Responsive image
博碩士論文 etd-0724115-164558 詳細資訊
Title page for etd-0724115-164558
論文名稱
Title
以聚醯亞胺基板製作雙面壓電換能器
Fabrication of the double-sided piezoelectric transducers on polyimide substrates
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
79
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-27
繳交日期
Date of Submission
2015-08-24
關鍵字
Keywords
壓電換能器、懸臂樑、可撓性基板、聚醯亞胺、氧化鋅
Piezoelectric transducers, Cantilever, Flexible substrate, Polyimide, ZnO
統計
Statistics
本論文已被瀏覽 5681 次,被下載 40
The thesis/dissertation has been browsed 5681 times, has been downloaded 40 times.
中文摘要
本研究的主軸為沉積氧化鋅薄膜於聚醯亞胺(PI)基板上製作雙面壓電換能器,設計出適合應用在生活環境中,可以將環境中之低頻振動源轉換為電能的雙面氧化鋅壓電換能器。藉由反應性射頻磁控濺鍍法沉積氧化鋅薄膜於基板之雙面,並探討沉積參數對雙面壓電換能器發電量之影響,並藉由掃描式電子顯微鏡、X光繞射分析儀及原子力顯微鏡進行薄膜物性之分析。
本研究於PI基板之正反面沉積Pt/Ti作為底電極,以室溫兩階段濺鍍法於基板正面以射頻功率120 W及濺鍍壓力20 mTorr及背面以射頻功率120 W及濺鍍壓力15 mTorr,製作出具有高轉換效率之雙面氧化鋅壓電換能元件;並設計元件之振動面積為1 cm2,將元件固定於振動試驗儀上進行電性量測。由實驗結果可得,當輸入振幅4 mm及共振頻率100 Hz時達到最大開路電壓為19.2 V,單位面積之輸出功率為1.61 μW/cm2。
Abstract
In this study, ZnO thin films were deposited by a two-step sputtering method on polyimide substrates for flexible double-sided piezoelectric transducers. The double-sided piezoelectric transducers were designed for low vibration frequency environment. The ZnO thin films with high quality are deposited on double-sides of polyimide substrate by reactive RF magnetron sputtering system, the crystalline characteristics and surface roughness of ZnO thin films are analyzed using scanning electron microscopy, X-ray diffraction and atomic force microscopy.
In this study, the Pt/Ti thin films were chosen as bottom electrode of the flexible double-sided piezoelectric transducers. The ZnO thin films are deposited on front side of substrate under RF power of 120 W and working pressure of 20 mTorr. The ZnO thin films are deposited on back side of substrate under RF power of 120 W and working pressure of 15 mTorr. Finally, the optimal double-sided piezoelectric transducers with vibration area of 1 cm2 and input amplitude of vibrator 4 mm resulted in an open circuit voltage of 19.2 V and output power of 1.61 μW/cm2 at resonant frequency of 100 Hz.
目次 Table of Contents
摘要+i
ABSTRACT+ii
目錄+iii
圖目錄+vi
表目錄+ix
第一章 緒論+1
1.1 研究背景+1
1.2 壓電換能器簡介+3
1.2.1 壓電換能器之類型+4
1.2.2 基板材料+6
1.2.3 壓電層材料+8
1.2.3.1 氧化鋅的結構與特性+9
1.3 研究目的+11
第二章 理論分析+12
2.1 壓電理論+12
2.1.1 壓電效應+12
2.1.2壓電操作模式+13
2.1.3懸臂樑壓電換能器結構 +14
2.1.4 雙面壓電換能器串接原理+15
2.2 懸臂樑壓電換能器原理+16
2.3薄膜沉積原理+20
2.4 濺鍍原理+22
2.4.1 輝光放電+22
2.4.2 射頻濺鍍+23
2.4.3 磁控濺鍍+23
2.4.4 反應性濺鍍+24
第三章 研究方法 +26
3.1 實驗流程+26
3.1.1 氧化鋅壓電換能器之設計與製作+27
3.2 製程步驟+29
3.2.1 基板的製備與清洗+29
3.2.2 底電極層之沉積+29
3.2.2 氧化鋅壓電層沉積+30
3.3 物性分析+34
3.3.1 X-ray繞射分析+34
3.3.2 掃描式電子顯微鏡分析+36
3.3.3 EDS之成份分析+37
3.4 電性量測+38
3.4.1 共振頻率量測+40
3.4.2 元件擺幅量測+40
第四章 結果與討論+42
4.1 沉積單面氧化鋅薄膜於PI基板上之物性分析+42
4.1.1 濺鍍壓力對氧化鋅薄膜之影響+42
4.1.2 單面元件之最佳製程參數+45
4.2 雙面壓電換能器之最佳製程參數+46
4.2.1 濺鍍壓力對沉積背面氧化鋅薄膜之影響+47
4.2.2 射頻功率對沉積背面氧化鋅薄膜之影響+49
4.2.3 雙面元件之最佳製程參數+52
4.2.4 雙面壓電換能器之物性及電性分析+52
4.3 雙面壓電換能器輸出電量之探討+55
4.3.1 不同振動頻率對輸出電量之影響+55
4.3.2 輸入振幅對輸出電量之影響+55
4.3.3元件之最佳負載及輸出功率計算+58
第五章 結論與未來展望+61
參考文獻+62
參考文獻 References
[1] K. Emery, Y. Hishikawa and W. D. Warta, "Solar cell efficiency tables (Version 39)," Progress in Photovoltaics: Research and Applications, vol. 20, 2012.
[2] N. Hatziargyriou and A. Zervos, "Wind power development in Europe," Proceedings of the IEEE, vol. 89, pp. 1765-1782, 2001.
[3] C. Penche, "Guide on How to Develop a Small Hydropower Plant," ESHA, Brussels, 2004.
[4] J. Behrens, N. Rakowsky, W. Hiller, D. Handorf, M. Läuter, J. Päpke, and K. Dethloff, "amatos: Parallel adaptive mesh generator for atmospheric and oceanic simulation," Ocean Modelling, vol. 10, pp. 171-183, 2005.
[5] M. T. Balta, I. Dincer and A. Hepbasli, "Thermodynamic assessment of geothermal energy use in hydrogen production," International Journal of Hydrogen Energy, vol. 34, pp. 2925-2939, 2009.
[6] K. Openshaw, "Biomass energy: employment generation and its contribution to poverty alleviation," Biomass and bioenergy, vol. 34, pp. 365-378, 2010.
[7] E. J. Carlson, K. Strunz and B. P. Otis, "A 20 mV input boost converter with efficient digital control for thermoelectric energy harvesting," IEEE Journal of Solid-State Circuits, vol. 45, pp. 741-750, 2010.
[8] E. Bouendeu, A. Greiner, P. J. Smith and J. G. Korvink, "A low-cost electromagnetic generator for vibration energy harvesting," Sensors Journal, IEEE, vol. 11, pp. 107-113, 2011.
[9] N. Stephen, "On energy harvesting from ambient vibration," Journal of sound and vibration, vol. 293, pp. 409-425, 2006.
[10] B. H. Stark and T. Green, "Comparison of SOI power device structures in power converters for high-voltage, low-charge electrostatic microgenerators," Electron Devices, IEEE Transactions on, vol. 52, pp. 1640-1648, 2005.
[11] E. O. Torres and G. A. Rincón-Mora, "Long-lasting, self-sustaining, and energy-harvesting system-in-package (SiP) wireless micro-sensor solution," in International Conference on Energy, Environment, and Disasters (INCEED), Charlotte, NC, USA, pp. 1-33, 2005
[12] C. Williams and R. B. Yates, "Analysis of a micro-electric generator for microsystems," Sensors and Actuators A: Physical, vol. 52, pp. 8-11, 1996.
[13] C. Shearwood and R. B. Yates, "Development of an electromagnetic micro-generator," Electronics Letters, vol. 33, pp. 1883-1884, 1997.
[14] R. Amirtharajah and A. P. Chandrakasan, "Self-powered signal processing using vibration-based power generation," IEEE Journal of Solid-State Circuits, vol. 33, pp. 687-695, 1998.
[15] W. J. Li, T. C. Ho, G. M. Chan, P. H. Leong and H. Y. Wong, "Infrared signal transmission by a laser-micromachined, vibration-induced power generator," Proceedings of the 43rd IEEE Midwest Symposium on Circuits and Systems, vol. 1, pp. 236-239, 2000.
[16] C. Williams, R. C. Woods and R. Yates, "Feasibility study of a vibration powered micro-electric generator," Proceedings of IEE Colloquim on Compact Power Sources, London, UK, pp. 7/1-7/3, 1996.
[17] P. Glynne-Jones, M. J. Tudor, S. P. Beeby and N. M. White, "An electromagnetic, vibration-powered generator for intelligent sensor systems," Sensors and Actuators A: Physical, vol. 110, pp. 344-349, 2004.
[18] N. White, P. Glynne-Jones and S. Beeby, "A novel thick-film piezoelectric micro-generator," Smart Materials and Structures, vol. 10, pp. 850-852, 2001.
[19] S. Kim, "Low power energy harvesting with piezoelectric generator," PhD Dissertation, University of Pittsburgh, 2002.
[20] R. K. Sood, "Piezoelectric micro power generator (PMPG): A MEMS-based energy scavenger," Massachusetts Institute of Technology, 2003. Department of electrical engineering and computer science at the Masachusetts Institute of Technology, 2003.
[21] J. Q. Liu, H. B. Fang, Z. Y. Xu, X. H. Mao, X. C. Shen, D. Chen, H. Liao, and B. C. Cai "A MEMS-based piezoelectric power generator array for vibration energy harvesting," Microelectronics Journal, vol. 39, pp. 802-806, 2008.
[22] S. J. Jeong, M. S. Kim, J. S. Song and H. K. Lee, "Two-layered piezoelectric bender device for micro-power generator," Sensors and Actuators A: Physical, vol. 148, pp. 158-167, 2008.
[23] H. B. Fang, J. Q. Liu, Z. Y. Xu, L. Dong, L. Wang, D. Chen, B. C. Cai, and Y. Liu "Fabrication and performance of MEMS-based piezoelectric power generator for vibration energy harvesting," Microelectronics Journal, vol. 37, pp. 1280-1284, 2006.
[24] Y. Jeon, R. Sood, J. H. Jeong and S. G. Kim, "MEMS power generator with transverse mode thin film PZT," Sensors and Actuators A: Physical, vol. 122, pp. 16-22, 2005.
[25] J. Y. Kang, H. J. Kim, J. S. Kim, and T. S. Kim, "Optimal design of piezoelectric cantilever for a micro power generator with microbubble," The 2nd annual international IEEE-EMBS special topic conference on micro-technologies in medicine and biology, Madison, Wisconsin, USA, May 2-4, pp. 424-427, 2002
[26] P. Glynne-Jones, S. P. Beeby and N. M. White, "Towards a piezoelectric vibration-powered microgenerator," IEE Proceedings: Science, Measurement and Technology, pp. 68-72, 2001.
[27] S. Priya, "Advances in energy harvesting using low profile piezoelectric transducers," Journal of electroceramics, vol. 19, pp. 167-184, 2007.
[28] M. Marzencki, Y. Ammar and S. Basrour, "Integrated power harvesting system including a MEMS generator and a power management circuit," Sensors and Actuators A: Physical, vol. 145, pp. 363-370, 2008.
[29] D. Shen, J. H. Park, J. Ajitsaria, S. Y. Choe, H. C. Wikle III and D. J. Kim, "The design, fabrication and evaluation of a MEMS PZT cantilever with an integrated Si proof mass for vibration energy harvesting," Journal of Micromechanics and Microengineering, vol. 18, pp. 055017, 2008.
[30] B. Lee, S. Lin, W. Wu, X. Wang, P. Chang and C. Lee, "Piezoelectric MEMS generators fabricated with an aerosol deposition PZT thin film," Journal of Micromechanics and Microengineering, vol. 19, pp. 065014, 2009.
[31] P. Muralt, M. Marzencki, B. Belgacem, F. Calame and S. Basrour, "Vibration energy harvesting with PZT micro device," Procedia Chemistry, vol. 1, pp. 1191-1194, 2009.
[32] R. Elfrink, T.M. Kamel, M. Goedbloed, S. Matova, D. Hohlfeld, Y. Van Andel, and R. Van Schaijk, "Vibration energy harvesting with aluminum nitride-based piezoelectric devices," Journal of Micromechanics and Microengineering, vol. 19, pp. 094005, 2009.
[33] 吳秉融,"氧化鋅薄膜成長於 PET 基板上並應用於壓電換能器之研究",國立中山大學電機工程學系碩士論文,2009。
[34] 朱育賢,"雙面式氧化鋅壓電換能器之研究",國立中山大學電機工程學系碩士論文,2011。
[35] Z. Cao, J. Zhang and H. Kuwano, "Design and characterization of miniature piezoelectric generators with low resonant frequency," Sensors and Actuators A: Physical, vol. 179, pp. 178-184, 2012.
[36] 鐘宜展,"沉積氮化鋁薄膜於不鏽鋼基材以應用於雙面壓電換能器之研究",國立中山大學電機工程學系碩士論文,2012。
[37] F. Lu, H. Lee and S. Lim, "Modeling and analysis of micro piezoelectric power generators for micro-electromechanical-systems applications," Smart Materials and Structures, vol. 13, pp. 57, 2004.
[38] A. Lawver, "Thunder®: A new frontier in research for smart materials," Smart Materials Bulletin, vol. 2001, pp. 5-9, 2001.
[39] H.W. Kim, A. Batra, S. Priya, K. Uchino, D. Markle, R.E. Newnham, and H.F. Hofmann, "Energy harvesting using a piezoelectric “cymbal” transducer in dynamic environment," Japanese Journal of Applied Physics, vol. 43, p. 6178, 2004.
[40] O. Ziegler, "Waste Electrical and Electronic Equipment," in EU Regulatory Decision Making and the Role of the United States, ed: Springer, pp. 93-141, 2013.
[41] R. Directive, "Directive 2002/95/EC of the European Parliament and of the Council of 27 January 2003 on the restriction of the use of certain hazardous substances in electrical and electronic equipment," Official Journal of the European Union, vol. 13, pp.19-23, L37, 2003.
[42] G. Zhu, R. Yang, S. Wang and Z. L. Wang, "Flexible high-output nanogenerator based on lateral ZnO nanowire array," Nano letters, vol. 10, pp. 3151-3155, 2010.
[43] S. N. Cha, J. S. Seo, S. M. Kim, H. J. Kim, Y. J. Park,and S. W. Kim, "Sound‐Driven Piezoelectric Nanowire‐Based Nanogenerators," Advanced materials, vol. 22, pp. 4726-4730, 2010.
[44] C. Y. Huang, J. H. Sun and T. T. Wu, "A two-port ZnO/silicon Lamb wave resonator using phononic crystals," Applied Physics Letters, vol. 97, pp. 031913, 2010.
[45] I. Bdikin, J. Gracio, R. Ayouchi, R. Schwarz and A. Kholkin, "Local piezoelectric properties of ZnO thin films prepared by RF-plasma-assisted pulsed-laser deposition method," Nanotechnology, vol. 21, pp. 235703, 2010.
[46] Ü. Sökmen, A. Stranz, A. Waag, A. Ababneh, H. Seidel, U. Schmid and E Peiner, "Evaluation of resonating Si cantilevers sputter-deposited with AlN piezoelectric thin films for mass sensing applications," Journal of Micromechanics and Microengineering, vol. 20, pp. 064007, 2010.
[47] J. Hernando, J. L. Sánchez-Rojas, U. Schmid, A. Ababneh, G. Marchand and H. Seidel, "Characterization and displacement control of low surface-stress AlN-based piezoelectric micro-resonators," Microsystem technologies, vol. 16, pp. 855-861, 2010.
[48] J. C. Doll, B. C. Petzold, B. Ninan, R. Mullapudi and B. L. Pruitt, "Aluminum nitride on titanium for CMOS compatible piezoelectric transducers," Journal of Micromechanics and Microengineering, vol. 20, pp. 025008, 2010.
[49] C. D. Richards, M. J. Anderson, D. F. Bahr and R. F. Richards, "Efficiency of energy conversion for devices containing a piezoelectric component," Journal of Micromechanics and Microengineering, vol. 14, pp. 717-721, 2004.
[50] S. L. Kok, N. M. White and N. R. Harris, "Fabrication and characterization of free-standing thick-film piezoelectric cantilevers for energy harvesting," Measurement Science and Technology, vol. 20, pp. 124010, 2009.
[51] R. Sandberg, K. Mølhave, A. Boisen and W. Svendsen, "Effect of gold coating on the Q-factor of a resonant cantilever," Journal of Micromechanics and Microengineering, vol. 15, pp. 2249, 2005.
[52] G. Piazza, P. J. Stephanou and A. P. Pisano, "Piezoelectric aluminum nitride vibrating contour-mode MEMS resonators," Microelectromechanical Systems, Journal of, vol. 15, pp. 1406-1418, 2006.
[53] 劉吉卿,"以兩階段濺鍍法沉積氧化鋅壓電薄膜於薄膜體聲波共振器之應用",國立中山大學電機工程學系碩士論文,2006。
[54] A. Smith and R. Rodriguez-Clemente, "Morphological differences in ZnO films deposited by the pyrosol technique: effect of HCl," Thin Solid Films, vol. 345, pp. 192-196, 1999.
[55] H. Ko, Y. F. Chen, S. Hong, H. Wenisch, T. Yao and D. C. Look, "Ga-doped ZnO films grown on GaN templates by plasma-assisted molecular-beam epitaxy," Applied Physics Letters, vol. 77, pp. 3761-3763, 2000.
[56] S. S. Lin, J. L. Huang, and P. Šajgalik, "The properties of Ti-doped ZnO films deposited by simultaneous RF and DC magnetron sputtering," Surface and Coatings Technology, vol. 191, pp. 286-292, 2005.
[57] A. El Hichou, M. Addou, A. Bougrine, R. Dounia, J. Ebothe, M. Troyon, M. Amrani, "Cathodoluminescence properties of undoped and Al-doped ZnO thin films deposited on glass substrate by spray pyrolysis," Materials chemistry and physics, vol. 83, pp. 43-47, 2004.
[58] S. Major and K. Chopra, "Indium-doped zinc oxide films as transparent electrodes for solar cells," Solar energy materials, vol. 17, pp. 319-327, 1988.
[59] 吳朗,電子陶瓷-壓電陶瓷,全欣資訊圖書公司,台北市,1994。
[60] S. R. Anton and H. A. Sodano, "A review of power harvesting using piezoelectric materials (2003–2006)," Smart materials and Structures, vol. 16, pp. R1-R21, 2007.
[61] D. Charnegie, "Frequency tuning concepts for piezoelectric cantilever beams and plates for energy harvesting," Master Thesis, University of Pittsburgh, 2007.
[62] 廖偉翔,"壓電換能器於低頻發電應用之設計與分析",國立成功大學機械工程學系碩士論文,2007。
[63] N. E. Du Toit, "Modeling and design of a MEMS piezoelectric vibration energy harvester," Master Thesis, Massachusetts Institute of Technology, 2005
[64] 林香吟,"沉積氧化鋅薄膜於可撓性 PI 基板上以研製壓電發電系統之研究",國立中山大學電機工程學系碩士論文,2014。
[65] G. J. Wang, W. C. Yu, Y. H. Lin and H. Yang, "Modeling and fabrication of a piezoelectric vibration‐induced micro power generator," Journal of the Chinese Institute of Engineers, vol. 29, pp. 697-706, 2006.
[66] R.W. Berry, P.M. Hall, and M.T. Harris, Thin Film Technology, Van Nostrand Princeton, New Jersey, 1968.
[67] J. L. Vossen, and W. Kern, Thin Film Processes II, Academic Press, New York, 1991.
[68] E. Janczak-Bienk, H. Jensen and G. Sørensen, "The influence of the reactive gas flow on the properties of AIN sputter-deposited films," Materials Science and Engineering: A, vol. 140, pp. 696-701, 1991.
[69] J. Paradiso, C. Abler, K. Hsiao, and M. Reynolds, "The magic carpet: physical sensing for immersive environments," In: Proc. of the CHI 1997 Conference on Human Factors in Computing Systems, Atlanta, Georgia, ,Mar. 22-27, 1997.
[70] N.S. Shenck, and J.A. Paradiso, "Energy scavenging with shoe-mounted piezoelectrics," Micro, IEEE, vol. 21, pp. 30-42, 2001.
[71] J. Feenstra, J. Granstrom, and H. Sodano, "Energy harvesting through a backpack employing a mechanically amplified piezoelectric stack," Mechanical Systems and Signal Processing, vol. 22, pp. 721-734, 2008.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code