Responsive image
博碩士論文 etd-0724116-132643 詳細資訊
Title page for etd-0724116-132643
論文名稱
Title
於鉭酸鋰基板上製備氮化鋁薄膜以應用於表面聲波元件
Fabrication of AlN thin film on LiTaO3 substrate and the application on SAW device
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
83
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-19
繳交日期
Date of Submission
2016-08-24
關鍵字
Keywords
表面聲波元件、鉭酸鋰、氮化鋁
SAW devices, LiTaO3, AlN
統計
Statistics
本論文已被瀏覽 5669 次,被下載 20
The thesis/dissertation has been browsed 5669 times, has been downloaded 20 times.
中文摘要
本研究使用氮化鋁薄膜沉積於鉭酸鋰基板上以研製雙壓電層表面聲波元件,並藉由調控濺鍍參數以獲得c軸優選取向之AlN薄膜。AlN薄膜之結晶特性及形貌結構經由SEM、XRD、AFM及Rocking curve分析後,可得到平坦表面、高結晶性、晶粒大小一致之AlN薄膜,其AlN薄膜最佳濺鍍參數為濺鍍功率270 W、濺鍍壓力5 mTorr、基板溫度300℃及氮氣分率60%。此外,本研究分別探討不同膜厚的AlN薄膜對表面聲波元件特性之影響。由實驗結果得知,隨著AlN薄膜的增厚,元件中心頻率由129.88 MHz提升至131.275 MHz,故推得元件整體之波速由4156.2 m/sec提升至4200.1 m/sec,其頻率溫度係數由-43.21 ppm/°C變為-54.65 ppm/°C。雖然表面聲波的波速會隨著AlN薄膜厚度而增加,但頻率溫度係數會變差,故在兩者之間需取個平衡點。
Abstract
In this study, surface acoustic wave (SAW) devices were fabricated by aluminum nitride (AlN) thin films deposited on lithium tantalite (LiTaO3) substrates. The highly c-axis oriented AlN thin films could be obtained by controlling the sputtering parameters and their crystalline characteristics and surface morphologies were measured by SEM, XRD, AFM and rocking curve analysis. The optimal deposition conditions of AlN thin films were RF power of 270W, sputtering pressure of 5mTorr, substrate temperature of 300°C and nitrogen concentration (N2/N2+Ar) of 60%, respectively.
In addition, the SAW devices with various thicknesses of AlN thin films were studied. Experimental results revealed that, the central frequency increased from 129.88 MHz (Vp=4156.2 m/sec) to 131.275 MHz (Vp=4200.1 m/sec), and the temperature coefficient of frequency (TCF) also changed from -43.21 ppm/°C to -54.65 ppm/°C as the thickness of AlN thin films increased. With thickness of AlN thin films increasing, the acoustic velocity of SAW devices were improved, but TCF became worse. Therefore, the balance should be found between these two tendencies.
目次 Table of Contents
中文審定書 i
英文審定書 ii
誌謝 iii
摘要 iv
Abstract v
目錄 vi
圖目錄 ix
表目錄 xii
第一章前言 1
1.1 通訊市場 1
1.2 表面聲波元件 2
1.3 研究內容 6
第二章理論分析 7
2.1 壓電理論 7
2.1.1 壓電效應 8
2.1.2 壓電材料 9
2.2 氮化鋁結構與特性 11
2.3 LiTaO3結構與特性 14
2.4 濺鍍原理 15
2.4.1 輝光放電 15
2.4.2 磁控濺鍍 17
2.4.3 射頻濺鍍 17
2.4.4 反應性濺鍍 18
2.5 薄膜沉積原理 19
2.6 表面聲波元件之理論、設計與特性 21
2.7 雷利波 23
2.8 表面聲波元件分類 24
2.8.1 表面聲波共振器 24
2.8.2 表面聲波濾波器 26
2.9 表面聲波元件參數性質 28
2.9.1 傳波波速 28
2.9.2 插入損失 28
2.9.3 機電耦合係數 30
第三章實驗 31
3.1 實驗流程 31
3.2 基板清洗 32
3.3 以反應性射頻磁控濺鍍沉積氮化鋁薄膜 34
3.4 以直流磁控濺鍍系統沉積鋁電極 37
3.5 黃光微影製程 39
3.6 薄膜分析 42
3.6.1 X-ray繞射分析 42
3.6.2 Rocking curve 44
3.6.3 掃描式電子顯微鏡(Scanning electron microscopy, SEM)分析 45
3.6.4 原子力顯微鏡 47
3.6.5 網路分析儀 48
第四章 結果與討論 49
4.1 氮化鋁薄膜特性分析 49
4.1.1 濺鍍功率之影響 49
4.1.2 濺鍍壓力之影響 53
4.2 氮化鋁沉積於鉭酸鋰基板上之Rocking curve及AFM分析 57
4.3 表面聲波元件之頻率響應 59
4.3.1 以LiTaO3研製SAW元件之頻率響應 59
4.3.2 以AlN/LiTaO3研製SAW元件之頻率響應 60
第五章 結論 63
參考文獻 65
參考文獻 References
[1] R. Colin Johnson, “TriQuint cracks top 10 among MEMs vendors” ,Electronic Engineering times, News & Analysis, 2011.
[2] 廖珮淳,“以AlN/Si3N4/Si結構製作第四代通訊用表面聲波元件”,國立中山大學電機工程學系碩士班學位論文,2013。
[3] L. Rayleigh, “On waves propagated along the plane surface of an elastic solid,” Proceedings London Mathematical Society, vol. 17, pp.4-11, 1885.
[4] R. M. White and F. W. Voltmer, “Direct piezoelectric coupling to eleastic waves,” Applied Physics Letters, vol. 7, pp.314-316, 1965.
[5] 沈靜怡,“Sezawa模態表面聲波共振器應用於人類免疫球蛋白E感測器之研究”,國立中山大學電機工程研究所碩士論文,2012。
[6] J. K. Elliott, R. L. Gunshor, R. F. Pierret and A. R. Day, “A wideband SAW convolver utilizing Sezawa waves in the metal/ZnO/SiO2/Si configuration,” Applied Physics Letters, vol. 32, pp.515-516, 1978.
[7] A. F. Belyanin, L. L. Bouilov, V. V. zhirnov, A. I. Kamenev,K. A. Kovalskij and B. V. Spitsyn, “Applications of Aluminum Nitride Films for Electronic Devices,” Diamond and Related Materials, vol. 8, pp. 369-372, 1999.
[8] M. Nakakuki, A. Shiono, I. Kobayashi, N. Tajima, T. Yamakami, R. Hayashibe, K. Abe, K. Kamimura, M. Obata and M. Miyamoto, "Characterization of Al-based insulating films fabricated by physical vapor deposition," Japanese Journal of Applied Physics, vol. 47, pp. 609-611, 2008.
[9] J. Ohta, H. Fujioka, M. Sumiya, H. Koinuma and M. Oshima, “Epitaxial growth of AlN on (La,Sr)(Al,Ta)O3 substrate by laser MBE,” Journal of Crystal Growth, vol. 225, pp. 73-78, 2001.
[10] H. P. D. Schenk, U. Kaiser, G. D. Kipshidze, A. Fissel, J. Krulich, H. Hobert, J. Schulze and W. Richter, “Growth of atomically smooth AlN films with a 5: 4 coincidence interface on Si (111) by MBE,” Materials Science and Engineering, vol. 59, pp. 84-87, 1999.
[11] V. G. Mansurov, A. Y. Nikitin, Y. G. Galitsyn, S. N. Svitasheva, K. S. Zhuravlev, Z. Osvath, L. Dobos, Z. E. Horvath and B. Pecz, “AlN growth on sapphire substrate by ammonia MBE,” Journal of Crystal Growth, vol. 300, pp. 145-150, 2007.
[12] K. S. Kao, C. C. Cheng and Y. C. Chen, “Synthesis of C-axis-oriented aluminum nitride films by reactive RF magnetron sputtering for surface acoustic wave,” Jpn. J. Appl. Phys., vol. 40, pp.4969-4973, 2001.
[13] M. B. Assouar, O. Elmazria, L. Le Brizoual and P. Alnot, “Reactive DC magnetron sputtering of aluminum nitride films for surface acoustic wave devices,” Diamond and Rlated Materials, vol. 11, pp. 413-417, 2002.
[14] C. M. Yang, K. Uehara, S. K. Kim, S. Kameda, H. Nakase and K. Tsubouchi, “Highly C-Axis-Oriented AlN Film Using MOCVD for 5GHz-Band FBAR Filter,” Ultrasonics, 2003 IEEE Symposium, vol. 1, pp. 170-173, 2003.
[15] M. A. Mastro, C. R. Eddy Jr., D. K. Gaskill, N. D. Bassim, J. Casey, A. Rosenberg, R. T. Holm, R. L. Henry and M. E. Twigg, “MOCVD growth of thick AlN and GaN superlattice structures on Si substrates,” Journal of Crystal Growth, vol. 287, pp. 610-614, 2006.
[16] 高國陞,“鈮酸鋰基板上沉積氮化鋁薄膜及其表面聲波元件之應用”,國立中山大學電機工程研究所碩士論文,1999。
[17] J. Curie and P. curie, “Development by Pressure of Polar Electricity in Hemihedral Crystals with Inclined faces,” Bulletin de la Société minéralogique de France, vol. 3, pp. 90-93, 1880.
[18] W. G. Hankel and Abh. Sachs, “Piezoelectric,” Applied Sciences, vol. 12, pp. 547, 1881.
[19] 吳朗,“電子陶瓷:壓電陶瓷”,全欣資訊,pp. 7, 1994.
[20] 劉吉卿,“以兩階段濺鍍法沉積氧化鋅壓電薄膜於薄膜體聲波共振器之應用”,國立中山大學電機工程研究所碩士論文,2006。
[21] Q. X. Su, P . Kirby, E. Komuro, M. Imura and Q. Zhang, “Whatmore, R. Thin-filmbulk acoustic resonators and filters using ZnO and lead-zirconium-titanatethinfilms,” Microwave Theory and Techniques, IEEE Transactions on, pp. 769-778, 2001.
[22] 彭冠庭,“以IDT/ZnO/AlN/Si3N4/Si結構研製雙頻表面聲波元件”,國立中山大學電機工程研究所碩士論文,2014。
[23] H. H. Kim, B. K. Ju, Y. H. Lee, S. H. Lee, J. K. Lee and S. W. Kim, “A noble suspended type thin film resonator (STFR) using the SOI technology,” Sensors and Actuators A: Physical, vol. 89, pp. 255-258, 2001.
[24] P. B. Kirby, M. D. G. Potter, C. P. Williams and M. Y. Lim, “Thin film piezoelectric property considerations for surface acoustic wave and thin film bulk acoustic resonators,” Journal of the European Ceramic Society, vol. 23, pp. 2689-2692, 2003.
[25] 顏豐明,“高熱傳導率氮化鋁基板材料之簡介”,材料與社會,pp. 45-46, 1993。
[26] 黃肇瑞,“陶瓷技術手冊 (下 ) ”,pp. 777,1995。
[27] 鍾崇仁,“使用二氧化矽薄膜作為質子交換鈮(鉭)酸鋰表面聲波溫度補償之研究”,國立中山大學電機工程研究所碩士論文,2003。
[28] 施敏、張俊彥,“半導體元件之物理與技術”,儒林,1990。
[29] R. W. Berry, P. M. Hall and M. T. Harris, “Thin film technology,” Van Nostrand, New York, 1968.
[30] J. L. Vossen and W. Kern, “Thin Film Process”, Academic Press, pp. 134, 1991.
[31] E. Janczak-Bienk, H. Jensen and G. Sørensen, “The influence of the reactive gas flow on the properties of AIN sputter-deposited films,” Materials Science and Engineering: A, vol. 140, pp. 696-701, 1991.
[32] I. Petrov, P. B. Barna, L. Hultman and J. E. Greene, “Microstructural evolution during film growth,” Journal of Vacuum Science and Technology, vol. 21, pp. S117-S128, 2003.
[33] C. K. Campbell, “Surface Acoustic Wave Devices for Mobile and Wireless communications,” Academic Press, New York, 1998.
[34] 李其源,“蝕刻晶片厚度即時監控之新穎方法”,國立台灣大學機械工程研究所博士論文,2004。
[35] 蕭价伶,“非接觸式光學檢測應用於FPW元件量測技術”,國立中央大學光電研究所碩士論文,2005。
[36] 盧建彰,“應用微帶線結構於表面聲波濾波器之研究”,國立成功大學微電子所碩士論文,2003。
[37] S. H. Tsai, I. T. Tang, M. P. Houng and Y. H. Wang, “A Design Rule of Surface soustic Wave Filter,” Journal of Marine Science and Engineering, vol. 34, pp. 231-238, 2002.
[38] J. W. Gardner, V. K. Varadan and O. O. Awadelkarim, “Microsensors, MEMS, and smart devices,” John Wiley & Sons, 2001.
[39] C. Campbell and J.C. Burgess, “Surface acoustic wave devices and their signal processing applications” ,Soc, vol. 89, pp. 1479-1480, 1991.
[40] R. Ro, S. Y. Chang, R. C. Hwang and D. H. Lee, “Identification of ionic solutions using a SAW liquid sensor,” Part A: Physical Science and Engineering, vol 23, pp. 810-815, 1999.
[41] 朱慕道,表面聲波元件與應用,新電子期刊,p183-186, 1994。
[42] C. Campbell,“Surface acoustic wave devices for mobile and wireless communications,” Academic Press, pp. 108-113, 1989.
[43] R. Pallas-Areny and J. G. Webster, “Sensors & signal conditioning,” Recherche, vol. 67, pp. 2, 2000.
[44] C. K. Campbell, “Surface Acoustic Wave Devices for Mobile and Wireless Communications,” pp. 161-168, 1997.
[45] 簡俊謙,“表面聲波元件之設計及其在寬頻振盪器之應用”,國立交通大學電信工程研究所碩士論文,2000。
[46] C. K. Campbell, “Surface Acoustic Wave Devices for Mobile and Wireless Communications,” pp. 395-410, 1997.
[47] H. Matthews, “Surface Wave Filters Design, Construction, and Use,” John Wiley& sons, pp. 20, 1979.
[48] A. J. Slobodnik, J. R. Thomas, L. Szabo and K. R. Laker, “Miniature Surface Acoustic wave Filter,” Proceedings of the IEEE, vol. 67, 1979.
[49] 劉彥宏,“以雙壓電層研製固態微型諧振器”,國立中山大學電機工程學系博士班學位論文,2015。
[50] 葉威村,“製作於矽基板之雙埠表面聲波紫外光感測元件”,樹德科技大學電腦與通訊研究所碩士論文,2013。
[51] B. Y. Shew, J. L. Huang and D. F. Lii, “Effects of r.f. bias and nitrogen flow rates on the reactive sputtering of TiA1N films,” Thin Solid films, vol. 293, pp. 212-219, 1997.
[52] 高國陞,“表面聲波元件之頻率及溫度特性之研究”,國立中山大學電機工程學系博士班學位論文,2004。
[53] R. S. Naik, J. J. Lutsky, R. Reif, C. G. Sodini, A. Becker, L. Fetter, H. Huggins, R. Miller, J. Pastalan, G. Rittenhouse and Y. H. Wong, “Measurements of the bulk, C-axis electromechanical coupling constant as a function of AlN film quality,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control , vol. 47, pp. 292-296, 2000.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code