Responsive image
博碩士論文 etd-0724115-163822 詳細資訊
Title page for etd-0724115-163822
論文名稱
Title
放大轉發中繼點系統中,結合訊號源及全雙工中繼點濾波器設計
Joint Source and Full-Duplex Relay Filtering Design in Amplify-and-Forward Relaying Systems
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
38
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-29
繳交日期
Date of Submission
2015-08-24
關鍵字
Keywords
合作式通訊系統、全雙工中繼點、自相干擾、無限響應脈衝濾波器、頻率選擇性衰減通道、等化器
cooperative system, full-duplex relay, self-interference, infinite impulse response, equalizer, frequency-selective channel
統計
Statistics
本論文已被瀏覽 5646 次,被下載 349
The thesis/dissertation has been browsed 5646 times, has been downloaded 349 times.
中文摘要
近年來,為了增加頻譜的使用效率,全雙工的中繼點常被使用在合作式通訊系統上。由於全雙工中繼點會在同一時間傳送與接收訊號,中繼點的接收端會收到來自於本身所傳送的訊號,稱之為自相干擾。到目前為止,一些較新的技術像是時域上的干擾消除或是空間上的干擾抑制,都直覺地把自相干擾當作一種有害的訊號給消除掉。但事實上,在合作式通訊系統當中,全雙工中繼點的自相干擾也可以看作是一個延遲後的有用信號,因此,自相干擾之效果就可以視為一種無限脈衝響應之濾波器。在這篇論文當中,我們不把中繼點的自相干擾當作一種有害的訊號,而是在中繼點設計一個與自相干擾有關的中繼無限響應脈衝濾波器。根據目地端之不同型態之線性與非線性接收機,考量瞬時通道狀況,吾人整合設計相對應接收機之訊號源與中繼點之濾波器。由於所設計問題為非凸最佳化,在有限的硬體限制下難以找出最佳設計,因此吾人提出一種疊代的方式,將原本最佳化問題分成兩個子問題,由兩個子問題互相疊代求解,其中一個子問題固定中繼濾波器,計算最佳訊號源濾波器,而另一個子問題則固定訊號源濾波器,最佳化中繼點濾波器。由模擬結果可以驗證所提出之結合式濾波器確實可以有效抑制自相干擾之影響,有效等化頻率選擇性衰減通道及自相干擾所組成的整體通道。
Abstract
Recently, the full-duplex (FD) relays are carried forward to the cooperative systems to enhance the spectral efficiency. However, the FD relays incurs the self-interference due to simultaneously transmitting and receiving the signals at the relay nodes. State of the art designs all address the time-domain cancellation or the spatial suppression to mitigate the influence of the self-interference which is inherently treated as a harmful interference signals. In the cooperative systems, the self-interference of the FD relays is essentially the desired delayed signals. Hence, the relays with the self-interference can be modeled as a filter of infinite impulse response (IIR). In this paper, rather than treating the loop back self-interference as the harmful signal, we model the relay filter and the self-interference as a composited IIR filter. The composited IIR filter are jointly optimized with the source filter and the corresponding linear/nonlinear receivers by considering the responses of all the channel links. Since the optimization is not convex, finding the optimum solution is difficult. We then propose an iterative approach to iteratively solve the source and the composited relay filters separately. The closed-form solutions can then be easily obtained. Numerical results show the superiority of the proposed design which effectively equalizes the overall channel impulse response resulted from the frequency selective channels and the self-interference.
目次 Table of Contents
論文審定書……………………………………………………………............................i
誌謝…………………………………………………………….....................................ii
中文摘要……………………………………………………………..............................iii
英文摘要……………………………………………………………..............................iv
目錄…………………………………………………………….....................................v
圖次……………………………………………………………....................................vi
表次……………………………………………………………...................................vii
第1章 序言…………………………………………..................................................1
第2章 系統模型...................……………............................................................7
第2.1節 全雙工中繼點模型………………………………...………..............……....…7
第2.2節 頻域系統模型…………………………………….……………...…………....…9
第3章 最佳濾波器設計....................................................................................12
第3.1節 線性與非線性等化器…………………………...………..............……....…..12
第3.2節 最佳化問題描述………………………………….……………...…………......13
第3.3節 濾波器設計………………………………….……………...………….............17
第4章 系統模擬及探討……………………….......................................................19
第5章 結論與未來展望……………………….......................................................23
參考文獻……………………………………………….............................................24
附錄A……………………………………………….................................................27
附錄B……………………………………………….................................................29
參考文獻 References
[1] M. Joham, W. Utschick, and J. A. Nossek, ”Linear transmit processing in MIMO communications systems,” IEEE Trans. Signal Processing, vol. 53, no. 8, pp. 2700-2712, Aug. 2005.
[2] D. P. Palomar and S. Barbarossa, ”Designing MIMO communication systems: Constellation choice and linear transceiver design,” IEEE Trans. Signal Processing, vol. 53, no. 10, pp. 3804-3818, Oct. 2005.
[3] D. P. Palomar, J. M. Cioffi, and M. A. Laguna, ”Joint Tx-Rx beamforming design for multicarrier MIMO channels: a unified framework for convex optimization,” IEEE Trans. Signal Processing, vol. 51, no. 9, pp. 2381-2401, Sep. 2003.
[4] A. Goldsmith, S. A. Jafar, N. Jindal, and S. Vishwanath, ”Capacity limits of MIMO channels,” IEEE J. Sel. Areas Commun., vol. 21, pp. 684-702, June 2003.
[5] H. Sampath, P. Stoica, and A. Paulraj, ”Generalized linear precoder and decoder design for MIMO channels using the weighted MMSE criterion,” IEEE Trans. Commun., vol. 49, no. 12, pp. 2198-2206, Dec. 2001.
[6] Y. Jiang, J. Li, and W. W. Hager, ”Uniform channel decomposition for MIMO Communications,” IEEE Trans. Signal Processing, vol. 53, no. 11, pp. 4283-4294, Nov. 2005.
[7] Y. W. Liang, A. Ikhlef, W. Gerstacker, and R. Schober, “Cooperative filter and forward beamforming for frequency-selective channels with equalization,” IEEE Trans. Wireless Commun., vol. 10, no. 1, pp. 228-239, Jan. 2011.
[8] J. N. Laneman, D. N. C. Tse, and G.W.Wornell, ”Cooperative diversity in wireless networks: Efficient protocols and outage behavior,” IEEE Trans. Inf. Theory, vol. 50, no. 12, pp. 3062-3080, Dec. 2004.
[9] S. Yang and J. C. Belfiore, ”Optimal space-time codes for the MIMO amplify-and-forward cooperative channel,” IEEE Trans. Inf. Theory, vol. 53, no. 2, pp. 647-663, Feb. 2007.
[10] P. A. Anghel and M. Kaveh, ”On the performance of distributed space-time coding system with one and two non-regenerative relays,” IEEE Trans. Wireless Commun., vol. 5, no. 3, pp. 682-692, March 2006.
[11] O. Munoz-Medina, J. Vidal, and A. Agustin, ”Linear transceiver design in nonregenerative relays with channel state information,” IEEE Trans. Signal Processing, vol. 55, no. 6, pp. 2593-2604, June 2007.
[12] W. Guan and H. Luo, ”Joint MMSE transceiver design in nonregenerative MIMO relay systems,” IEEE Trans. Commun. Letters, vol. 12, no. 7, pp. 517-519, July 2008.

[13] A. S. Behbahani, R. Merched, and A. M. Eltawil, ”Optimization of a MIMO relay network,” IEEE Trans. Signal Processing vol. 56, no. 10, pp. 5062-5073, Oct. 2008.
[14] S. W. Peters and R. W. Health, ”Nonregenerative MIMO relaying with optimal transmit antenna selection,” IEEE Trans. Signal Processing Letter, vol. 15, pp. 421-424, 2008.
[15] X. Tang and Y. Hua, ”Optimal design of non-regenerative MIMO wireless relays,” IEEE Trans. Wireless Commun., vol. 6, no. 4, pp. 1398-1407, April 2007.
[16] G. Scutari and S. Barbarossa, ”Distributed space-time coding for regenerative relay networks,” IEEE Trans. Wireless Commun., vol. 4, no. 5, pp. 2387-2399, Sep. 2005.
[17] Y. Jing and B. Hassibi, ”Distributed space-time coding in wireless relay networks,” IEEE Trans. Wireless Commun., vol. 5, no. 12, pp. 1524-1536, Dec. 2006.
[18] A. K. Sadek, W. Su, and K. J. R. Liu, ”Multinode cooperative communications in wireless networks,” IEEE Trans. Signal Processing, vol. 55, no. 1, pp. 341-355, Jan. 2007.
[19] H. Q. Ngo, H. A. Suraweera, M. Matthaiou, and E. G. Larsson, “Multipair full duplex relaying with massive arrays and linear processing,” IEEE J. Sel. Areas Commun., vol. 32, no. 9, pp. 1721-1737 Sep. 2014.
[20] B. Khoshnevis and R. Adve, ”Grassmannian beamforming for MIMO amplify-and-forward relaying,” IEEE J. Sel. Areas Commun., vol. 26, no. 8, pp. 1397-1407, Oct. 2008.
[21] F. S. Tseng, W. R. Wu, and J. W. Wu, “Joint source/relay precoder design in amplify-and-forward relay systems using MMSE criterion,” in Proc. IEEE Wireless Commun. and Networking Conference, 2009, Budapest, Hungary.
[22] X. Wu and L. L. Xie, “On the optimal compressions in the compress-and-forward relay schemes,” IEEE Trans. Inf. Theory, vol. 59, no. 5, pp. 2613-2628, May 2013.
[23] M. Janani, A. Hedayat, T. Hunter, and A. Nosratinia, “Coded cooperation in wireless communications: space-time transmission and iterative decoding,” IEEE Trans. Signal Processing, vol. 52, no. 2, pp. 362-371, Feb. 2004.
[24] D. Nguyen, L. N. Tran, P. Pirinen, and M. L. aho, “Precoding for full duplex multiuser MIMO systems: spectral and energy efficiency maximization,” IEEE Trans. Signal Process., vol. 61, no. 16, pp. 4038-4050, Aug. 15, 2013.
[25] H. A. Suraweera, I. Krikidis, G. Zheng, C. Yuen, and P. J. Smith, “Low complexity end-to-end performance optimization in MIMO full-duplex relay systems,” IEEE Trans. Wireless Commun., vol. 13, no. 2, pp. 913-927, Feb. 2014.
[26] W. Li, J. Lilleberg, and K. Rikkinen, “On rate region analysis of half- and full-duplex OFDM communication links,” IEEE J. Sel. Areas Commun., vol. 32, no. 9, pp. 1688-1698, Sep. 2014.

[27] J. Cioffi, G. Dudevoir, M. Eyuboglu, and G. Forney Jr., “MMSE decision feedback equalizers and coding–part I: equalization results,” IEEE Trans. Commun., vol. 43, no. 10, pp. 2582-2594, Oct. 1995.
[28] M. Clark, L. Greenstein, W. Kennedy, and M. Shafi, “Optimum linear diversity
receivers for mobile communications,” IEEE Trans. Veh. Technol., vol. 43, no. 1, pp. 47-56, Feb. 1994.
[29] J. Proakis, Digital Communications, 4th edition. McGraw-Hill, 2000.
[30] A. Goldsmith, Wireless Communication, Cambridge University Press 2005.
[31] I. E. Telatar, ”Capacity of multiantenna Gaussian channel,” Eur. Trans. Telecommun., vol. 6, pp. 311-335, 1998.
[32] J. K. Zhang, A. Kavcic, and K. M. Wong, ”Equal-diagonal QR decomposition and its application to precoder design for successive cancellation detection,” IEEE Trans. Inf. Theory, vol. 51, no. 1, pp. 154-172, Jan. 2005.
[33] David A. Harville, Matrix Algebra From a Statistician’s Perspective, Springer-Verlag 1997.
[34] D.S. Bernstein, Matrix Mathematics, Princeton University Press 2005.
[35] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press 2004.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code