Responsive image
博碩士論文 etd-0724115-204133 詳細資訊
Title page for etd-0724115-204133
論文名稱
Title
多群組之粒子群演算法之效能研究
A Study on the Performance of Multiple Sub-Swarms for PSO
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
85
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-24
繳交日期
Date of Submission
2015-08-24
關鍵字
Keywords
動態遷徙、多子群、階層結構、生物啟發式計算、粒子群演算法
Particle swarm optimization, multiple sub-swarms, bio-inspired computation, dynamic migration, hierarchical structure
統計
Statistics
本論文已被瀏覽 5665 次,被下載 17
The thesis/dissertation has been browsed 5665 times, has been downloaded 17 times.
中文摘要
過去幾十年很多基於生物啟發的演算法被提出,這些以群體為基礎的演算法 之適應學習能力已經被證實可以有效地解決許多最佳化問題。在這些演算法中, 粒子群演算法是一個很流行且常用的策略,因為它具有易於實作等優點。早期的 粒子群演算法通常只使用單一群去執行運算,然而隨著粒子群演算法的發展,採 用多個子群來求解問題的方式也被提出來,並常用於如平行處理,多極值最佳化, 多目標最佳化等問題上。在本篇論文中,我們首先回顧並探討當粒子群演算法使 用多子群執行時的一些有趣特性,並提出一個多子群演算法,調查當總粒子數固 定時,不同的子群數對效能產生的影響,而該演算法在本質上也很適合做平行處 理。接著我們提出一個可階層式執行的粒子群策略,經由分層的執行並在各層之 間加入一些運算來使得整體的效能變的更好。我們也探討該策略在不同的執行架 構下對於效能的影響。此外,我們提出一個粒子群演算法的動態遷徙策略,它可 以動態的決定遷徙發生的時機。我們並將動態的遷徙策略使用在階層式粒子群演 算法上,藉著額外使用遷徙,合併,重新初始化這些操作來增加粒子間演化的多 樣性以獲得更好的效能。最後我們經由一些實驗來驗證所提方法之效能。
Abstract
In the past decades, many global optimization algorithms based on biologically-inspired strategies have been developed. Most of them are population-based algorithms and their abilities of adaptive learning have shown they can solve optimization problems effectively. Particle swarm optimization (PSO) is a very popular and common-used strategy among them since it is easily implemented. In the early days, PSO was usually performed on a single swarm. Along with the development of variant PSO technologies, multiple-swarm schemes were also adopted for some purposes such as parallel processing, multimodal optimization and multi-objective optimization. In the thesis, we first revisit and discuss some interesting characteristics of PSO for multiple sub-swarm processing. We then propose a multi-sub-swarm algorithm, in which the original particle swarm is divided into several sub-swarms with the same total size, to investigate the variation of performance with different sub-swarm numbers. The algorithm is very suitable to be parallelized in nature. We then propose a hierarchical PSO strategy called HPSO, which executes the PSO algorithm in hierarchical levels and uses some operations to increase the performance. Different execution structures of HPSO are discussed as well. Furthermore, we propose a dynamic migration mechanism for PSO, which can automatically determine when to migrate a portion of particles from one sub-swarm to its neighbor. Finally, we apply the dynamic migration mechanism on the HPSO to check the effects of combination. By additionally using some operations such as migration, merge and re-initialization, the particles can increase diversity effectively and thus obtain good results. Experiments are also made to show the performance of the proposed approaches.
目次 Table of Contents
論文審定書 ....................................................................................................................... i
致謝 .................................................................................................................................. ii
摘要 ................................................................................................................................. iii Abstract............................................................................................................................ iv
Contents ............................................................................................................................ v
List of Figures................................................................................................................. vii
List of Tables ................................................................................................................... ix
CHAPTER 1 Introduction ............................................................................................. 1
1.1 Motivation ........................................................................................................ 1
1.2 Contributions.................................................................................................... 2
1.3 Organization of Thesis ..................................................................................... 4
CHAPTER 2 Related Works ......................................................................................... 5
2.1 Particle Swarm Optimization ........................................................................... 5
2.2 Sub-Swarm of PSO ........................................................................................ 10
2.3 Hierarchical Structure .................................................................................... 12
2.4 Migration strategy .......................................................................................... 14
CHAPTER 3 Balance of Local Search and Diversity in Sub-swarms of PSO............ 17
3.1 Introduction .................................................................................................... 17
3.2 The proposed Multi-Sub-Swarm Algorithm .................................................. 18
3.3 An Example of Multi-Sub-Swarm Algorithm ............................................... 23
3.4 Parallel Implementation of Proposed Multi-Sub-Swarm Algorithm ............. 28
CHAPTER 4 Particle Swarm Optimization with Hierarchical Execution .................. 30
4.1 Introduction .................................................................................................... 30
4.2 The Proposed PSO with Hierarchical Execution Algorithm ......................... 31
4.3 An example of PSO with Hierarchical Execution Algorithm........................ 36
CHAPTER 5 Particle Swarm Optimization with migration strategy .......................... 42
5.1 Introduction.................................................................................................... 42
5.2 The Proposed Dynamic Migration Strategy................................................... 42 v
5.3 Applied Dynamic Migration Strategy in HPSO ............................................ 47
5.4 An example of HE-DMPSO Algorithm......................................................... 49
CHAPTER 6 Experimental Evaluation ....................................................................... 54
6.1 Introduction .................................................................................................... 54
6.2 Experimental Benchmarks ............................................................................. 54
6.3 Parameter Settings.......................................................................................... 57
6.4 Experimental Results of multi-sub-swarm..................................................... 57
6.5 Experimental Results of HPSO ...................................................................... 62
6.6 Experimental Results of DMPSO .................................................................. 63
6.7 Comparison .................................................................................................... 65
CHAPTER 7 Conclusion and Future Work ................................................................ 68 References ...................................................................................................................... 69
參考文獻 References
[1] J. J. Liang, A. K. Qin, P. N. Suganthan and S. Baskar, “Comprehensive learning particle swarm optimizer for global optimization of multimodal functions,” The IEEE Congress on Evolutionary Computation, vol. 10, pp. 281-295, 2006.
[2] P. Angeline, “Evolutionary optimization versus particle swarm optimization: philosophy and performance differences,” The Seventh IEEE International Conference on Evolutionary Program, pp. 601-610, 1998.
[3] R. Poli, “Analysis of the publications on the applications of particle swarm optimisation,” Journal of Artificial Evolution and Applications, vol. 2008, pp. 10, 2008.
[4] J. F. Schutte, J. A. Reinbolt, B. J. Fregly, R. T. Haftka, and A. D. George, “Parallel global optimization with the particle swarm algorithm,” International Journal for Numerical Methods in Engineering, vol. 61, pp. 2296-2315, 2004.
[5] K. Deep, M. Arya, and S. Barak, “A new multi-swarm particle swarm optimization and its application to Lennard-Jones problem,” INFOCOMP Journal of Computer Science, vol. 9, pp. 52-60, 2010.
[6] R. Brits, A. Engelbrecht, and F. van den Bergh, “A niching particle swarm optimizer,” The Conference on Simulated Evolution and Learning, pp. 692-696, 2002.
[7] X. Li, “Adaptively choosing neighborhood bests using species in a particle swarm optimizer for multimodal function optimization,” The Genetic and Evolutionary Computation Conference, pp. 105-116, 2004.
[8] K. E. Parsopoulos, D. K. Tasoulis, and M. N. Vrahatis, “Multiobjective optimization using parallel vector evaluated particle swarm optimization,” The IASTED International Conference on Artificial Intelligence and Applications, 2004.
[9] S. Mostaghim, J. Branke and H. Schmeck, ”Multi-objective particle swarm optimization on computer grids,” The Genetic and Evolutionary Computation Conference, pp. 869-874, 2007.
[10] S. Janson and M. Middendorf, “A hierarchical particle swarm optimizer,“ The IEEE Congress on Evolutionary Computation, pp. 1272-1282, 2003.
[11] W. Y. Lin, T. P. Hong, S. M. Liu and J. H. Lin, “Revisiting the design of adaptive migration schemes for multipopulation genetic algorithms,” The Conference on Technologies and Applications of Artificial Intelligence, pp. 338-343, 2012.
[12] T. P. Hong, L. I. Huang and W. Y. Lin, “Comparison of some migration policies in sub-ant-colony scheme,” Taiwan Academic Network Conference, 2014.
[13] J. Kennedy and R. Eberhart, “Particle swarm optimization,” IEEE International Conference on Neural Networks, vol. 4, pp. 1942-1948, 1995.
[14] R. Eberhart and J. Kennedy, “A new optimizer using particles swarm theory,” in Proceedings of Micro Machine and Human Science conference, pp. 39-43, 1995.
[15] Y. Shi and R. C. Eberhart, “A modified particle swarm optimizer,” IEEE International Conference on Evolutionary Computation, pp. 69-73, 1998.
[16] Y. Shi and R. C. Eberhart, “Empirical study of particle swarm optimization,” The Congress on Evolutionary Computation, pp. 1945-1950, 1999.
[17] A. Ratnaweera, S. K. Halgamuge, and H. C. Watson, “Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients,” IEEE Transactions on Evolutionary Computation, vol. 8, pp. 240-255, 2004.
[18] K. T. Chaturvedi, M. Pandit, and L. Srivastava, “Self-organizing hierarchical particle swarm optimization for nonconvex economic dispatch,” IEEE Transactions on Power Systems, vol. 23, pp. 1079-1087, 2008.
[19] M. Clerc and J. Kennedy, “The particle swarm: explosion, stability, and convergence in a multidimensional complex space”, IEEE Transactions on Evolutionary Computation, vol. 6, pp. 58-73, 2002.
[20] S. Helwig and R. Wanka, “Theoretical analysis of initial particle swarm behavior,” in Proceedings of the Tenth International Conference on Parallel Problem Solving from Nature, vol.5199, pp. 889-898, 2008.
[21] M. Richards and D. Ventura, “Choosing a starting configuration for particle swarm optimization,” IEEE International Joint Conference on Neural Network, vol. 3, pp. 2309-2312, 2004.
[22]M. Clerc. “Initialisations for particle swarm optimization,” Online at http://clerc.maurice.free.fr/pso/, 2008.
[23] M. Lovbjerg and T. Krink, “Extending particle swarms with self-organized criticality,” in Proceeding of Evolutionary Computing conference, pp. 1588-1593, 2002.
[24] T. Krink, J. S. Vesterstrom, and J. Riget, “Particle swarm optimization with spatial particle extension,” The IEEE Congress on Evolutionary Computation, vol. 2, pp. 1474-1479, 2002.
[25] T. M. Blackwell and P. J. Bentley, “Dynamic search with charged swarms,” The Conference on Genetic and Evolutionary Computation, pp. 19-26, 2002.
[26] B. Yang, Y. Li and N. Zhang, “A novel improvement of particle swarm optimization using dual factors strategy,” The IEEE Congress on Evolutionary
Computation, pp. 183-189, 2014.
[27] B. Niu, Y.L. Zhu, X.X. He, and Q.H. Wu, “MCPSO: a multi-swarm cooperative particle swarm optimizer,” Applied Mathematics and Computation, vol. 185, pp. 1050-1062, 2007.
[28] Lovbjerg, T. K. Rasmussen, and T. Krink, “Hybrid particle swarm optimizer with breeding and subpopulations,” The Conference on Genetic and Evolutionary Computation, pp. 469-476, 2001.
[29] F. van den Bergh and A. P. Engelbrecht, “A cooperative approach to particle swarm optimization,” IEEE Transactions on Evolutionary Computation, vol. 8, pp. 225-239, 2004.
[30] G. Zhang and Y. M. Li, “Cooperative particle swarm optimizer with elimination mechanism for global optimization of multimodal problems,” IEEE Congress on Evolutionary Computation, pp. 210-217, 2014.
[31] M. Roshanzamir, N. Mozayani and M. Roshanzamir, “A new hierarchical structure for combining different versions of PSO,” International Journal of Computer Applications, vol. 85, pp.53-60, 2014.
[32] J. H. Seo, C. H. Im, S. Y. Kwak,, “Multimodal function optimization based on particle swarm optimization,” IEEE Transactions on Magnetics, pp. 1095-1098, 2006.
[33] A. Nickabadi, M. M. Ebadzadeh, and R. Safabakhsh, “DNPSO:a dynamic niching particle swarm optimization for multi-modal optimization,” IEEE Congress on Evolutionary Computation, pp. 926-32, 2008.
[34] J.E. Fieldsend, “Running up those hills: multi-modal search with the niching migratory multi-swarm optimiser,” in IEEE Congress on Evolutionary Computation, pp. 2593-2600, 2014.
[35] S. Janson and M. Middendorf, “A hierarchical particle swarm optimizer and its adaptive variant,” IEEE Transactions on Man Cybern part B, vol. 35, pp. 1272-1282, 2005.
[36] W. G. Hong, M. Zheng and S. Liang, “A hierarchical particle swarm optimizer with random social cognition for large scale global optimization,” IEEE International Conference on Natural Computation, pp. 256-261, 2008.
[37] H. Rezaei and S. Azadi, “Nonrigid medical image registration using hierarchical particle swarm optimization“ IEEE International Conference on Soft Computing, pp. 1-4, 2009.
[38] R. A. Thakker, M. S. Baghini, and M. B. Patil, “Low-power low-voltage analog circuit design using hierarchical particle swarm optimization,” IEEE International VLSI Design conference, pp.427-432, 2009.
[39] A. Mohais, C. Ward, and C. Posthoff, “Randomized Directed Neighborhoods with Edge Migration in Particle Swarm Optimization,” in Proceedings of the 2004 IEEE Congress on Evolutionary Computation, pp. 548-555, 2004.
[40] J. F. Chang, S. C. Chu, F. F. Roddick, and J. S. Pan, “A parallel particle swarm optimization algorithm with communication strategies,” Journal of Information Science and Engineering, vol. 21, pp. 809-818, 2005.
[41] G. Ma, W. Zhou, and X. L. Chang, “A novel particle swarm optimization algorithm based on particle migration,” Applied Mathematics and Computation, vol. 218, pp. 6620-6626, 2012.
[42] X. Lai and G. Tan, “Studies on migration strategies of multiple population parallel particle swarm optimization,” Eighth International Conference on Natural Computation, pp. 29-31, 2012.
[43] Z. Ren, Z. Wang and L. Sun, “Migration & competition-based particle swarm optimization for parameter estimation,” World Congress on Intelligent Control and Automation, pp. 590-595, 2012.
[44] Z. Zhan and J. Zhang, “Parallel particle swarm optimization with adaptive asynchronous migration strategy,” Algorithms and Architectures for Parallel Processing, pp. 490-501, 2009.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code