Phys. Lett., 52, 138 (1988)
[21] I. Ohkubo, Y. Matsumoto, A. Ohtomo, T. Ohnishi, A. Tsukazaki, M. Lippmaa, H. Koinuma, M. Kawasaki, Appl. Surf. Sci., 159, 514 (2000)
[22] I. Ohkubo, A. Ohtomo, T. Ohnishi, Y. Mastumoto, H. Koinuma, M. Kawasaki, Appl. Surf. Sci, 443, L1043 (1999)
[23] X. Wang, H. Iwaki, M. Murakami, X. Du, Y. Ishitani and A. Yoshikawa, Jpn. J. Appl. Phys., 42, L99 (2003)
[24] P. Fons, K. Iwata, A. Yamada, K. Matsubara, S. Niki et al., Appl. Phys. Lett., 77, 1801 (2000)
[25] K. Nakahara, T. Tanabe, H. Takasu, P. Fons, K. Iwata, A. Iwata, A. Yamada, K. Matsubara, R. Hunger and S. Niki, Jpn. J. Appl. Phys., 40, 250 (2001)
[26] S. K. Han, S. K. Hong, J. W. Lee, J. G. Kim, M. Jeong, J.Y. Lee, S. I. Hong, J. S. Park, Y. E. Ihm, J. S. Ha, T. Yao, Thin Solid Films, 519, 6394 (2011)
[27] S. K. Han, J. H. Kim, S. K. Hong, J. H. Song, J. H. Song, J. W. Lee, J. Y. Lee, S. I. Hong, T. Yao, J. Cryst. Growth, 312, 2196 (2010)
[28] S.K. Han, S.K. Hong, J.W. Lee, J.Y. Lee, J.H. Song, Y.S. Nam, S.K. Chang, T. Minegishi, T. Yao, J. Cryst. Growth, 309, 121 (2007)
[29] Y. Chen, H. J. Ko, S. K. Hong, and T. Yao, Appl. Phys. Lett. 76, 559 (2000)
[30] A. Setiawan, H. J. Ko, S. K. Hong, Y. Chen, T. Yao, Thin Solid Films, 445, 213 (2003)
[31] J.S. Park, S.K. Hong, T. Minegishi, I.H. Im, S.H. Park, T. Hanada, J.H. Chang, M.W. Cho, T. Yao, Appl. Surf. Sci., 254, 7786 (2008)
[32] A. Ohtomo, K. Tamura, K. Saikusa, K. Takahashi, T. Makino et al., Appl. Phys. Lett., 75, 2635 (1999)
[33] A. Tsukazaki, H. Saito, K. Tamura, M. Ohtani, H. Koinuma et al., Appl. Phys. Lett., 81, 235 (2002)
[34] T. Nakamura, H. Minoura, H. Muto, Thin Solid Films, 405, 109 (2002)
[35] M. J. Ying, X. L. Du, Y. Z. Liu, Z. T. Zhou, Z. Q. Zeng et al., Appl. Phys. Lett., 87, 202107 (2005)
[36] T. Onuma, S. F. Chichibu, A. Uedono, Y.-Z. Yoo, T. Chikyow et al., Appl. Phys. Lett., 85, 5586 (2004)
[37] Y. Z. Yoo, Y. Osaka, T. Fukumura, Z. Jin, M. Kawasaki et al., Appl. Phys. Lett., 78, 616 (2001)
[38] H. Takahashi, H. Fujioka, J. Ohta, M. Oshima, M. Kimura, J. Cryst. Growth, 259, 36 (2003)
[39] R. Schuber, M. M.C. Chou, P. Vincze, Th. Schimmel, D.M. Schaadt, J. Cryst. Growth, 312, 1665 (2010)
[40] M. M.C. Chou, C. Chen, D.R. Hang, W.T. Yang, Thin Solid Films 519, 5066 (2011)
[41] C.H. Shih, I. Lo, W.Y. Pang, Y.C. Wang, M. M.C. Chou, Thin Solid Films, 519 3569, (2011)
[42] C.H. Shih, I. Lo, Y.C. Wang, W.Y. Pang, M. M.C. Chou, J. Cryst. Growth, 340, 61 (2012)
[43] T. Huang, S. Zhou, H. Teng, H. Lin, J. Wang, P. Han, R. Zhang, J. Cryst. Growth, 310, 3144 (2008)
[44] M. M.C. Chou, D.R. Hang, C. Chen, Y.H. Liao, Thin Solid Films 519, 3627 (2011)
[45] J.Y. Yu, T.H. Huang, L. Chang, Y.H. Liao, M. M.C. Chou, and D. Gan, J. Electrochem. Soc., 158, H1166 (2011)
[46] 陳韋任,利用化學汽相沉積法生長(0002)氧化鋅薄膜在LiGaO2 (001)基板上,國立中山大學材料與光電科學學系研究所碩士論文,中華民國一百年
[47] X. L. Wu, G. G. Siu, C. L. Fu, H. C. Ong, Appl. Phys. Lett. 78 (2001) 2285
[48] S.M. Zhou, J.H. Zhou, T.H. Huang, S.Z. Li, J. Zou, J. Wang, X. Zhang, X.M. Li, R. Zhang, J. Crystal Growth, 303, 510 (2007)
[49] N. Fujimura, T. Nishihara, S. Goto, J. Xu and T. Ito, J. Cryst. Growth, 130, 269 (1993)
[50] Y. Chen, D.M. Bagnall, Z. Zhu, T. Sekiuchi, K.T. Park, K. Hiraga, T. Yao, S. Koyama, M.Y. Shen, T. Goto, J. Cryst. Growth, 181, 165 (1997)
[51] R. Kumar, N. Khare, V. Kumar, G.L. Bhalla, Appl. Surf. Sci., 254, 6509 (2008)
[52] Y. Yan, G. M. Dalpian, M. M. Al-Jassim, and S. Wei, Phys. Rev. B, 70, 193206 (2004)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code