Responsive image
博碩士論文 etd-0724115-172053 詳細資訊
Title page for etd-0724115-172053
論文名稱
Title
銅柱覆晶封裝製程之有限元素分析
Finite Element Analyses of Copper Pillar Flip-Chip Package Processes
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
107
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-09
繳交日期
Date of Submission
2015-08-24
關鍵字
Keywords
熱壓接合、封裝、覆晶、錫球、銅柱
Package, Thermal compression bonding, Flip Chip, Solder ball, Copper pillar
統計
Statistics
本論文已被瀏覽 5699 次,被下載 2442
The thesis/dissertation has been browsed 5699 times, has been downloaded 2442 times.
中文摘要
隨著封裝技術不斷的進步以及現代社會對封裝產品的需求量與日俱增,封裝產品已經在電子產品的應用中隨處可見,因此封裝技術成為了IC工業界中重要的課題之一。然而熱壓銅柱覆晶封裝為目前較新的封裝製程之一,其銅柱與錫球組成的接腳取代了單一錫球的接腳,因此銅柱的細長結構使得相同晶片體積能夠容納的I/O數量較傳統單一錫球來的多,因此能夠使同樣大小的晶片容納更複雜的電路以及具有更多的功能。但是目前封裝產業中對於熱壓銅柱覆晶封裝的製程參數以及其變形機制並不是那麼的了解,因此還有很多值得探討及研究的地方。
本研究利用有限元素模擬軟體DEFRORM-3D進行熱壓銅柱覆晶封裝製程模擬,模擬製程中錫球塑性變形情形並探討錫球、銅線、銅柱的應力應變分布情形,此外,本研究也針對錫球與銅線之間的接觸面積做系統性的探討,因為錫球與銅線的接觸面積是影響導電性甚至是產品好壞的判斷基準之一,因此藉由錫球與銅線的接觸面積跟銅柱-銅線間隙的關係也可以定義出較佳的銅柱-銅線間隙範圍。另外本研究也透過熱壓銅柱覆晶封裝實驗驗證有限元素模型的正確性以及準確性,並針對銅柱-銅線間隙與結合力量之關係進行探討,最後依據模擬結果建立結合力量、製程溫度以及銅柱-銅線間隙之經驗公式供給產線應用或當作判斷準則。
Abstract
With advanced packaging technology and due to increasing demands in packaged products, packaged products have been applied in many electronic appliances in our daily life. Therefore, packaging technology has been an important issue in IC manufacturing industries. Thermal compression bonding (TCB) of copper pillar flip chip packages is a new bonding process in packaging technology. Its characteristics are the reduction of the solder volume and providing more I/O ports to increase the complexity capability of the circuits in the chip with more features. However, the formation mechanisms for TCB of Cu pillar flip chip package have not been investigated thoroughly.
In this study, a finite element code DEFORM-3D is used to analyze the plastic deformation of the solder ball and stress and strain distributions of Cu pillar and Cu trace. Contact area between solder ball and the Cu trace, which probably leads to bad conductance and even eventually the failure of the package are systematically discussed. The relationships between solder thickness and the contact area are the indicators to define optimum thickness. On the other hand, some experiments are done to verify the correctness of the finite element model. These simulation and experimental results can be used to design the layout or the configurations of the Cu pillars and Cu traces and determine the optimized forming parameters. Finally the relationship between total force, solder thickness and temperature are developed into a formula which is helpful for production line to apply in other productions.
目次 Table of Contents
論文審定書 i
誌謝 ii
摘要 iii
Abstract iv
圖目錄 vii
表目錄 x
符號說明 xi
第一章 緒論 1
1-1 前言 1
1-2 電子封裝技術簡介 3
1-2-1 電子封裝的種類 3
1-2-2 電子封裝的層次 5
1-2-3 電子元件與電路板接合方式 6
1-2-4 晶片與基板連接方式 7
1-3 熱壓銅柱覆晶封裝之簡介及應用 12
1-3-1 銅柱凸塊的發展 12
1-3-2 銅柱覆晶封裝及熱壓製程之簡介 12
1-3-3 銅柱覆晶封裝之應用 14
1-4 文獻回顧 14
1-4-1 與傳統覆晶封裝技術相關之文獻 14
1-4-2 與銅柱覆晶封裝技術相關之文獻 15
1-4-3 焊錫材料機械性質及經驗公式相關之文獻 17
1-5 研究動機與目的 17
1-6 論文架構與研究流程 18
第二章 熱壓銅柱覆晶封裝製程之有限元素分析 20
2-1 前言 20
2-2 熱壓銅柱覆晶封裝製程之有限元素分析 22
2-2-1 有限元素分析軟體DEFORM簡介 22
2-2-2 結構尺寸之建立 23
2-2-3 基本假設及參數設定 25
2-3 下銅柱結構與長條型銅線之解析結果 29
2-3-1 不同結構對錫球變形之影響 29
2-3-2 不同結構對力量之影響 30
2-3-3 不同結構對錫球與銅線(下銅柱)接觸面積之影響 31
2-3-4 應力分布情形 32
2-4 長條形銅線結構不同溫度之模擬結果 34
2-4-1 錫球與銅線接觸面積之探討 35
2-4-2 錫球成型形狀之探討 38
2-4-3 銅柱-銅線間隙與力量的關係 41
2-4-4 應力應變分布情形 42
2-5 長條形銅線結構晶片相對基板偏移之模擬結果 47
2-5-1 偏移對錫球成形之影響 49
2-5-2 偏移對力量之影響 52
2-5-3 偏移對錫球與銅線接觸面積之影響 53
2-6 改變長條形銅線尺寸之模擬結果 55
2-6-1 銅柱直徑及銅線寬度比定義 55
2-6-2 錫球成型形狀之探討 56
2-6-3 銅柱-銅線間隙與力量的關係 58
2-6-4 錫球與銅線接觸面積探討 59
第三章 熱壓銅柱覆晶封裝之實驗與分析 61
3-1 熱壓銅柱覆晶封裝之實驗 61
3-1-1 實驗目的 61
3-1-2 實驗設備與實驗材料 61
3-1-3 實驗參數設定 62
3-1-4 實驗步驟與流程 63
3-2 實驗結果與解析結果比較 66
3-2-1 錫球成形形狀之比較 66
3-2-2 銅柱-銅線間隙與力量之比較 74
第四章 經驗公式之建立 76
4-1 力量、溫度與銅柱-銅線間隙關係之經驗公式建立 76
4-1-1 非線性回歸模型 76
4-1-2 最小方差擬合法 77
4-1-3 溫度相關之參數 77
4-1-4 無因次化及結果 79
4-2 各個溫度達到最大接觸面積所需力量之經驗公式 85
第五章 結論 88
5-1 熱壓銅柱覆晶封裝之模擬解析結果 88
5-2 實驗與模擬結果比較 89
5-3 經驗公式之建立 90
5-4 今後研究之課題 90
參考文獻 91
參考文獻 References
[1] 林定皓, 電子構裝技術概述: 臺灣電路板協會, 2010.
[2] 田民波, 半導體電子元件構裝技術: 五南圖書出版股份有限公司, 2005.
[3] J. H. Lau, Electronic Packaging: Design, Materials, Process, and Reliability: McGraw-Hill, 1998.
[4] 謝宗雍 和 陳力俊, "微電子材料與製程," p. 385, 2000.
[5] 林定皓, 電子構裝打線技術概述: 臺灣電路板協會, 2012.
[6] N. Kao, Y. C. Hu, Y. L. Tseng, E. Chen, J. Y. Lai, and Y. P. Wang, "Cu Pillar Bump FCBGA Package Design and Reliability Assessments," presented at the 2008 ASME International Mechanical Engineering Congress and Exposition, Boston, Massachusetts, USA, 2008.
[7] M. Lee, M. Yoo, J. Cho, S. Lee, J. Kim, C. Lee, D. Kang, C. Zwenger, and R. Lanzone, "Study of interconnection process for fine pitch flip chip," the 59th Electronic Components and Technology Conference(ECTC 2009), San Diego, Califonia, USA, 26-29May 2009, pp. 720-723.
[8] Y. Jung, M. Lee, S. Park, D. Ryu, Y. Jung, C. Hwang, C. Lee, S. Park, M. Jimarez, and M. J. Lee, "Development of large die fine pitch flip chip BGA using TCNCP technology," the 62nd IEEE Electronic Components and Technology Conference (ECTC2012), San Diego, Califonia, USA, 29 May - 1 June 2012, pp. 439-443.
[9] F. Wang, L. Han, and J. Zhong, "Stress-induced atom diffusion at thermosonic flip chip bonding interface," Sensors and Actuators A: Physical, 2009, vol. 149, pp. 100-105
[10] J. H. Zhao, X. Dai, and P. S. Ho, "Analysis and modeling verification for thermal-mechanical deformation in flip-chip packages," the 48th IEEE Electronic Components and Technology Conference, Seattle, USA, 25-28 May 1998, pp. 336-344.
[11] A. Yeo, C. Lee, and J. H. L. Pang, "Flip chip solder joint fatigue analysis using 2D and 3D FE models," Thermal and Mechanical Simulation and Experiments in Microelectronics and Microsystems, 2004. EuroSimE 2004. Proceedings of the 5th International Conference, 2004, pp. 549-555.
[12] S. Michaelides and S. K. Sitaraman, "Effect of material and geometry parameters on the thermo-mechanical reliability of flip-chip assemblies," Thermal and Thermomechanical Phenomena in Electronic Systems, 1998. ITHERM '98. The Sixth Intersociety Conference, 1998, pp. 193-200.
[13] Y. Cheng, G. Xu, D. Zhu, X. Lin, and L. Luo, "Thermo-mechanical Reliability Study of High I/Os Flip Chip On Laminated Substrate Based on FEA, RSM and Interfacial Fracture Mechanics," Electronic Packaging Technology, 2005 6th International Conference, Shenzhen, 2005, pp. 1-7.
[14] B. Ebersberger and C. Lee, "Cu pillar bumps as a lead-free drop-in replacement for solder-bumped, flip-chip interconnects," the 58th IEEE Electronic Components and Technology Conference(ECTE2008), Lake Buena Vista, FL, 27-30 May 2008, pp. 59-66.
[15] K. Toriyama, Y. Takeoka, K. Okamoto, H. Noma, and Y. Orii, "Joint reliability study of solder capped metal pillar bump interconnections on an organic substrate," 2nd IEEE CPMT Symposium Japan, Kyoto, 2012, pp. 1-4.
[16] K. H. Kuo, J. Lee, F. L. Chien, R. Lee, C. Mao, and J. Lau, "Electromigration performance of Cu pillar bump for flip chip packaging with bump on trace by using thermal compression bonding," the 64th IEEE Electronic Components and Technology Conference(ECTE2014), Orlando, FL, 27-30 May 2014, pp. 56-61.
[17] J. R. Jhou, M. Y. Tsai, C. Y. Wu, and K. M. Chen, "Thermal stresses and deformations of Cu pillar flip chip BGA package: Analyses and measurements," the 5th Microsystems Packaging Assembly and Circuits Technology Conference (IMPACT), Taipei , 20-22 Oct. 2010, pp. 1-4.
[18] Y. Jeong, J. Choi, Y. Choi, N. Islam, E. Ouyang, "Optimization of Compression Bonding processing temperature for fine pitch Cu-column flip chip devices," the 64th IEEE Electronic Components and Technology Conference (ECTE2014), Orlando, FL, 27-30 May 2014, pp. 836-840.
[19] R. J. McCabe and M. E. Fine, "Athermal and thermally activated plastic flow in low melting temperature solders at small stresses," Scripta Materialia, Jun 1998, vol. 39, pp. 189-195.
[20] S. Hotta, K. Matsumoto, T. Murakami, T. Narushima, and C. Ouchi, "Dynamic and static restoration behaviors of pure lead and tin in the ambient temperature range," Materials Transactions, Oct 2007, vol. 48, pp. 2665-2673.
[21] M. Matsushima, Y. Shishihara, H. Matsunami, S. Fukumoto, and K. Fujimoto, "A crack initiation and propagation simulation and the fatigue characteristics of solder joints considering the material property changes," Journal of Physics: Conference Series, 2012, vol. 379, p. 012029.
[22] D. A. Dawson, N. Genco, H. M. Bensinger, D. Guinn, Z. J. Il’Giovine, T. W. Schultz, and G. Poch., "Evaluation of an asymmetry parameter for curve-fitting in single-chemical and mixture toxicity assessment," Toxicology, 2012, vol. 292, pp. 156-161.
[23] Y. Wang, K. H. Lu, J. Im, and P. S. Ho, "Reliability of Cu pillar bumps for flip-chip packages with ultra low-k dielectrics," the 60th Electronic Components and Technology Conference (ECTC2010), Las Vegas, USA, 1-4 June 2010, pp. 1404-1410.
[24] Y. M. Cheung, K. S. Lam, G. Y. Mak, D. Tian, and M. Li, "Process considerations of TC-NCP fine-pitch copper pillar FC bonding," the 14th Electronic Materials and Packaging Conference (EMAP), Lantau Island, 13-16 Dec. 2012, pp. 1-7.
[25] F. Forsberg, N. Roxhed, T. Haraldsson, Y. Liu, G. Stemme, and F. Niklaus, "Batch Transfer of Radially Expanded Die Arrays for Heterogeneous Integration Using Different Wafer Sizes," Microelectromechanical Systems, Journal of, 2012,vol. 21, pp. 1077-1083.
[26] ASM Pacific Technology Ltd
http://www.asmpacific.com/asmpt/products_flipchip_ad9312.htm
[27] http://www-ferp.ucsd.edu/LIB/PROPS/PANOS/cu.html
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code