Responsive image
博碩士論文 etd-0724116-004046 詳細資訊
Title page for etd-0724116-004046
論文名稱
Title
創新線微流體電泳電化學系統結合電噴灑游離質譜偵測於生醫及食品安全之應用
Novel Thread-based Capillary Electrophoresis Electrochemical System integrated Electrospray Ionization for Mass Spectrometry Detection in Bioanalysis and Food-safety Applications
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
90
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-12
繳交日期
Date of Submission
2016-08-25
關鍵字
Keywords
電化學偵測、電泳分離、樣本聚焦、線微流體系統、電噴灑游離法
Thread-based microfluidic, Sample pinch focus, Capillary electrophoresis separation, Electrochemical detection, Electrospray ionization
統計
Statistics
本論文已被瀏覽 5636 次,被下載 18
The thesis/dissertation has been browsed 5636 times, has been downloaded 18 times.
中文摘要
本研究提出利用低成本的聚酯纖維線,製作第一個整合電泳分離電化學檢測,與電噴灑游離質譜偵測之微流體晶片,並將其應用於生醫與食品樣本之分析。本研究選用200 µm的市售縫紉用聚酯纖維線,做為樣本傳輸與偵測的微流道,其成本非常低廉,且取得容易,適合發展可攜、拋棄式檢測裝置。傳統微流體晶片多使用十字型或雙T字型的樣本注入設計,本研究打破傳統的概念,僅利用一條聚酯纖維線完成樣本的注入、分離與檢測。此創新的設計亦帶來許多好處,例如晶片製程與樣本注入步驟簡單化,樣本注入位置的自由度提高等等。此外,本研究發明一項線上樣本聚焦技術,其不需使用任何能源設備與複雜的操作,只透過線材本身的毛細作用力,即可完成樣本塊長度縮小與樣本濃縮。經過影像與檢測訊號分析結果得知,原本在線上完全展開的樣本塊,經過樣本聚焦後長度被縮短成原本的38%,再從電化學安培偵測結果得知,聚焦後樣本的氧化還原電流響應,比未經聚焦的樣本提升了2.7倍,其理論板數值亦提高了2.8倍。本研究利用簡單的夾具結構,固定住聚酯纖維線的其中一端,形成噴嘴的結構,再利用高壓電場於此前端產生電噴灑游離。此設計不需要複雜的製程方法或結合專門的噴嘴,也不需要使用溶液注射泵浦與輔助鞘流氣體,即可產生穩定的電噴灑與良好的游離效果,在電場為6.5×105 V/m的條件下,聚酯纖維線電噴灑游離能維持109 ions/cm3的高總離子濃度長達30 min。質譜檢測結果顯示,本系統不管是針對一般極性樣本、弱極性樣本、或複雜組成的食品樣本,偵測訊號之信噪比皆能達到10以上,有很好的成分分析能力。最後,本研究利用線微流體系統,將電泳電化學檢測技術整合於電噴灑游離質譜法,發展低成本,但高效能且檢測對象範圍廣泛的微流體晶片。本研究透過檢測生醫樣本多巴胺與抗壞血酸,以及組成物質複雜之舒跑運動飲料,證實將電泳電化學與電噴灑質譜法結合,不但能雙重檢查檢測結果,更能互補兩種方法的限制,於生醫或食品領域之應用有極大的潛力。
Abstract
This research presents the first microfluidic chip for integration of capillary electrophoresis electrochemical (CE-EC) detection and electrospray ionization (ESI). It can be used for rapid bio and food sample analysis. Polyester thread of 200 µm in diameter is used as the liquid route such that delicate channel fabrication process can be excluded. The entire detection process of this system can be done by only a straight polyester thread channel, which break the conventional concept of sample manipulation. This new design also bring us some benefits, such as liquid sample can be directly applied at arbitrary site of the thread for electrophoresis separation. In order to improve the efficiency of single thread based CE separation, two buffer drops are applied at neighboring side of the sample plug to shorten it, which is called in-line sample pinch focus process. Image results shows that the length of sample plug can be reduced to about 38% of its original after the focus process. In addition, the current response of EC detection shows 2.7 times enhancement, and the theoretical plate number also increase 2.8 times. A simple fixture structure is designed to hold the thread, and the tail end of thread is then applied a high voltage for ESI. The thread-based ESI can easy be stabilized for more than 30 min with a high ion intensity of 109 ions/cm3. The ingredients of commercial eye drops and energy drink-Red Bull are detected with high signal to noise ratio of more than 10. Finally, the combination of CE-EC detection and ESI is achieved by the developed single thread microfluidic. Bio samples of dopamine and ascorbic acid, and food sample of Supau are both successfully be detected by these two methods. The combination of two detection methods can let them complement each other's shortage, which shows great potential for bio and food applications.
目次 Table of Contents
論文審定書 i
論文授權書 ii
致謝 iii
中文摘要 iv
Abstract v
目錄 vi
圖目錄 ix
表目錄 xi
符號表 xii
簡寫表 xiii
第一章 緒論 1
1.1 研究背景 1
1.2 微流體晶片系統簡介 2
1.2.1 矽與玻璃材料微流體晶片 2
1.2.2 高分子材料微流體晶片 4
1.2.3 紙微流體晶片 5
1.2.4 線微流體晶片 7
1.3 毛細管電泳分離法 11
1.3.1 毛細管電泳簡介 11
1.3.2 毛細管電泳晶片常用材料與其EOF比較 12
1.3.3 毛細管電泳效能分析與影響效能的因素 14
1.4 電噴灑游離法 16
1.4.1 電噴灑游離法之發展 16
1.4.2 電泳電噴灑晶片常見之設計 17
1.4.3 紙電噴灑晶片 19
1.4.4 燭芯電噴灑法 21
1.5 研究動機與目的 23
1.6 論文架構 24
第二章 實驗原理與材料特性 25
2.1 聚酯纖維線特性與電漿表面改質 25
2.2 線上樣本聚焦原理 27
2.3 毛細管電泳分離法原理 28
2.4 電噴灑游離質譜偵測法原理 31
2.4.1 一般電噴灑游離 31
2.4.2 電暈放電輔助電噴灑游離機制 32
第三章 實驗設計與架構 34
3.1 線微流體晶片設計 34
3.1.1 直線型流道設計 34
3.1.2 線微流體電泳電噴灑晶片 35
3.2 壓克力基板製程簡介 36
3.3 實驗設計與檢測目標 38
3.4 實驗操作流程 39
3.5 系統架設與實驗設備 41
3.6 實驗溶液配製 44
第四章 實驗結果與討論 46
4.1 線上樣本聚焦效能分析 46
4.1.1 樣本聚焦效能-影像分析 46
4.1.2 樣本聚焦效能-訊號分析 47
4.1.3 樣本聚焦效能比較表 48
4.2 聚酯纖維線電噴灑效能分析 50
4.2.1 電噴灑游離影像分析 50
4.2.2 穩定電噴灑條件測試 53
4.2.3 線電噴灑長時間穩定度測試 54
4.3 聚酯纖維線電噴灑樣本檢測結果 55
4.3.1 一般極性單一樣本檢測 55
4.3.2 複雜組成之食品樣本檢測 57
4.3.3 弱極性樣本檢測 58
4.4 電泳電化學結合電噴灑質譜法檢測結果 60
第五章 結論與未來展望 64
5.1 結論 64
5.2 未來展望 66
參考文獻 67
自述 75
參考文獻 References
[1] A. Manz, N. Graber, and H. á. Widmer, "Miniaturized total chemical analysis systems: a novel concept for chemical sensing," Sensors and actuators B: Chemical, vol. 1, pp. 244-248, 1990.
[2] W. K. Tomazelli Coltro, C. M. Cheng, E. Carrilho, and D. P. Jesus, "Recent advances in low‐cost microfluidic platforms for diagnostic applications," Electrophoresis, vol. 35, pp. 2309-2324, 2014.
[3] P. Lisowski and P. K. Zarzycki, "Microfluidic paper-based analytical devices (μPADs) and micro total analysis systems (μTAS): development, applications and future trends," Chromatographia, vol. 76, pp. 1201-1214, 2013.
[4] P. Abgrall and A. Gue, "Lab-on-chip technologies: making a microfluidic network and coupling it into a complete microsystem—a review," Journal of Micromechanics and Microengineering, vol. 17, pp. R15-R49, 2007.
[5] P. N. Nge, C. I. Rogers, and A. T. Woolley, "Advances in microfluidic materials, functions, integration, and applications," Chemical Reviews, vol. 113, pp. 2550-2583, 2013.
[6] C. Iliescu, H. Taylor, M. Avram, J. Miao, and S. Franssila, "A practical guide for the fabrication of microfluidic devices using glass and silicon," Biomicrofluidics, vol. 6, p. 016505, 2012.
[7] D. J. Laser and J. G. Santiago, "A review of micropumps," Journal of Micromechanics and Microengineering, vol. 14, pp. R35-R64, 2004.
[8] K. W. Oh and C. H. Ahn, "A review of microvalves," Journal of Micromechanics and Microengineering, vol. 16, pp. R13-R39, 2006.
[9] R. Tiggelaar, P. Van Male, J. Berenschot, J. Gardeniers, R. Oosterbroek, M. De Croon, J. Schouten, A. Van Den Berg, and M. Elwenspoek, "Fabrication of a high-temperature microreactor with integrated heater and sensor patterns on an ultrathin silicon membrane," Sensors and Actuators A: Physical, vol. 119, pp. 196-205, 2005.
[10] D. J. Harrison, K. Fluri, K. Seiler, Z. Fan, C. S. Effenhauser, and A. Manz, "Micromachining a miniaturized capillary electrophoresis-based chemical analysis system on a chip," Science, vol. 261, pp. 895-895, 1993.
[11] C. J. Easley, J. A. Humphrey, and J. P. Landers, "Thermal isolation of microchip reaction chambers for rapid non-contact DNA amplification," Journal of Micromechanics and Microengineering, vol. 17, pp. 1758-1766, 2007.
[12] C. H. Lin, G. B. Lee, Y. H. Lin, and G. L. Chang, "A fast prototyping process for fabrication of microfluidic systems on soda-lime glass," Journal of Micromechanics and Microengineering, vol. 11, pp. 726-732, 2001.
[13] D. C. Duffy, J. C. McDonald, O. J. Schueller, and G. M. Whitesides, "Rapid prototyping of microfluidic systems in poly (dimethylsiloxane)," Analytical Chemistry, vol. 70, pp. 4974-4984, 1998.
[14] J. S. Rossier and H. H. Girault, "Enzyme linked immunosorbent assay on a microchip with electrochemical detection," Lab on a Chip, vol. 1, pp. 153-157, 2001.
[15] X. Jiang, J. M. Ng, A. D. Stroock, S. K. Dertinger, and G. M. Whitesides, "A miniaturized, parallel, serially diluted immunoassay for analyzing multiple antigens," Journal of the American Chemical Society, vol. 125, pp. 5294-5295, 2003.
[16] A. Y. Fu, H. P. Chou, C. Spence, F. H. Arnold, and S. R. Quake, "An integrated microfabricated cell sorter," Analytical Chemistry, vol. 74, pp. 2451-2457, 2002.
[17] X. Chen, H. Wu, C. Mao, and G. M. Whitesides, "A prototype two-dimensional capillary electrophoresis system fabricated in poly (dimethylsiloxane)," Analytical Chemistry, vol. 74, pp. 1772-1778, 2002.
[18] P. S. Doyle, J. Bibette, A. Bancaud, and J.-L. Viovy, "Self-assembled magnetic matrices for DNA separation chips," Science, vol. 295, pp. 2237-2237, 2002.
[19] R. Müller and D. L. Clegg, "Automatic paper chromatography," Analytical Chemistry, vol. 21, pp. 1123-1125, 1949.
[20] A. W. Martinez, S. T. Phillips, M. J. Butte, and G. M. Whitesides, "Patterned paper as a platform for inexpensive, low‐volume, portable bioassays," Angewandte Chemie International Edition, vol. 46, pp. 1318-1320, 2007.
[21] S. A. Klasner, A. K. Price, K. W. Hoeman, R. S. Wilson, K. J. Bell, and C. T. Culbertson, "Paper-based microfluidic devices for analysis of clinically relevant analytes present in urine and saliva," Analytical and Bioanalytical Chemistry, vol. 397, pp. 1821-1829, 2010.
[22] E. Carrilho, A. W. Martinez, and G. M. Whitesides, "Understanding wax printing: a simple micropatterning process for paper-based microfluidics," Analytical Chemistry, vol. 81, pp. 7091-7095, 2009.
[23] Y. Lu, W. Shi, L. Jiang, J. Qin, and B. Lin, "Rapid prototyping of paper‐based microfluidics with wax for low‐cost, portable bioassay," Electrophoresis, vol. 30, pp. 1497-1500, 2009.
[24] K. Abe, K. Suzuki, and D. Citterio, "Inkjet-printed microfluidic multianalyte chemical sensing paper," Analytical Chemistry, vol. 80, pp. 6928-6934, 2008.
[25] E. M. Fenton, M. R. Mascarenas, G. P. López, and S. S. Sibbett, "Multiplex lateral-flow test strips fabricated by two-dimensional shaping," ACS Applied Materials & Interfaces, vol. 1, pp. 124-129, 2008.
[26] A. W. Martinez, S. T. Phillips, and G. M. Whitesides, "Three-dimensional microfluidic devices fabricated in layered paper and tape," Proceedings of the National Academy of Sciences, vol. 105, pp. 19606-19611, 2008.
[27] A. W. Martinez, S. T. Phillips, E. Carrilho, S. W. Thomas III, H. Sindi, and G. M. Whitesides, "Simple telemedicine for developing regions: camera phones and paper-based microfluidic devices for real-time, off-site diagnosis," Analytical Chemistry, vol. 80, pp. 3699-3707, 2008.
[28] W. Dungchai, O. Chailapakul, and C. S. Henry, "Electrochemical detection for paper-based microfluidics," Analytical Chemistry, vol. 81, pp. 5821-5826, 2009.
[29] Z. Nie, F. Deiss, X. Liu, O. Akbulut, and G. M. Whitesides, "Integration of paper-based microfluidic devices with commercial electrochemical readers," Lab on a Chip, vol. 10, pp. 3163-3169, 2010.
[30] X. Li, J. Tian, and W. Shen, "Thread as a versatile material for low-cost microfluidic diagnostics," ACS Applied Materials & Interfaces, vol. 2, pp. 1-6, 2009.
[31] M. Reches, K. A. Mirica, R. Dasgupta, M. D. Dickey, M. J. Butte, and G. M. Whitesides, "Thread as a matrix for biomedical assays," ACS Applied Materials & Interfaces, vol. 2, pp. 1722-1728, 2010.
[32] D. R. Ballerini, X. Li, and W. Shen, "An inexpensive thread-based system for simple and rapid blood grouping," Analytical and Bioanalytical Chemistry, vol. 399, pp. 1869-1875, 2011.
[33] A. Nilghaz, D. R. Ballerini, X. Y. Fang, and W. Shen, "Semiquantitative analysis on microfluidic thread-based analytical devices by ruler," Sensors and actuators B: Chemical, vol. 191, pp. 586-594, 2014.
[34] G. Zhou, X. Mao, and D. Juncker, "Immunochromatographic assay on thread," Analytical Chemistry, vol. 84, pp. 7736-7743, 2012.
[35] S. S. Banerjee, A. Roychowdhury, N. Taneja, R. Janrao, J. Khandare, and D. Paul, "Chemical synthesis and sensing in inexpensive thread-based microdevices," Sensors and actuators B: Chemical, vol. 186, pp. 439-445, 2013.
[36] Y. A. Yang, C. H. Lin, and Y. C. Wei, "Thread-based microfluidic system for detection of rapid blood urea nitrogen in whole blood," Microfluidics and Nanofluidics, vol. 16, pp. 887-894, 2014.
[37] Y. C. Wei, L. M. Fu, and C. H. Lin, "Electrophoresis separation and electrochemical detection on a novel thread-based microfluidic device," Microfluidics and Nanofluidics, vol. 14, pp. 723-730, 2013.
[38] F. F. Reuss, "Sur un nouvel effet de l'électricité galvanique," Mem. Soc. Imp. Natur. Moscou, vol. 2, pp. 327-337, 1809.
[39] A. Tiselius, "A new apparatus for electrophoretic analysis of colloidal mixtures," Transactions of the Faraday Society, vol. 33, pp. 524-531, 1937.
[40] S. Hjertén, "Free zone electrophoresis," Chromatographic Reviews, vol. 9, pp. 122-219, 1967.
[41] R. Virtanen, "Zone electrophoresis in a narrow-bore tube employing potentiometric detection-Theoretical and experimental study," Acta Polytechnica Scandinavica: Chemical Technology Series, pp. 1-67, 1974.
[42] J. W. Jorgenson and K. Lukacs, "Free-zone electrophoresis in glass capillaries," American Association for Clinical Chemistry, vol. 27, pp. 1551-1553, 1981.
[43] J. W. Jorgenson and K. D. Lukacs, "High-resolution separations based on electrophoresis and electroosmosis," Journal of Chromatography A, vol. 218, pp. 209-216, 1981.
[44] J. W. Jorgenson and K. D. Lukacs, "Zone electrophoresis in open-tubular glass capillaries," Analytical Chemistry, vol. 53, pp. 1298-1302, 1981.
[45] A. Lewis, A. Cranny, N. Harris, N. G. Green, J. A. Wharton, R. Wood, and K. R. Stokes, "Review on the development of truly portable and in-situ capillary electrophoresis systems," Measurement Science and Technology, vol. 24, p. 042001, 2013.
[46] A. T. Woolley and R. A. Mathies, "Ultra-high-speed DNA fragment separations using microfabricated capillary array electrophoresis chips," Proceedings of the National Academy of Sciences, vol. 91, pp. 11348-11352, 1994.
[47] N. A. Lacher, K. E. Garrison, R. S. Martin, and S. M. Lunte, "Microchip capillary electrophoresis/electrochemistry," Electrophoresis, vol. 22, pp. 2526-2536, 2001.
[48] C. S. Effenhauser, G. J. Bruin, and A. Paulus, "Integrated chip‐based capillary electrophoresis," Electrophoresis, vol. 18, pp. 2203-2213, 1997.
[49] G. S. Fiorini and D. T. Chiu, "Disposable microfluidic devices: fabrication, function, and application," BioTechniques, vol. 38, pp. 429-446, 2005.
[50] S. A. Klasner, E. C. Metto, G. T. Roman, and C. T. Culbertson, "Synthesis and characterization of a poly (dimethylsiloxane)− poly (ethylene oxide) block copolymer for fabrication of amphiphilic surfaces on microfluidic devices," Langmuir, vol. 25, pp. 10390-10396, 2009.
[51] L. E. Locascio, C. E. Perso, and C. S. Lee, "Measurement of electroosmotic flow in plastic imprinted microfluid devices and the effect of protein adsorption on flow rate," Journal of Chromatography A, vol. 857, pp. 275-284, 1999.
[52] Y. Liu, D. Ganser, A. Schneider, R. Liu, P. Grodzinski, and N. Kroutchinina, "Microfabricated polycarbonate CE devices for DNA analysis," Analytical Chemistry, vol. 73, pp. 4196-4201, 2001.
[53] H. Shadpour, H. Musyimi, J. Chen, and S. A. Soper, "Physiochemical properties of various polymer substrates and their effects on microchip electrophoresis performance," Journal of Chromatography A, vol. 1111, pp. 238-251, 2006.
[54] G. S. Fiorini, R. M. Lorenz, J. S. Kuo, and D. T. Chiu, "Rapid prototyping of thermoset polyester microfluidic devices," Analytical Chemistry, vol. 76, pp. 4697-4704, 2004.
[55] M. Dole, L. Mack, R. Hines, R. Mobley, L. Ferguson, and M. d. Alice, "Molecular beams of macroions," The Journal of Chemical Physics, vol. 49, pp. 2240-2249, 1968.
[56] M. Yamashita and J. B. Fenn, "Electrospray ion source. Another variation on the free-jet theme," The Journal of Physical Chemistry, vol. 88, pp. 4451-4459, 1984.
[57] Y. R. Chen, K. C. Wen, and G. R. Her, "Analysis of coptisine, berberine and palmatine in adulterated Chinese medicine by capillary electrophoresis–electrospray ion trap mass spectrometry," Journal of Chromatography A, vol. 866, pp. 273-280, 2000.
[58] J. F. Banks, "Recent advances in capillary electrophoresis/electrospray/mass spectrometry," Electrophoresis, vol. 18, pp. 2255-2266, 1997.
[59] P. L. Ferguson, C. R. Iden, A. E. McElroy, and B. J. Brownawell, "Determination of steroid estrogens in wastewater by immunoaffinity extraction coupled with HPLC-electrospray-MS," Analytical Chemistry, vol. 73, pp. 3890-3895, 2001.
[60] Q. Xue, F. Foret, Y. M. Dunayevskiy, P. M. Zavracky, N. E. McGruer, and B. L. Karger, "Multichannel microchip electrospray mass spectrometry," Analytical Chemistry, vol. 69, pp. 426-430, 1997.
[61] B. Zhang, H. Liu, B. Karger, and F. Foret, "Microfabricated devices for capillary electrophoresis-electrospray mass spectrometry," Analytical Chemistry, vol. 71, pp. 3258-3264, 1999.
[62] J. Kameoka, H. G. Craighead, H. Zhang, and J. Henion, "A polymeric microfluidic chip for CE/MS determination of small molecules," Analytical Chemistry, vol. 73, pp. 1935-1941, 2001.
[63] J. Mellors, V. Gorbounov, R. Ramsey, and J. Ramsey, "Fully integrated glass microfluidic device for performing high-efficiency capillary electrophoresis and electrospray ionization mass spectrometry," Analytical Chemistry, vol. 80, pp. 6881-6887, 2008.
[64] M. Svedberg, M. Veszelei, J. Axelsson, M. Vangbo, and F. Nikolajeff, "Poly (dimethylsiloxane) microchip: microchannel with integrated open electrospray tip," Lab on a Chip, vol. 4, pp. 322-327, 2004.
[65] S. Thorslund, P. Lindberg, P. E. Andrén, F. Nikolajeff, and J. Bergquist, "Electrokinetic‐driven microfluidic system in poly (dimethylsiloxane) for mass spectrometry detection integrating sample injection, capillary electrophoresis, and electrospray emitter on‐chip," Electrophoresis, vol. 26, pp. 4674-4683, 2005.
[66] P. Hoffmann, U. Häusig, P. Schulze, and D. Belder, "Microfluidic glass chips with an integrated nanospray emitter for coupling to a mass spectrometer," Angewandte Chemie International Edition, vol. 46, pp. 4913-4916, 2007.
[67] R. Ramsey and J. Ramsey, "Generating electrospray from microchip devices using electroosmotic pumping," Analytical Chemistry, vol. 69, pp. 1174-1178, 1997.
[68] Q. Xue, Y. M. Dunayevskiy, F. Foret, and B. L. Karger, "Integrated multichannel microchip electrospray ionization mass spectrometry: analysis of peptides from on‐chip tryptic digestion of melittin," Rapid Communications in Mass Spectrometry, vol. 11, pp. 1253-1256, 1997.
[69] D. Figeys, Y. Ning, and R. Aebersold, "A microfabricated device for rapid protein identification by microelectrospray ion trap mass spectrometry," Analytical Chemistry, vol. 69, pp. 3153-3160, 1997.
[70] N. H. Bings, C. Wang, C. D. Skinner, C. L. Colyer, P. Thibault, and D. J. Harrison, "Microfluidic devices connected to fused-silica capillaries with minimal dead volume," Analytical Chemistry, vol. 71, pp. 3292-3296, 1999.
[71] Y. Tachibana, K. Otsuka, S. Terabe, A. Arai, K. Suzuki, and S. Nakamura, "Robust and simple interface for microchip electrophoresis–mass spectrometry," Journal of Chromatography A, vol. 1011, pp. 181-192, 2003.
[72] B. Legrand, A. E. Ashcroft, L. Buchaillot, and S. Arscott, "SOI-based nanoelectrospray emitter tips for mass spectrometry: a coupled MEMS and microfluidic design," Journal of Micromechanics and Microengineering, vol. 17, pp. 509-514, 2007.
[73] W. Kim, M. Guo, P. Yang, and D. Wang, "Microfabricated monolithic multinozzle emitters for nanoelectrospray mass spectrometry," Analytical Chemistry, vol. 79, pp. 3703-3707, 2007.
[74] A. P. Dahlin, M. Wetterhall, G. Liljegren, S. K. Bergström, P. Andrén, L. Nyholm, K. E. Markides, and J. Bergquist, "Capillary electrophoresis coupled to mass spectrometry from a polymer modified poly (dimethylsiloxane) microchip with an integrated graphite electrospray tip," Analyst, vol. 130, pp. 193-199, 2005.
[75] S. Ohla and D. Belder, "Chip-based separation devices coupled to mass spectrometry," Current Opinion in Chemical Biology, vol. 16, pp. 453-459, 2012.
[76] J. Liu, H. Wang, N. E. Manicke, J.-M. Lin, R. G. Cooks, and Z. Ouyang, "Development, characterization, and application of paper spray ionization," Analytical Chemistry, vol. 82, pp. 2463-2471, 2010.
[77] H. Wang, J. Liu, R. G. Cooks, and Z. Ouyang, "Paper spray for direct analysis of complex mixtures using mass spectrometry," Angewandte Chemie International Edition, vol. 122, pp. 889-892, 2010.
[78] R. G. Cooks, N. E. Manicke, A. L. Dill, D. R. Ifa, L. S. Eberlin, A. B. Costa, H. Wang, G. Huang, and Z. Ouyang, "New ionization methods and miniature mass spectrometers for biomedicine: DESI imaging for cancer diagnostics and paper spray ionization for therapeutic drug monitoring," Faraday Discussions, vol. 149, pp. 247-267, 2011.
[79] Z. Zhang, R. G. Cooks, and Z. Ouyang, "Paper spray: a simple and efficient means of analysis of different contaminants in foodstuffs," Analyst, vol. 137, pp. 2556-2558, 2012.
[80] N. E. Manicke, Q. Yang, H. Wang, S. Oradu, Z. Ouyang, and R. G. Cooks, "Assessment of paper spray ionization for quantitation of pharmaceuticals in blood spots," International Journal of Mass Spectrometry, vol. 300, pp. 123-129, 2011.
[81] N. E. Manicke, P. Abu Rabie, N. Spooner, Z. Ouyang, and R. G. Cooks, "Quantitative analysis of therapeutic drugs in dried blood spot samples by paper spray mass spectrometry: an avenue to therapeutic drug monitoring," Journal of the American Society for Mass Spectrometry, vol. 22, pp. 1501-1507, 2011.
[82] L. Shen, J. Zhang, Q. Yang, N. E. Manicke, and Z. Ouyang, "High throughput paper spray mass spectrometry analysis," Clinica Chimica Acta, vol. 420, pp. 28-33, 2013.
[83] G. Tepper and R. Kessick, "Nanoelectrospray aerosols from microporous polymer wick sources," Applied Physics Letters, vol. 94, p. 084106, 2009.
[84] L. T. Cherney, "Structure of Taylor cone-jets: limit of low flow rates," Journal of Fluid Mechanics, vol. 378, pp. 167-196, 1999.
[85] P. R. Chiarot, P. Sullivan, and R. B. Mrad, "Electrospray from a droplet," Experimental Thermal and Fluid Science, vol. 37, pp. 184-188, 2012.
[86] 陳進來, "聚酯纖維於絲織業的應用情形," 絲織園地, vol. 77, pp. 66-76, 2011.
[87] A. Wrobel, M. Kryszewski, W. Rakowski, M. Okoniewski, and Z. Kubacki, "Effect of plasma treatment on surface structure and properties of polyester fabric," Polymer, vol. 19, pp. 908-912, 1978.
[88] T. Costa, M. Feitor, C. Alves, P. Freire, and C. De Bezerra, "Effects of gas composition during plasma modification of polyester fabrics," Journal of Materials Processing Technology, vol. 173, pp. 40-43, 2006.
[89] N. Wang, A. Zha, and J. Wang, "Study on the wicking property of polyester filament yarns," Fibers and Polymers, vol. 9, pp. 97-100, 2008.
[90] R. Safavieh, G. Z. Zhou, and D. Juncker, "Microfluidics made of yarns and knots: from fundamental properties to simple networks and operations," Lab on a Chip, vol. 11, pp. 2618-2624, 2011.
[91] D. J. Harrison, A. Manz, Z. Fan, H. Luedi, and H. M. Widmer, "Capillary electrophoresis and sample injection systems integrated on a planar glass chip," Analytical Chemistry, vol. 64, pp. 1926-1932, 1992.
[92] D. S. Burgi and R. L. Chien, "Optimization in sample stacking for high-performance capillary electrophoresis," Analytical Chemistry, vol. 63, pp. 2042-2047, 1991.
[93] L. M. Fu, R. J. Yang, and G. B. Lee, "Electrokinetic focusing injection methods on microfluidic devices," Analytical Chemistry, vol. 75, pp. 1905-1910, 2003.
[94] J. Iribarne and B. Thomson, "On the evaporation of small ions from charged droplets," The Journal of Chemical Physics, vol. 64, pp. 2287-2294, 1976.
[95] M. E. Hail and I. C. Mylchreest, "Electrospray ion source and interface apparatus and method," vol. U.S. Patent 5,393,975, Feb. 28, 1995.
[96] A. Jaworek, A. Sobczyk, T. Czech, and A. Krupa, "Corona discharge in electrospraying," Journal of Electrostatics, vol. 72, pp. 166-178, 2014.
[97] K. Tang and A. Gomez, "Generation of monodisperse water droplets from electrosprays in a corona-assisted cone-jet mode," Journal of Colloid and Interface Science, vol. 175, pp. 326-332, 1995.
[98] J. R. Lloyd and S. Hess, "A corona discharge initiated electrochemical electrospray ionization technique," Journal of the American Society for Mass Spectrometry, vol. 20, pp. 1988-1996, 2009.
[99] Y. C. Lin, W. M. Wu, and C. S. Fan, "Design and simulation of sample pinching utilizing microelectrodes in capillary electrophoresis microchips," Lab on a Chip, vol. 4, pp. 60-64, 2004.
[100] E. Dodbiba, C. Xu, E. Wanigasekara, and D. W. Armstrong, "Sensitive analysis of metal cations in positive ion mode electrospray ionization mass spectrometry using commercial chelating agents and cationic ion‐pairing reagents," Rapid Communications in Mass Spectrometry, vol. 26, pp. 1005-1013, 2012.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code