Responsive image
博碩士論文 etd-0724116-140731 詳細資訊
Title page for etd-0724116-140731
論文名稱
Title
應用於白光發光二極體之磷酸系NaSrPO4 : Re (Re=Tb3+, Sm3+, Tb3+ /Ce3+)螢光材料之研究
Research on NaSrPO4: Re (Re=Tb3+, Sm3+, Tb3+ /Ce3+) phosphate based phosphors applied in white light LED
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
118
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-27
繳交日期
Date of Submission
2016-08-24
關鍵字
Keywords
螢光粉、磷酸、熱穩定、微波、燒結、助熔劑
sintering, flux., phosphate, phosphor, thermal stability, microwave
統計
Statistics
本論文已被瀏覽 5828 次,被下載 39
The thesis/dissertation has been browsed 5828 times, has been downloaded 39 times.
中文摘要
1996 年,日亞化學的中村修二(Nakamura)研究員 等人成功製備出白光發光二極體 (White - light emitting diode, W-LED),其利用混光之方式以藍光發光二極體元件搭配黃光摻鈰之釔鋁石榴石(cerium doped yttrium aluminum garnet, YAG:Ce3+)。雖然此種方式所製備之W-LED之發光效率佳,但仍有藍光效率轉換不佳、白光的演色性不高及所使用的YAG:Ce3+螢光粉之熱穩定性較差之問題。近年來,在高功率LED的發展之下,所產生之問題即為熱管理。若無法有效處理熱問題,發光效率將有莫大影響。為改善上述之缺點,需提出一種改善熱穩定之方法。有關於熱的問題,由於氧化物中的磷酸鹽( ABPO4,A=Li+, Na+, K+, Rb+, Cs+,B=Mg2+, Ca2+, Sr2+, Ba2+ )為主體晶格之螢光粉係為一具有共價性質之三維剛性結構,極適合載子之傳輸,亦即,磷酸鹽系列之螢光粉之熱穩定相當優異。這也就是說,以磷酸鹽為主體晶格之螢光粉材料為一解決高功率W-LED熱問題之一可行且有效之方式。因此,在本文中,我們選擇NaSrPO4作為主體晶格,並選擇三個不同的稀土元素激活劑,分別為Tb,Sm和Tb/ Ce,分別採用傳統燒結和微波燒結技術,並討論它們的微觀結構和光致發光特性。實驗結果顯示,透過使用微波輔助燒結可以降低製程時間,和所需的能量以生產高品質的螢光體。此外,助熔劑(flux)的使用改善了燒結機制,因而提高了螢光體的光致發光特性。
Abstract
In 1996, White-light emitting diode (W-LED) was fabricated by using the blue LED chip and yellow emitting phosphor such as cerium doped yttrium aluminum garnet (YAG: Ce3+) by Nichia. Although the W-LED has high brightness and efficiency, it still has some disadvantages, such as poor color rendering due to the lack of red component, low reproducibility, and the prepared phosphor has low thermal stability. Recently, a problem such as heat generated due to the high power LED must be solved. That is to say, if heat problem cannot be improved effectively, luminous efficiency will be affected. In order to overcome the above shortcomings, it is necessary to take a way to improve thermal stability. A compound, the phosphate oxide ( ABPO4,A= alkaline metals (Li , Na , K , Rb , Cs ), B=alkaline earth metals (Mg2+, Ca2+, Sr2+, Ba2+ )), has been selected as the host lattice due to three dimensional rigid structure. The phosphate oxide is very suitable for carrier transport, and the thermal stability of the phosphate series is quite outstanding. Using phosphate as host lattice in the phosphor material can solve the thermal problem of the high power w-LED. Thus, in this thesis, we choose NaSrPO4 as a host, and choose three different rare earth elements as activator, which are Tb, Sm, and Tb/Ce, respectively, using conventional sintering and microwave assisted sintering technique and their microstructure and photoluminescent properties of NaSrPO4: Re (Re=Tb, Sm, and Tb/Ce) were discussed. The experimental results showed the phosphors prepared by using microwave assisted sintering can reduce the process time, and required energy for the high quality production of phosphors. In addition, using fluxes indeed improve the sintering process and to enhance the photoluminescent properties of the phosphors.
目次 Table of Contents
中文摘要 i
Abstract iii
Contents iv
Table Captions vii
Figure Captions viii
Chapter 1 Introduction 1
1-1 Brief introduction of the phosphors 1
1-2 The structure of ABPO4 7
1-2-1 The structure of NaSrPO4 8
1-3 Motivation of this study 9
Chapter 2 Basic theory 11
2-1 Luminescence mechanism 11
2-1-1 Category and application of the phosphor 11
2-1-2 Fluorescence and phosphorescence theory 11
2-2 Emission theory and phosphor process 13
2-2-1 Absorption and excitation of the phosphor 13
2-2-2 Fluorescence and nonradiative transfer 15
2-2-3 Luminescence property of the rare earth elements 16
2-3 Properties of phosphors 18
2-3-1 Poisoning 18
2-3-2 Concentration quenching effect 19
2-3-3 Thermal quenching effect 19
2-4 Solid-state sintering method 20
2-5 Microwave-assisted sintering method 23
Chapter 3 Experimental procedures 28
3-1 Experiment materials 28
3-2 Experiment procedures 28
3-2-1 Fabrication of NaSrPO4:Tb3+ phosphors using conventional sintering 29
3-2-2 Fabrication of NaSrPO4:Tb3+ phosphors using microwave assisted sintering 30
3-2-3 Fabrication of NaSrPO4:Sm3+ phosphors using conventional sintering 31
3-2-4 Fabrication of NaSrPO4:Sm3+ phosphors using microwave assisted sintering31
3-2-5 Fabrication of NaSrPO4:Tb3+:Ce3+ phosphors using microwave assisted sintering 32
3-2-6 Fabrication of NaSrPO4:Tb3+ phosphors with flux using conventional sintering 32
3-3 Measurement system 33
3-3-1 X-ray Diffraction (XRD) 33
3-3-2 Scanning Electron Microscope (SEM) 34
3-3-3 Photoluminescence Spectrometer (PL) 35
Chapter 4 Results and discussion 37
4-1 Preparation of NaSrPO4:Re(Tb3+, Sm3+, Tb3+ /Ce3+ )phosphors and their propertie37
4-1-1 Microstructure, luminescence and thermal stability properties of NaSrPO4:Tb3+ phosphors with various doping concentrations prepared using conventional solid-state sintering 37
4-1-2 Effect of different sintering method on the microstructure and photoluminescent properties of NaSrPO4:Tb3+ phosphors 46
4-1-3 New NaSrPO4:Sm3+ phosphor as orange-red emitting material 59
Concentration(x) 67
4-1-4 Improving crystalline morphology and photoluminescent properties of NaSrPO4:Sm3+ phosphors prepared by microwave assisted sintering 70
4-1-5 Crystal structure effect on the luminescent properties of Tb3+, Ce3+ co-doped NaSrPO4 Phosphor prepared using microwave sintering 75
4-1-6 Effects of NH4Cl flux on microstructure and luminescent characteristics of NaSrPO4:Tb3+ phosphors 84
Chapter 5 Conclusion 92
Reference 94
參考文獻 References
[1]蘇勉增,吳世康,發光材料,四卷。
[2]J.S. Kim, P.E. Jeon, Y.H. Park, J.C. Choi, H.L. Park, G.C. Kim, T.W. Kim, White-light generation through ultraviolet-emitting diode and white-emitting phosphor, Appl Phys Lett, 85, 3696, 2004.
[3]J.K. Sheu, S.J. Chang, C.H. Kuo, Y.K. Su, L.W. Wu, Y.C. Lin, W.C. Li, J.M. Tsai, G.C. Chi, R.K. Wu, White-light emission from near UV InGaN-GaN LED chip precoated with blue/green/red phosphors, IEEE Photonic Tech L, 15, 18, 2003.
[4]陳皇宇,微波輔助燒結製備應用於白光LED之紅光及綠光螢光粉,博士論文,國立成功大學,2013。
[5]謝煜弘,電子材料,三版,新文京開發,2005。
[6]Fred Schubert, Light-Emitting Diodes, The press syndicate of the university of Cambridge, UK. 2003.
[7]Skoog, Holler, Nieman, Principles of Instrumental analysis, fifth edition, Saunders college Publishing, 1992.
[8]陳建良,不同活化劑摻雜對KSrPO4主體晶格之微結構與光學性質之研究,碩士論文,國立屏東科技大學,2013。
[9]Y. Chen, J. Wang, X. Zhang, G. Zhang, M. Gong, Q. Su, An intense green emitting LiSrPO4:Eu2+, Tb3+ for phosphor-converted LED, Sens. Actuators, B 148, 259, 2010.
[10]E. Radkov, R. Bompiedi, A. M. Srivastava, A. A. Setlur, C. Becker, White light with UV LEDs, Proc. SPIE 2004 5187, 171, 2004.
[11]J. S. Kim, P. E. Jeon, J. C. Choi, H. L. Park, Emission color variation of M2SiO4:Eu2+ (M=Ba, Sr, Ca) phosphors for light-emitting diode, Solid State Commun. 133, 187, 2005.
[12]S. Kubota, H. Hara, H. Yamane, M. Shimada, Luminescent property of Eu3+ in a new compound, (Sr0.99La1.01)Zn0.99O3.495, J. Electrochem. Soc. 149, H68, 2002.
[13]S. Kubota, R. L. Stanger, Y. Suzuyama, H. Yamane, M. Shimada, Luminescent properties of Eu3+ in defect apatite, Sr3La6(SiO4)6, J. Electrochem. Soc. 149, H134, 2002.
[14]K. Tadatomo, H. Okagawa, Y. Ohuchi, Tsunekawa, T. Jyouichi, Y. Imada, M. Kato, H. Kudo, T. Taguchi, High output power InGaN ultraviolet light-emitting diodes fabricated on patterned substrates using metalorganic Vapor Phase Epitaxy, Phys. Status Solidi A 188, 121, 2001.
[15]K. Srinivasu, R. S. Ningthoujam, V. Sudarsan, R. K. Vatsa, A. K. Tyagi, P. Srinivasu, A. Vinu, Eu3+ and Dy3+ doped YPO4 nanoparticles: Low temperature synthesis and luminescence studies, J. Nanoscience Nanotechnology 9, 3034, 2009.
[16]Z. Yang, G. Yang, S. Wang, J. Tian, X. Li, Q. Guo, G. Fu, A novel green-emitting phosphor NaCaPO4:Eu2+ for white LEDs, Mater. Lett. 62, 1884, 2008.
[17]C. C. Lin, R. S. Liu, Y. S. Tang, S. F. Hu, Full-Color and thermally stable KSrPO4:Ln, Ln=Eu, Tb, Sm phosphors for white-light-emitting diodes, J. Electrochem. Soc. 155, J248, 2008.
[18]Y. J. Park, Y. J. Kim, Blue emission properties of Eu-doped CaAl2O4 phosphors synthesized by a flux method, Mater. Sci. Eng. B 146, 84, 2008.
[19]W. Yuhu, W. Zhilong, Characterization of Y2O2S:Eu3+, Mg2+, Ti4+ Long-lasting phosphor synthesized by flux method, J. Rare Earths 24, 25, 2006.
[20]S. Zhang, W. Zhuang, C. Zhao, Influence of flux on properties of Y3Al5O12:Ce phosphor, J. Chin. Rare Earth Soc. 20, 605, 2002.
[21]L. Ma, J. Hu, G. Wan, Effect of flux on YAG: Ce phosphors prepared by solid-state reactions, Chin. J. Lumin. 27, 348, 2006.
[22]A. Nag, T. R. N. Kutty, Role of B2O3 on the phase stability and long phosphorescence of SrAl2O4:Eu, Dy, J. Alloys Compd. 354, 221, 2003.
[23]F. Bondioli, A.B. Corradi, T. Manfredini, Modification of the solid-state structure of bis(1-hydroxy-2(1H)-pyridinethiolato-S2,O)zinc(II): synthesis and characterization of a molecular solid solution incorporating 3-hydroxy-4-methyl-2(3H)-thiazolethione, Chem. Mater. 12, 324, 2002.
[24]M. Kottaisamy, R. Jagannathan, R. P. Rao, M. Avudaithai, L. K. Srinivasan, V. Sundaram, On the formation of flux Grown  Y2O2S  : Eu3+  Red Phosphor, J. Electrochem. Soc. 142, 3205, 1995.
[25]H. J. Lee, K. P. Kim, G. Y. Hong, J. S. Yoo, The effect of flux materials on the physical and optical properties of Eu3+-activated yttrium oxide phosphors, J. Lumin. 130, 941, 2010.
[26]B. K. Park, S. S. Lee, J. K. Kang, S. H. Byeon, Single-step solid-state synthesis of CeMgAl11O19:Tb phosphor, Bull. Korean Chem. Soc. 28, 1467, 2007.
[27]S. H. Lee, H. Y. Koo, D. S. Jung, J. M. Han, Y. C. Kang, Effects of BaF2 flux on the properties of yellow-light-emitting terbium aluminum garnet phosphor powders prepared by spray pyrolysis, Optic. Mater. 31, 870, 2009.
[28]Z. Y. Feng, W. D. Zhuang, X. W. Huang, X. F. Wen, Y. S. Hu, Effect of MgF2-H3BO3 flux on the properties of (Ce, Tb)MgAl11O19 phosphor, J. Rare Earths 28, 351, 2010.
[29]楊茹媛、彭昱銘、蘇炎坤,白光LED用之螢光粉材料之基本原理與技術發展,電子月刊,197期,第140-157頁,2011。
[30]K. Uematsu, K. Toda, M. Sato, Preparation of YVO4:Eu3+ phosphor using microwave heating method, J. Alloys. Compd. 389, 209, 2005.


[31]R.Y. Yang, H.Y. Chen, C.M. Hsiung, S.J. Chang, Crystalline morphology and photoluminescent properties of YInGe2O7:Eu3+ phosphors prepared from microwave and conventional sintering, Ceram. Int., 37, 749, 2011.
[32]H. Yang, J. Shi, M. Gong, A novel approach for preparation of Zn2SiO4:Tb nanoparticles by sol-gel-microwave heating, J. Mater. Sci. 40, 6007, 2005.
[33]K. Ming, L. Jun, Y. Guangfu, S. Rong, Preparation and characterization of Eu3+-doped CaCO3 phosphor by microwave synthesis, Rare Metals, 28, 439, 2009.
[34]A. K. Gulnar, V. Sudarsan, R. K. Vatsa, C. Hubli, U. K. Gautam, A. Vinu, A. K. Tyagi, CePO4:Ln (Ln) Tb3+ and Dy3+) nanoleaves incorporated in silica sols, Crystal Growth & Design 9, 2451, 2009.
[35]K. Gulnar, V. Sudarsan, R. K. Vatsa, T. Sakuntala, A. K. Tyagi, U. K. Gautam, A. Vinu, Nucleation sequence on the cation exchange process between Y0.95Eu0.05PO4 and CePO4 nanorods, Nanoscale 2, 2847, 2010.
[36]Y. L. Tung, J. H. Jean, Chemical synthesis of a blue-emitting NaSr1-xPO4:Eux phosphor powder, J Am Ceram Soc, 92, 1860, 2009.
[37]J.Y Sun, X.Y. Zhang, J.C. Zhu, Y.N. Sun, H.Y. Du, Luminescence Properties of Novel Red Phosphor NaSrPO4:Eu3+, Adv. Mater. Res. 502, 128, 2012.
[38]Joint Committee on Powder Diffraction Standards (JCPDS, no.33-1282)
[39]Y. K. Su, Y. M. Peng, R. Y. Yang, J. L. Chen, Effects of NaCl flux on microstructure and luminescent characteristics of KSrPO4:Eu2+ phosphors, opt. mater. 34, 1598, 2012.
[40]Y. M. Peng, Y. K. Su, R. Y. Yang, The charge transfer transition phenomenon and microstructure of Eu3+-doped NaCaPO4 phosphors sintered with flux via solid-state reaction, Mater. Res. Bull. 48, 1946, 2013.
[41]R. Y. Yang, Y. M. Peng, Y. K. Su, Novel red emitting microwave-assisted sintered LiSrPO4:Eu3+ phosphors for application in near-UV WLEDs, IEEE J. Electronic Mater. 42, 2910, 2013.
[42]R. Y. Yang, Y. M. Peng, H. L. Lai C. J. Chu, B. Chiou, Y. K. Su, Effect of the different concentrations of Eu3+ ions on the microstructure and photoluminescent properties of Zn2SiO4:xEu3+ phosphors and synthesized with TEOS solution as silicate source, Opt. Mater. 35, 1719, 2013.
[43]K. N. Shinde, S. J. Dhoble, A novel reddish-orange phosphor, NaLi2PO4:Eu3+, Lumin. 28, 93, 2013.
[44] 陳彥銘,NaCaPO4: RE3+ ( RE = Eu, Sm )螢光粉之製備及其特性之研究,碩士論文,國立屏東科技大學,2012。
[45]D. Jia, W. M. Yen, Enhanced VK3+ center afterglow in MgAl2O4 by doping with Ce3+, J. Lumin. 101, 115, 2003.
[46]洪佳瑋,近UV光激發的LiSrPO4螢光粉的製備與其封裝特性,碩士論文,崑山科技大學,2013。
[47]賴炫霖,以固態反應法製備LiBaPO4:Re3+ (Re3+:Pr3+,Ce3+)螢光粉之微結構與發光特性之研究,碩士論文,國立屏東科技大學,2013。
[48]X.Y. Yang, J.Liu, H. Yang, X.B. Yu, Y.Z. Guo, Y.Q. Zhou, Synthesis and characterization of new red phosphors for white LED applications, J. Mater. Chem. 19, 3771, 2009.
[49]C.H. Lee, Y.C. Kang, K.Y. Jung, J.G. Choi, Phosphor layer formed from the Zn2SiO4 : Mn phosphor particles with spherical shape and fine size, Mat. Sci. Eng. B Solid 117, 210, 2005.
[50]T. Sanada, Y. Wakai, H. Nakashita, T. Matsumoto, C. Yogi, S. Ikeda, Preparation of Eu3+-doped Ta2O5 phosphor particles by sol-gel method, Opt. Mater. 33, 164, 2010.
[51]D. A. Skoog, J. J. Leary, Principles of Instrumental analysis, fifth edition, Saunders college Publishing, 1992.
[52]G. Blasse, B. C. Grabmaier, Luminescent materials, Springer Verlag, Berlin Heidelberg, 13, 1994.
[53]E. Fred Schubert, Light-Emitting Diodes, The press syndicate of the university of Cambridge, UK, 2003.
[54]J. A. DeLuca, An introduction to luminescence in inorganic solids, J. Chem. Educ. 57, 541, 1980.
[55]M. N. Rahaman, Sintering technology, New York: Marcel Dekker, 1990.
[56]K.E. Haque, Microwave energy for mineral treatment processes—a brief review, Int. J. Miner. Process. 57, 1, 1999.
[57]陳嘉民,微波輔助溶液燃燒合成法製備螢光粉體,碩士論文,國立成功大學, 2006。
[58]W.H. Sutton, Microwave Processing of Ceramics, Am. Ceram. Soc. Bull. 68, 376, 1989.
[59]D. E. Clark, Microwave processing of materials, Annu. Rev. Mater. Sci., 26, 299, 1996.
[60]P. D. Ramash, D. Brandom, L. Schachter, Use of Partially Oxidized SiC Particle Bed for Microwave Sintering of Low Loss Ceramics, Mater. Sci. Eng. A 266, 211, 1999.
[61]M. H. Weng, R. Y. Yang, Y. M. Peng, J. L. Chen, Yellowish green-emitting KSrPO4:Tb3+ phosphors with various doping concentrations prepared by using microwave assisted sintering, Ceram. Int. 38, 1319, 2012.
[62]C. C. Lin, Y. S. Tang, S. F. Hu, R. S. Liu, KBaPO4: Ln (Ln= Eu, Tb, Sm) phosphors for UV excitable white light-emitting diodes, Journal of Luminescence, 129, 1682 (2009).
[63]S.Y. Zhang, Y. Nakai, T. Tsuboi, Y.L. Huang, H.J. Seo, Inorg Chem, 502, 897 (2011).
[64]Y.M. Peng, Y.K. Su, R.Y. Yang, The charge transfer transition phenomenon and microstructure of Eu3+-doped NaCaPO4 phosphors sintered with NH4Cl flux via solid-state reaction, Mater. Res. Bull. 48, 1946, 2013.
[65]D. Xihua, Z. Weiren, S. Enhai, D. Linlin, F. Xiabing, M. Huachu, Microstructures and properties of SnZn-xEr lead-free solders, J. Rare Earths, 30, 739, 2012.
[66]D.K. Yim, H.J. Song, I.S. Cho, J.S. Kim, K.S. Hong, A novel blue-emitting NaSrPO4:Eu2+ phosphor for near UV based white light-emitting-diodes, Mater Lett, 65, 1666, 2011.
[67]J.Y. Sun, J.C. Zhu, X.Y. Zhang, Z.G. Xia, H.Y. Du, Luminescent properties and energy transfer of double-emitting NaSrPO4:Eu2+,Tb3+ phosphor for near-UV white LEDs, J. Lumin. 132, 2937, 2012.
[68]Y. Li, H.R. Li, B.T. Liu, J. Zhang, Z.Y. Zhao, Z.G. Yang, Warm-white-light emission from Eu2+/Mn2+-coactivated NaSrPO4 phosphor through energy transfer, J. Phys. Chem. Solids 74, 175, 2013.
[69]Y. S. Chang, F.M. Huang, Y. Y. Tsai, L. G. Teoh, Synthesis and photoluminescent properties of YVO4: Eu3+ nano-crystal phosphor prepared by Pechini process J. Lumin, 129, 1181, 2009.

[70]F. Wang, H.W. Song, G.H. Pan, L.B. Fan, B.A. Dong, L.N. Liu, X. Bai, R.F. Qin, X.G. Ren, Z.H. Zheng, S.Z. Lu, Luminescence properties of Ce3+and Tb3+ ions codoped strontium borate phosphate phosphors, J. Lumin, 128, 2013, 2008
[71]C.H. Liang, Y.C. Chang, Y.S. Chang, Synthesis and photoluminescence characteristics of color-tunable BaY2ZnO5:Eu3+ phosphors, Appl. Phys. Lett. 93, 211902, 2008.
[72]H.Y. Chen, R.Y. Yang, S.J. Chang, Improving crystalline morphology and photoluminescent properties of BaY2ZnO5:Eu3+ phosphors prepared using microwave assisted sintering, Mater. Lett. 64, 2548, 2010.
[73]H.Y. Chen, M.H. Weng, S.J. Chang, R.Y. Yang, Preparation of Sr2SiO4:Eu3+ phosphors by microwave-assisted sintering and their luminescent properties, Ceram. Int. 38, 125, 2012.
[74]R.Y. Yang, C.T. Pan, K.H. Chen, C.Y. Hung, Microstructure, luminescence and thermal stability properties of NaSrPO4:Tb3+ phosphors with various doping concentrations prepared using conventional solid-state sintering, Opt. Mater. 35, 2183, 2013.
[75]G.C. Kim, H.L. Park, T.W. Kim, Emission color tuning from blue to green through cross-relaxation in heavily Tb3+-doped YAlO3, Mater. Res. Bull. 36, 1603, 2001.
[76]G. Blasse, Energy Transfer in Oxidic Phosphors, Philips Res. Rep. 24, 131, 1969.
[77]Z.C. Wu, J. Shi, J. Wang, M.L. Gong, Q. Su, A novel blue-emitting phosphor LiSrPO4: EU2+ for white LEDs, J. Solid State Chem. 179, 2356, 2006.
[78]J.Y. Sun, X.Y. Zhang, Z.G. Xia, H.Y. Du, Synthesis and luminescence properties of novel LiSrPO4:Dy3+ phosphor, Mater. Res. Bull. 46, 2179, 2011.

[79]L. G. Vanuitert, An empirical relation fitting the position in energy of the lower d-band edge for Eu2+ OR Ce3+ in various compounds, J. Lumin. 29, 1, 1984
[80]D. L. DEXTER, A Theory of Sensitized Luminescence in Solids, J. Chem. Phys. 21, 836, 1953.
[81]B. K. Grandhe, V. R. Bandi, K. Jang, S. S. Kim, D. S. Shin, Y. I. Lee, J. M. Lim, T. Song, Reduction of Eu3+ to Eu2+ in NaCaPO4:Eu phosphors prepared in a non-reducing atmosphere, J. Alloys Compd. 509, 7937, 2011.
[82]Y. C. Li, Y. H. Chang, Y. F. Lin, Y. S. Chang, Y. J. Lin, Synthesis and luminescent properties of Ln3+ (Eu3+, Sm3+, Dy3+)-doped lanthanum aluminum germanate LaAlGe2O7 phosphors, J. Alloys Compd. 439, 367, 2007.
[83]J. Y. Sun, X. Y. Zhang, Z. G. Xia, H. Y. Du, Luminescent properties of LiBaPO4:RE (RE = Eu2+, Tb3+, Sm3+) phosphors for white light-emitting diodes, J. Appl. Phys. 111, 013101, 2012.
[84] J. H. Yum, S. Y. Seo, S. Lee, Y. E. Sung, Y3Al5O12: Ce0.05 Phosphor Coatings on Gallium Nitride for White Light Emitting Diodes, J. Electrochem. Soc. 150, H47, 2003.
[85]V. Pankratov, A. I. Popov, A. Kotlov, C. Feldmann, Luminescence of nano- and macrosized LaPO4:Ce,Tb excited by synchrotron radiation, Opt. Mater. 33, 1102, 2011.
[86]C. M. Ouyang, S. Ma, Y. Rao, X. M. Zhou, X. Z. Zhou, Y. X. Li, LiZnPO4:Tb3+, Ce3+ green phosphors with high efficiency, J. Rare. Earth. 30, 637, 2012.
[87]J. Y. Sun, X. Y. Zhang, Z. G. Xia, H. Y. Du, Luminescent Properties and Energy Transfer of Ce3+,Tb3+ Co-Doped NaBaPO4 Phosphor, J. Electrochem. Soc. 158, J368, 2011
[88]N. Guo, Y. H. Song, H. P. You, G. A. Jia, M. Yang, K. Liu, Y. H. Zheng, Y. J. Huang, H. J. Zhang, Optical Properties and Energy Transfer of NaCaPO4:Ce3+,Tb3+ Phosphors for Potential Application in Light-Emitting Diodes, Eur. J. Inorg. Chem. 29, 4636, 2010
[89]J. Dhanaraj, R. Jagannathan, T. R. N. Kutty, C. H. Lu, Photoluminescence characteristics of Y2O3:Eu3+ nanophosphors pPrepared using sol-gel thermolysis, J. Phys. Chem. B 105, 11098, 2001.
[90]W. J. Park, M. K. Jung, T. Masaki, S. J. Im, D. H. Yoon, Characterization of YVO4:Eu3+, Sm3+ red phosphor quick synthesized by microwave rapid heating method, Mater. Sci. Eng. B 146, 95, 2008.
[91]Y. M. Peng, Y. K. Su, R. Y. Yang, Crystal structure and luminescent properties of KSrPO4:Tb3+:Ce3+ phosphors prepared by using microwave assisted sintering, AM-FPD '12, 87, 2012.
[92]K. H. Chen, M. H. Weng, C. T. Pan, R. Y. Yang, Effect of different sintering method on the microstructure and photoluminescent properties of NaSrPO4:Tb3+ phosphors, Powder Technol. 288, 117, 2016.
[93]Y. Pu, K. Tang, D. C. Zhu, T. Han, C. Zhao, L. L. Peng, Synthesis and Luminescence Properties of (Y, Gd)(P, V)O4:Eu3+,Bi3+ Red Nano-phosphors with Enhanced Photoluminescence by Bi3+, Gd3+ Doping, Nano-Micro Lett. 5, 117, 2013.
[94]S. D. Cheng, C. H. Kam, S. Buddhudu, Enhancement of green emission from Tb3+:GdOBr phosphors with Ce3+ ion co-doping, Mater. Res. Bull. 36, 1131, 2001
[95]M.T. Jose, A.R. Lakshmanan, Ce3+ to Tb3+ energy transfer in alkaline earth (Ba, Sr or Ca) sulphate phosphors, Opt. Mater. 24, 651, 2004.
[96]K. Y. Jung, H. W. Lee, Enhanced luminescent properties of Y3Al5O12:Tb3+,Ce3+ phosphor prepared by spray pyrolysis, J. Lumin. 126, 469, 2007.
[97]G. Zhu, Z. Ci, Q. Wang, Y. Shi, Y. Wang, Full-color emission generation from single phased phosphor Sr10[(PO4)5.5(BO4)0.5](BO2): Ce3+, Mn2+, Tb3+ for white light emitting diodes, Opt. Mater. Express 3, 1810, 2013.
[98]T. T. Lai, C. C. Chang, C. Y. Yang, S. Das, C. H. Lu, Influence of Bi2O3 flux in the structural and photoluminescence properties of SrAl2O4:Eu2+ phosphors, Ceram. Int. 39, 159, 2013.
[99]H. Y. Chen, R. Y. Yang, S. J. Chang, Y. K. Yang, Microstructure and photoluminescent properties of Sr2SiO4:Eu3+ phosphors with various NH4Cl flux concentrations, Mater. Res. Bull. 47, 1412, 2012.
[100]H. Jiao, X. Gao, F. Wang, A. Wu, T. Han, Self-assembled Y2SiO5 superstructures: A high temperature method with mixed flux, J. Alloys Compd. 493, 427, 2010.
[101]H.F.Wang, G. Z. Xing, X.Y.Wang, X.G.Bai, L.Zhang, S.Li, Tailoring photoluminescence in strontium aluminate phosphors using fluxing agent and activators: Rational synthesis via afacile microwave-assisted method, Mater. Sci. Semicond. Process. 27, 1007, 2014.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code