Responsive image
博碩士論文 etd-0724116-124922 詳細資訊
Title page for etd-0724116-124922
論文名稱
Title
熱處理溫度與時間對含碳化物之中錳鋼經冷軋後組織與拉伸性質的影響
The effect of annealing temperature and time on microstructure and tensile properties of a carbide-contained medium Mn steel
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
150
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-27
繳交日期
Date of Submission
2016-08-24
關鍵字
Keywords
先進高強度鋼、熱處理時間、冷軋、熱處理溫度、拉伸性質
Annealing temperature, Annealing time, Tensile properties, AHSS, Cold rolling
統計
Statistics
本論文已被瀏覽 5719 次,被下載 0
The thesis/dissertation has been browsed 5719 times, has been downloaded 0 times.
中文摘要
本論文研究中錳鋼之熱軋鋼板經兩階段熱處理及冷軋後,熱處理溫度及持溫時間對其顯微組織及拉伸性質。第一階段熱處理產生組織為肥粒鐵相加上大量細小且均勻分佈的碳化物,其所富含之碳和錳合金,在第二階段熱處理時,隨著碳化物的回溶會提供周圍組織豐富的碳和錳,使碳化物周遭形成次微米細晶粒的沃斯田鐵。次微米晶粒能夠幫助提高沃斯田鐵穩定性,以利於變形時發生TRIP效應。改變冷軋量對試片的相分率、化學成份、晶粒尺寸和長寬比沒有明顯的影響,因此對拉伸性質的影響不大。但冷軋25%和50%並於750℃熱處理1小時之試片具有不同的拉伸性質。熱處理溫度和時間會影響組織的相分率、成份重新分佈和晶粒尺寸等,進而影響其拉伸性質。熱處理溫度提高或是持溫時間增加都能幫助碳化物溶解,若要使碳化物大量溶解則熱處理的溫度至少需高於700℃,持溫時間則至少需超過5分鐘。
Abstract
This study explores the effect of annealing temperature, time and amount of cold rolling on the microstructure and tensile properties of a medium manganese steel after two-stage annealing and cold rolling procedures. After the first stage annealing, the microstructure consists of ferrite and tiny carbides. During the second stage annealing, the carbides are dissolved and provide abundant manganese and carbon to the surrounding ferrite matrix, which then transforms into submicron austenite grains. The small grain size of the austenite increases the austenite stability, and let TRIP effect occurs during deformation.Diffirent cold roll reduction gave similar phase fraction, composition, grain size and aspect ratio, but 25% and 50% cold rolling followed by 750℃ annealing 1 hour gave diffirent tensile properties. Annealing temperature and time affect austenite fraction, alloy partition and grain size, which in turn affect the tensile properties of the steel. To make enough carbides to be dissolved, the annealing temperature should be higher than 700℃, and the annealing time should exceed 5 minutes.
目次 Table of Contents
論文審定書 i
中文摘要 ii
英文摘要 iii
圖目錄 viii
表目錄 xvii
一、前言 1
二、文獻回顧 2
2-1 麻田散鐵 2
2-1-1 條狀麻田散鐵 2
2-1-2 盤狀麻田散鐵 3
2-1-3 由條狀至盤狀麻田散鐵之變化 3
2-1-4 應變誘發麻田散鐵之成核 4
2-2 TRIP鋼 5
2-2-1 應力和應變誘發麻田散鐵 5
2-2-2 不連續TRIP效應 6
2-3 室溫下沃斯田鐵穩定性 7
2-4 合金成份對TRIP鋼的影響 8
2-5 晶粒尺寸的影響 9
2-6 雙相區退火處理 9
2-6-1退火溫度對材料的影響 10
2-6-1-1 最佳之退火溫度 10
2-6-1-2 退火溫度對晶粒尺寸的影響 11
2-6-1-3 退火溫度對Ms溫度的影響 11
2-6-1-4 退火溫度對機械性質的影響 12
2-6-2 退火時間對材料的影響 12
2-6-2-1退火時間對機械性質的影響 13
2-6-2-2退火時間對穩定性和晶粒尺寸的影響 13
2-7 冷加工 13
2-7-1 冷加工的效果 13
2-7-2 不同冷軋量以及單次或多重冷軋對材料顯微組織和拉伸性質的影響 14
2-8 中錳鋼 14
2-9 碳化物的溶解 16
三、研究目的 19
四、實驗方法 20
4-1 實驗材料 20
4-2 試片準備 20
4-3 金相製備 20
4-4 拉伸實驗 20
4-5 掃描式電子顯微鏡 21
4-6背向散射電子繞射分析 21
4-7 成份分析 21
4-8 X-ray繞射分析 21
五、實驗結果 23
5-1 實驗參數 23
5-2 熱軋後經第一階段熱處理之微觀組織與硬度 23
5-3 經冷軋及雙相熱處理後之實驗結果 24
5-3-1 試片經冷軋25%後在熱處理溫度750℃下分別持溫1分鐘至10小時 24
拉伸性質 24
微觀組織 25
相分率 26
晶粒尺寸和長寬比 27
EDS化學成份分析 27
5-3-2 試片經冷軋50%後在熱處理溫度750℃下分別持溫1分鐘至10小時 28
拉伸性質 28
微觀組織 28
相分率 29
晶粒尺寸與長寬比 30
EDS化學成份分析 30
5-3-3 試片經冷軋25%後在熱處理溫度700、725和750℃下持溫10分鐘 31
拉伸性質 31
微觀組織 31
相分率 32
晶粒尺寸與長寬比 32
EDS化學成份分析 33
5-3-4 試片經冷軋25%,在熱處理溫度750℃下持溫5分鐘後拉伸至特定應變量 33
拉伸性質 33
微觀組織 34
相分率 34
晶粒尺寸與長寬比 35
EDS化學成份分析 35
六、討論 36
6-1 第一階段熱處理 36
6-2 熱處理時間對材料拉伸性質和組織的影響 36
6-3 冷軋量對材料拉伸性質和組織的影響 40
6-4 熱處理溫度對材料拉伸性質與組織的影響 41
6-5 特定應變量下微觀組織與相分率的變化 43
七、結論 45
八、參考文獻 46
參考文獻 References
[1] G. Krauss, Martensite in steel: strength and structure. Materials Science and Engineering A, 1999. 273-275: p. 40-57.
[2] S. Morito, H. Tanaka, R. Konishi, T. Furuhara, T. Maki, The morphology and crystallography of lath martensite in Fe-C alloys. Act Materialia, 2003. 51: p. 1789-1799.
[3] G. Krauss, and A.R. Marder, The Morphology of Martensite in Iron Alloys. Metallurgical Transactions, 1971. 2: p. 2343-2357.
[4] P.M. Kelly and J. Nutting, The Martensite Transformation in Carbon Steels. The Royal Society A, 1960. 259: p. 45-48.
[5] R.F. Vyhnal and S.V. Radcliffe, Effects of pressure on the structure of iron-carbon martensites. Acta Metallurgica, 1967. 15: p. 1475-1488.
[6] O. Johari and G. Thomas, Factors determining twinning in martensite. Acta Metallurgica, 1965. 13: p. 1211-1212.
[7] K. Shimizu and C.M. Wayman, Discussion of “Factors determining twinning in martnesite”. Acta Metallurgica, 1966. 14: p. 1390-1391.
[8] S.K. Das and G. Thomas, Discussion of “on the morphology and substructure of martensite”. Metallurgical Transactions, 1970. 1: p. 325-327.
[9] P.M. Kelly and J. Nutting, The Morphology of Martensite. 1961. 197: p. 199-211.
[10] D. Fahr, Stress- and Strain-Induced Formation of Martensite and Its Effects on Strength and Ductility of Metastable Austenitic Stainless Steels. Metallurgical Transactions, 1971. 2: p. 1883-1892.
[11] J. Talonen, and H. Hanninen, Formation of shear bands and strain-induced martensite during plastic deformation of metastable austenitic stainless steels. Acta Materialia, 2007. 55: p. 6108-6118.
[12] B.C. De Cooman, Structure-properties relationship in TRIP steels containing carbide-free bainite. Current Opinion in Solid State and Materials Science, 2004. 8: p. 285-303.
[13] P.J. Jacques, Transformation-induced plasticity for high strength formable steels. Current Opinion in Solid State and Materials Science, 2004. 8: p. 259-265.
[14] Z.H. Cai, H. Ding, R.D.K. Misra, Z.Y. Ying, Austenite stability and deformation behavior in a cold-rolled transformation-induced plasticity steel with medium manganese content. Acta Materialia, 2015. 84: p. 229-236.
[15] Z.C. Li, H. Ding, Z.H. Cai, Mechanical properties and austenite stability in hot-rolled 0.2C-1.6/3.2Al-6Mn-Fe TRIP steel. Materials Science and Engineering A, 2015. 639: p. 559-566.
[16] S. Lee, and B.C. De Cooman, Annealing Temperature Dependence of the Tensile Behavior of 10 pct Mn Multi-phase TWIP-TRIP Steel. Metallurgical and Materials Transactions A, 2014. 45: p. 6039-6052.
[17] S. Lee, and B.C. De Cooman, Tensile Behavior of Intercritically Annealed 10 pct Mn Multi-phase Steel. Metallurgical and Materials Transactions A, 2014. 45: p. 709-716.
[18] Qihang Han, Yulong Zhang, and Li Wang, Effect of Annealing Time on Microstructural Evolution and Deformation Characteristics in 10Mn1.5Al TRIP Steel. Metallurgical and Materials Transactions A, 2015. 46: p. 1915-1926.
[19] S. Lee, and B.C. De Cooman, Effect of the Intercritical Annealing Temperature on the Mechanical Properties of 10 Pct Mn Multi-phase Steel. Metallurgical and Materials Transactions A, 2014. 45: p. 5009-5016.
[20] T.N. Lomholt, Y. Adachi, A. Bastos, K. Pantleon and M.A.J. Somers, Partial transformation of austenite in Al-Mn-Si TRIP steel upon tensile straining: an in situ EBSD study. Materials Science and Technology, 2013. 29: p. 1383-1388.
[21] R.L. Miller, Ultrafine-Grained Microstructures and Mechanical Properties of Alloy Steels. Metallurgical Transactions, 1972. 3: p. 905-912.
[22] W.B. Morrison, and R.L. Miller, Ultrafine-Grain Metals. 1970, Syracuse University Press. p. 183.
[23] R.W. Armstrong, Ultrafine-Grain Metals. 1970, Syracuse University Press. p. 1.
[24] L.F Porter, Dabkowski, Ultrafine-Grain Metals. 1970, Syracuse University Press. p. 133.
[25] R.D.K. Misra, S. Nayak, S.A. Mali, J.S Shah, M.C. Somani, and L.P. Karhalainen, Microstructure and Deformation Behavior of Phase-Reversion-Induced Nanograined/Ultrafine-Grained Austenitic Stainless Steel. Metallurgical and Materials Transactions A, 2009. 40: p. 2498-2509.
[26] S. Lee, B.C. De Cooman, On the Selection of the Optimal Intercritical Annealing Temperature for Medium Mn TRIP Steel. Metallurgical and Materials Transactions A, 2013. 44: p. 5018-5024.
[27] 施羿帆,多重軋延退火程序對沃斯田鐵逆變態所得雙相細晶錳鋼之組織與拉伸性質的影響,中山大學材光所碩士論文,2015。
[28] R.L. Miller, Ultrafine-grained microstructures and mechanical properties of alloy steels. Metallurgical Transactions, 1972. 3: p. 905-912.
[29] H. Luo, J. Shi, C. Wang, W. Cao, X. Sun and H. Dong, Experimental and numerical analysis on formation of stable austenite during the intercritical annealing of 5Mn steel. Acta Materialia, 2011. 59: p. 4002-4014.
[30] M.J. Merwin, Low-carbon manganese TRIP steels. Materials Science Forum, 2007. 539-543: p. 4327-4332.
[31] J. Shi, X. Sun, M. Wang, W. Hui, H. Dong and W. Cao, Enhanced work-hardening behavior and mechanical properties in ultrafine-grained steels with large-fractioned metastable austenite. Scripta Materialia, 2010. 63: p. 815-818.
[32] D.W. Suh, S.J. Park, T.H. Lee, C.S. Oh and S.J. Kim, Physical Metallurgy and Materials Science. Metallurgical and Materials Transactions A, 2010. 41: p. 397-408.
[33] Z.H. Cai, H Ding, Z.Y. Ying and R.D.K. Misra, Microstructural evolution and deformation behavior of a hot-rolled and heat treated Fe-8Mn-4Al-0.2C steel. Journal of Materials Engineering and Performance, 2014. 23: p. 1131-1137.
[34] S.J. Park, B. Hwang, K.H. Lee, T.H. Lee, D.W. Suh and H.N. Han, Microstructure and tensile behavior of duplex low-density steel containing 5 mass% aluminum. Scripta Materialia, 2013. 68: p. 365-369.
[35] M. Blede, H. Springer, G. Inden and D. Raabe, Multiphase microstructures via confined precipitation and dissolution of vessel phases: Example of austenite in martensitic steel. Acta Meterialia, 2015. 86: p. 1-14.
[36] U. Liedl, S. Traint, E.A. Werner, An unexpected feature of the stress-strain diagram of dual-phase steel. Computational Materials Science, 2002. 25: p. 122-128.
[37] Zhonghao Jiang, Zhenzhong Guan, Jianse Lian, Effects of microstructural variables on the deformation behavior of dual-phase steel. Materials Science and Engineering A, 1995. 190: p. 55-64.
[38] 詹智宇,熱處理溫度與時間對多相中錳鋼冷軋板之組織與拉伸性質之影響,中山大學材光所碩士論文,2016。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.116.40.177
論文開放下載的時間是 校外不公開

Your IP address is 18.116.40.177
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code