Responsive image
博碩士論文 etd-0724116-132123 詳細資訊
Title page for etd-0724116-132123
論文名稱
Title
以熱蒸鍍法於PI基板上製備碲化銻熱電薄膜之研究
Study of the thermoelectric properties of Sb2Te3 thin film on polyimide substrate by thermal evaporation processes
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
126
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-19
繳交日期
Date of Submission
2016-08-24
關鍵字
Keywords
熱電特性、可撓式基板、碲化銻、熱退火、熱蒸鍍
Sb2Te3, thermoelectric, flexible substrate, thermal evaporation, thermal annealing
統計
Statistics
本論文已被瀏覽 5729 次,被下載 28
The thesis/dissertation has been browsed 5729 times, has been downloaded 28 times.
中文摘要
本實驗採用耐熱性質較佳的聚醯亞胺(Polyimide,PI)基板,使用熱蒸鍍法製備Sb2Te3薄膜於基板上,探討基板升溫及銀摻雜對Sb2Te3薄膜特性的影響,並進行熱退火處理,比較不同製程條件下之熱電特性。
由SEM表面形貌與X光繞射分析顯示,在室溫下沉積的薄膜,呈現非晶狀態;隨著基板溫度增加,薄膜結晶性強度變強,缺陷減少使得載子濃度降低,因此,Seebeck係數呈現上升及導電率下降之趨勢;當基板溫度到達125ºC時,具有最佳之功率因子為3.57μW/cmK2,而以金屬Ag原子 做摻雜,於基板溫度125°C、Ag摻雜量為5.37%時,具有最佳之功率因子為4.70μW/cmK2。
在熱退火處理後,可發現未摻雜Ag的Sb2Te3薄膜,在基板溫度125°C,退火250°C及退火時間60分鐘的情況下有最好的功率因子為14.62μW/cmK2;在摻雜銀的部分,實驗結果顯示在基板溫度125°C,退火溫度200°C及時間60分鐘的情況下,可得到最佳功率因子約為10.24 μW/cmK2。
Abstract
In this study, the Sb2Te3 thermoelectric thin films were deposited on polyimide substrates by thermal evaporation method. The effects of substrate temperature and Ag doping on the microstructures and thermoelectric properties of Sb2Te3 thin films were investigated. Besides, the annealing processes were carried out to investigate the characteristics of the thermoelectric films.
The structures of the thin films were analyzed by XRD and SEM, respectively. The thin films deposited at room temperature showed an amorphous phase. As the substrate temperature was increased, the XRD intensity of Sb2Te3 thin films increased and the defects and carrier mobility were reduced. Therefore, the Seebeck coefficient increased and the conductivity decreased at first. The optimized power factor of the Sb2Te3 p-type thin films was found to be about 3.57 μW/cmK2 at the substrate temperature of 125°C. For the Sb2Te3 thin films with Ag doping, the maximized value of power factor of 4.07 μW/cm·K2 could be obtained at the doping concentration of 5.37wt%, and the substrate temperature of 125°C.
After the thermal annealing processes, the results showed that the maximized value of power factor of 14.62 μW/cmK2 for undoped Sb2Te3 thin films could be obtained at substrate temperature of 125°C and annealing temperature of 250°C (60 minutes). In the Ag-doped Sb2Te3 thin films, the results showed that the maximized value of power factor of 10.24 μW/cmK2 could be obtained at substrate temperature of 125°C and annealing temperature of 200°C (60 minutes).
目次 Table of Contents
中文審定書 i
英文審定書 ii
誌謝 iii
摘要 iv
Abstract v
目錄 vii
圖目錄 x
表目錄 xvi
第一章 緒論 1
1.1 前言 1
1.2 熱電材料應用 3
1.2.1 熱電溫度控制 4
1.2.2 人造衛星之熱電轉換 5
1.2.3 人體發電與可撓式元件 6
1.2.4 熱能充電家具 6
1.3 研究動機與目的 7
第二章 理論分析與文獻回顧 11
2.1 熱電理論 11
2.1.1 Seebeck效應 11
2.1.2 Peltier效應 12
2.1.3 Thomson效應 13
2.2 熱電材料物理特性 15
2.2.1 熱電優值(thermoelectric figure of merit, ZT) 15
2.2.2 熱電轉換效率 18
2.3 文獻回顧 20
第三章 實驗方法與步驟 23
3.1 實驗步驟 23
3.2 實驗流程 24
3.2.1 基板的製備與清洗 24
3.2.2 氧電漿清洗 25
3.2.3 Sb2Te3薄膜於不同蒸鍍電流及熱退火之熱電特性探討 26
3.2.4 Sb2Te3薄膜於不同基板溫度及熱退火之熱電特性探討 28
3.2.5 Sb2Te3和Ag共蒸鍍薄膜及熱退火之熱電特性探討 29
3.3 實驗儀器介紹 31
3.3.1 熱蒸鍍機原理及介紹 31
3.3.2 高溫爐管 33
3.3.3 X光粉末繞射儀(X-ray diffractometer,XRD) 34
3.3.4 掃描式電子顯微鏡(Scanning Electron Microscope,SEM) 35
3.3.5 X光能譜散射分析儀(Energy Dispersive X-ray Spectroscopy,EDS) 36
3.3.6 Seebeck係數量測 37
3.3.7 電阻率量測 38
第四章 結果與討論 40
4.1 Sb2Te3原始材料之特性分析 40
4.2 Sb2Te3薄膜特性之探討 41
4.2.1 Sb2Te3薄膜於不同蒸鍍電流之物性分析 41
4.2.2 Sb2Te3薄膜於不同蒸鍍電流之電性分析 46
4.3 改變基板沉積條件對Sb2Te3薄膜特性之探討 49
4.3.1 Sb2Te3薄膜於不同基板溫度下之物性分析 49
4.3.2 Sb2Te3薄膜於不同基板溫度下之電性分析 54
4.4 Ag摻雜對Sb2Te3薄膜特性之探討 57
4.4.1 改變Ag共蒸鍍的電流對Sb2Te3薄膜之物性分析 57
4.4.2 改變Ag共蒸鍍的電流對Sb2Te3薄膜之電性分析 62
4.5 熱退火製程對Sb2Te3薄膜特性之探討 65
4.5.1 蒸鍍電流60A之Sb2Te3薄膜熱退火 65
4.5.2 於基板溫度125ºC熱退火製程對Sb2Te3薄膜特性影響之探討 73
4.5.3 於基板溫度125ºC,熱退火製程對Ag摻雜Sb2Te3熱電薄膜之探討 88
第五章 結論 103
參考文獻 104
參考文獻 References
[1] 溫減管理室,“我國溫室氣體減量承諾:「國家自定預期貢獻」(INDC)”,行政院環境保護署,2016年。
[2] 黃昭仁,“熱電發電之電路設計原理與技術簡介”,工業材料雜誌,351期,2016年。
[3] D. M. Rowe, “Thermoelectrics handbook: Macro to nano”, CRC Press, (2006).
[4] 黃振東,“熱電材料”,科學發展,486期,2013年。
[5] 劉燕妮,“全球熱電模組之應用現況”,工業材料雜誌,351期,2016年。
[6] G. L. Bennet, “Space Nuclear Power: Opening the Final Frontier”, 4th International Energy Conversion Engineering Conference and Exhibit (IECEC), San Diego, California, (2006).
[7] 朱旭山,“熱電元件在環境能源擷取之應用與發展方向”,工業材料雜誌,322期,2013年,87。
[8] V. Gore, S. Komardenkov, “Your Kitchen Table Could Charge Your Phone with Free Power”, Space 10 (2015).
[9] 林研詩,“軟性電子之市場發展現況與趨勢”,工業材料,338期,2014年。
[10] 鄭培毓,“可撓式基板拓展新應用領域”,光連雙月刊,37期,2002年。
[11] A. Georgiev, D. Dimov, E. Spassova, J. Assa, P. Dineff and G. Danev, “Chemical and Physical Properties of Polyimides:Biomedical and Engineering Applications”, (2012).
[12] G. J. Snyder and E. S. Toberer, “Complex thermoelectric materials”, Nature Materials, 7, 105 (2008).
[13] T. J. Seebeck, “Magnetic polarization of metals and minerals”, Abhandlungen
der Deutschen Akademie Wissenschaften zu Berlin, 265 (1822).
[14] 朱旭山,“熱電發電技術及應用方向”,材料世界網,2005年。
[15] J. C. Peltier, “Nouvelles experinces sur la caloricite des courans electrique”, Annales de chimie-science des materiaux Physics, 56, 371 (1834).
[16] W. Thomson, “An account of Carnot’s theory of the motive power of heat”, Transactions of the Royal Society of Edinburgh, 16, 541 (1849).
[17] W. Thomson, “On a mechanical theory of hermos-electric currents”, Proceeding of the Royal Society of Edinburgh, 91 (1851).
[18] H. J. Goldsmid, “Thermoelectric refrigeration”, Plenum, New York (1964).
[19] K. M. Liou and C. N. Liao, “Electric current enhanced defect elimination in thermally annealed Bi-Sb-Te and Bi-Se-Te thermoelectric thin films”, Journal of Applied Physics, 108, 053711 (2010).
[20] K. F. Cai, E. Mueller, C. Drasar and C. Stiewe, “The effect of titanium diboride addition on the thermoelectric properties of β-FeSi2 semiconductors”, Solid State Communications, 131, 325 (2004).
[21] G. J. Snyder and E. S. Toberer, “Complex thermoelectric materials”, Nature Materials, 7, 105 (2008).
[22] M. M. Rashid, K. H. Cho, G. S. Chung, “Rapid thermal annealing effects on the microstructure and the thermoelectric properties of electrodeposited Bi2Te3 film”, Applied Surface Science, 279, 23 (2013).
[23] A. Shakouri, “Recent Developments in Semiconductor Thermoelectric Physics and Materials”, Annual Reviews Materials Research, 41, 399 (2011).
[24] M. Jonson, G. D. Mahan, “Mott’s formula for the thermopower and the Wiedemann-Franz law”, Physical Review, 21, 422 (1980).
[25] 葉晉嘉,“N型Bi2Te2.7Se0.3熱電材料之研究”,國立中山大學電機工程學系碩士論文,2011年。
[26] J. P. Fleurial, A. Borshchevsky, T. Caillat and R. Ewell, “New Materials and Devices for Thermoelectric Applications”, IECEC, ACS Paper, 97419 (1997).
[27] Y. Lan, A. J. Minnich, G. Chen, and Z. Ren, “Enhancement of Thermoelectric Figure-of-Merit by a Bulk Nanostructuring Approach”, Advanced Functional Materials, 20, 357 (2010).
[28] K. Sharma1, M.Lal, V. K. Gumber, A. Kumar1, N. Chaudary, N. Goyal, “Effect of composition on optical and thermoelectric properties of microstructured p-type (Bi2Te3)x(Sb2Te3)1-x alloys”, Journal of Nano-and Electronic Physics, 6, 01007 (2014).
[29] J. H. Kim, J. Y. Choi, J. M. Bae, M. Y. Kim, T. S. Oh, “Thermoelectric Characteristics of n-Type Bi2Te3 and p-Type Sb2Te3 Thin Films Prepared by Co-Evaporation and Annealing for Thermopile Sensor Applications”, Materials Transactions, 54, 618 (2013).
[30] B. Fang, Z. Zeng, X. Yan, Z. Hu, “Effects of annealing on thermoelectric properties of Sb2Te3 thin films prepared by radio frequency magnetron sputtering”, Journal of Materials Science:Materials in Electronics, 24, 1105 (2013).
[31] J. L. Cui, H. F. Xue, W. J. Xiu, “Microstructures and thermoelectric properties of p-type pseudo-binary AgxBi0.5Sb1.5−xTe3(x=0.05–0.4)alloys prepared by cold pressing”, Materials Letters, 60, 3669 (2006).
[32] 徐逸明,游閔盛,郭有斌,黃傑,洪昭南,“常壓電漿原理、技術與應用,化工技術”,197期,2009年。
[33] 林麗娟,“X光繞射原理及其應用”,工業材料,86期,1994年。
[34] F. M. Smits, “Measure of Sheet Resistivities with the Four-Point Probe”, the Bell System Technical Journal, 37, 711 (1958).
[35] P. Arun, P. Tyagi, A. G. Vedeshwar and V. K. Paliwal, “Ageing effect of Sb2Te3 thin films”, Physica B, 307, 105 (2001) .
[36] B. D. Cullity, “Elements of X-ray diffraction”, Addison-Wesley, 2 (1978).
[37] S. H. Li, H. M. A. Soliman, J. Zhou, M. S. Toprak, M. Muhammed, D. Platzek, P. Ziolkowski, E. Muller, “Effects of Annealing and Doping on Nanostructured Bismuth Telluride Thick Films”, Chemistry of Materials, 20, 4403 (2008).
[38] Z. H .Zheng, P. Fan, T. B. Chen, Z. K. Cai, P. J. Liu, G. X. Liang, D. P. Zhang, X. M. Cai, “Optimization in fabricating bismuth telluride thin films by ion beam sputtering deposition”, Thin Solid Films, 520, 5245 (2012).
[39] J. Yang, R. Chen, X. Fan, S. Bao, W. Zhu, “Thermoelectric properties of silver-doped n-type Bi2Te3-based material prepared by mechanical alloying and subsequent hot pressing”, Journal of Alloys and Compounds, 407, 330 (2006).
[40] H. Huang, W. L. Luan, S. T. Tu, “Influence of annealing on thermoelectric properties of bismuth telluride films grown via radio frequency magnetron sputtering”, Thin Solid Films, 17, 3731 (2009).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code