Responsive image
博碩士論文 etd-0724117-155735 詳細資訊
Title page for etd-0724117-155735
論文名稱
Title
以Irgacure 784/PEGPEA製作全像儲存元件所需之參數及其特性分析
Characteristics of Holographic Materials Using Irgacure 784/PEGPEA
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
82
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-06-27
繳交日期
Date of Submission
2017-08-30
關鍵字
Keywords
繞射效率、角度選擇性、厚度、感光高分子、全像照片、全像光儲存
Photopolymer, Holography photo, Concentration, Holography optical storage, Diffraction efficiency, Thickness
統計
Statistics
本論文已被瀏覽 5671 次,被下載 17
The thesis/dissertation has been browsed 5671 times, has been downloaded 17 times.
中文摘要
近年來,隨著訊息數位化與資訊影像技術不斷地快速發展下,造成了資料大量地被傳輸與接收,導致資訊爆炸的年代來臨,也使得光學儲存技術成為現今重要的科技之一。光學儲存技術是利用光學方法進行資訊與數據的寫入與讀取,將多媒體影像儲存於光學儲存材料中,屬於相當熱門得一種技術。本研究選用有機基材PMMA添加感光高分子單體EGPEA與光起始劑Irgacure 784製備全像光學儲存材料。經過兩道同調的DPSS 532 nm綠光雷射在繞射元件上進行干涉,使吸收特定波長能量的光起始劑產生自由基與感光高分子單體開始聚合並造成內部產生差異形成符合布拉格繞射定律之相位式光柵。本研究也藉由改變PEGPEA的濃度、光起始劑在單體中的濃度及試片厚度,探討在不同條件下對元件繞射效率及其光柵之影響,之後利用He-Ne 633 nm紅光雷射照射寫入光柵後的繞射元件上,藉由記錄繞射光強度與穿透光強度,計算元件之繞射效率,進而了解元件本身記錄資訊的能力與反應時間。基於以上實驗結果可以證明,此材料在可產生光柵條紋之干涉角度範圍內製作反射式全像片是可行的。
Abstract
In this study, a holographic material fabrication approach using the organic photopolymerizable monomer EGPEA(ethylene glycol phenyl ether acrylate) and the organic matrix PMMA(poly(methyl methacrylate)) is presented. We used Irgacure 784 to be the photo initiator. Once it is exposed to photo-illumination, the linear acrylate polymer chains are formed within the PMMA matrix. Now that the refractive index in charged by the holographic illumination, a phase grating is generated. A set of experiment is performed to evaluate its performance and the diffraction efficiency with various thickness and concentration of PEGPEA are studied. A refractive hologram developed by this material is available due to this experiment result.
目次 Table of Contents
目錄
致謝 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 vii
表目錄 x
第一章緒論 1
1-1前言 1
1-2研究動機 3
第二章原理與文獻回顧 4
2-1全像術 4
2-1-1全像術簡介 4
2-1-2全像術干涉理論 4
2-2光柵類別 6
2-2-1體積全像與薄全像之分類 7
2-3光學性質 9
2-3-1繞射效率計算公式 9
2-3-2穿透率 9
2-3-3角度選擇性 9
2-4全像感光儲存材料 10
2-4-1重鉻酸鹽明膠材料 11
2-4-2光折變材料 11
2-4-3鹵化銀材料 11
2-4-4感光高分子 12
2-5光聚合原理 13
2-5-1光聚合反應 13
2-5-2光柵形成 14
2-5-3單體 16
2-5-4光起始劑 16
2-6反射式全像術 18
2-7文獻回顧 19
第三章實驗方法及步驟 20
3-1使用藥品 20
3-2儀器使用 21
3-3實驗內容 22
3-3-1全像感光儲存材料之製備 22
3-3-2全像干涉的記錄與讀取 24
第四章結果與討論 28
4-1全像儲存材料光學性質分析 28
4-1-1材料5-6在不同比例的Irgacure 784/EGPEA及厚度下以入射角3˚干涉之結果 29
4-1-2材料在不同比例的EGPEA及厚度下以入射角3˚干涉之結果 47
4-1-3材料5-6(IE0.01)在厚度0.5mm下以不同入射角干涉之結果 54
4-2角度選擇性 60
4-3全像儲存材料全像片拍攝 62
第五章結論 64
參考文獻 65


























圖目錄
圖1-1全像光學儲存示意圖[2] 2
圖2-1波前記錄示意圖 5
圖2-2 在材料上形成干涉條紋 5
圖2-3波前重建示意圖 6
圖2-4 相位式光柵(a)折射率(b)厚度 6
圖2-5入射光照射體積光柵示意圖 7
圖2-6入射光照射薄光柵示意圖 8
圖2-7角度選擇性-偏移角度對繞射效率之關係[13] 10
圖2-8光柵形成示意圖 15
圖2-9光起始劑Irgacure 784之吸收波長[26] 17
圖2-10Irgacure 784照光激發後自由基的分子結構[1] 18
圖2-11反射式全像術之架構圖[28] 18
圖3-1全像儲存材料製程示意圖 22
圖3-2全像干涉記錄示意圖(入射角3˚、5 ˚) 24
圖3-3全像干涉記錄示意圖(入射角15˚、30˚) 25
圖3-4全像干涉記錄示意圖(入射角45˚) 25
圖3-5全像讀取過程示意圖(入射角3.6˚、6˚) 26
圖3-6全像讀取過程示意圖(入射角18˚、36˚) 27
圖3-7全像讀取過程示意圖(入射角57˚) 27
圖4-1干涉前之試片圖 28
圖4-2干涉後之試片圖 28
圖4-3材料5-6(IE0.005)在厚度0.3mm下(入射角3˚)隨時間的繞射效率變化 29
圖4-4材料5-6(IE0.005)在厚度0.3mm下(入射角3˚)繞射點圖 29
圖4-5材料5-6(IE0.005)在厚度0.5mm下(入射角3˚)隨時間的繞射效率變化 30
圖4-6材料5-6(IE0.005)在厚度0.5mm下(入射角3˚)繞射點圖 30
圖4-7材料5-6(IE0.005)在厚度1.0mm下(入射角3˚)隨時間的繞射效率變化 31
圖4-8材料5-6(IE0.005)在厚度1.0mm下(入射角3˚)繞射點圖 31
圖4-9材料5-6(IE0.007)在厚度0.3mm下(入射角3˚)隨時間的繞射效率變化 33
圖4-10材料5-6(IE0.007)在厚度0.3mm下(入射角3˚)繞射點圖 33
圖4-11材料5-6(IE0.007)在厚度0.5mm下(入射角3˚)隨時間的繞射效率變化 34
圖4-12材料5-6(IE0.007)在厚度0.5mm下(入射角3˚)繞射點圖 34
圖4-13材料5-6(IE0.007)在厚度0.6mm下(入射角3˚)隨時間的繞射效率變化 35
圖4-14材料5-6(IE0.007)在厚度0.6mm下(入射角3˚)繞射點圖 35
圖4-15材料5-6(IE0.007)在厚度0.7mm下(入射角3˚)隨時間的繞射效率變化 36
圖4-16材料5-6(IE0.007)在厚度0.6mm下(入射角3˚)繞射點圖 36
圖4-17材料5-6(IE0.007)在厚度1.0mm下(入射角3˚)隨時間的繞射效率變化 37
圖4-18材料5-6(IE0.007)在厚度1.0mm下(入射角3˚)繞射點圖 37
圖4-19材料5-6(IE0.01)在厚度0.3mm下(入射角3˚)隨時間的繞射效率變化 39
圖4-20材料5-6(IE0.01)在厚度0.3mm下(入射角3˚)繞射點圖 39
圖4-21材料5-6(IE0.01)在厚度0.5mm下(入射角3˚)隨時間的繞射效率變化 40
圖4-22材料5-6(IE0.01)在厚度0.5mm下(入射角3˚)繞射點圖 40
圖4-23材料5-6(IE0.01)在厚度0.6mm下(入射角3˚)隨時間的繞射效率變化 41
圖4-24材料5-6(IE0.01)在厚度0.6mm下(入射角3˚)繞射點圖 41
圖4-25材料5-6(IE0.013)在厚度0.3mm下(入射角3˚)隨時間的繞射效率變化 43
圖4-26材料5-6(IE0.013)在厚度0.3mm下(入射角3˚)繞射點圖 43
圖4-27材料5-6(IE0.013)在厚度0.5mm下(入射角3˚)隨時間的繞射效率變化 44
圖4-28材料5-6(IE0.013)在厚度0.5mm下(入射角3˚)繞射點圖 44
圖4-29材料5-4(IE0.01)在厚度0.3mm下(入射角3˚)隨時間的繞射效率變化 47
圖4-30材料5-4(IE0.01)在厚度0.3mm下(入射角3˚)繞射點圖 47
圖4-31材料5-4(IE0.01)在厚度0.5mm下(入射角3˚)隨時間的繞射效率變化 48
圖4-32材料5-4(IE0.01)在厚度0.5mm下(入射角3˚)繞射點圖 48
圖4-33材料5-5(IE0.01)在厚度0.3mm下(入射角3˚)隨時間的繞射效率變化 50
圖4-34材料5-5(IE0.01)在厚度0.3mm下(入射角3˚)繞射點圖 50
圖4-35材料5-5(IE0.01)在厚度0.5mm下(入射角3˚)隨時間的繞射效率變化 51
圖4-36材料5-5(IE0.01)在厚度0.5mm下(入射角3˚)繞射點圖 51
圖4-37材料5-5(IE0.01)在厚度0.6mm下(入射角3˚)隨時間的繞射效率變化 52
圖4-38材料5-5(IE0.01)在厚度0.6mm下(入射角3˚)繞射點圖 52
圖4-39材料5-6(IE0.01)在厚度0.5mm下(入射角5˚)隨時間的繞射效率變化 54
圖4-40材料5-6(IE0.01)在厚度0.5mm下(入射角5˚)繞射點圖 54
圖4-41材料5-6(IE0.01)在厚度0.5mm下(入射角15˚)隨時間的繞射效率變化 55
圖4-42材料5-6(IE0.01)在厚度0.5mm下(入射角15˚)繞射點圖 55
圖4-43材料5-6(IE0.01)在厚度0.5mm下(入射角30˚)隨時間的繞射效率變化 56
圖4-44材料5-6(IE0.01)在厚度0.5mm下(入射角30˚)繞射點圖 56
圖4-45材料5-6(IE0.01)在厚度0.5mm下(入射角45˚)隨時間的繞射效率變化 57
圖4-46材料5-6(IE0.01)在厚度0.5mm下(入射角45˚)繞射點圖 57
圖4-47材料5-6(IE0.01)在厚度0.5mm下0-40秒之繞射繞射效率 59
圖4-48角度選擇性架構圖 60
圖4-49一階繞射光隨讀取角度偏移之繞射效率 61
圖4-50 +1st order負偏轉1˚之繞射點圖 61
圖4-51反射式全像術架構圖 62
圖4-52 全像圖案 63




表目錄
表1材料在體積全像之研究成果 19
表2材料代號 23
表3材料5-6(IE0.005)在不同厚度下干涉之結果 32
表4材料5-6(IE0.007)在不同厚度下干涉之結果 38
表5材料5-6(IE0.01)在不同厚度下干涉之結果 42
表6材料5-6(IE0.013)在不同厚度下干涉之結果 45
表7材料在厚度0.3mm下干涉之結果 45
表8材料在厚度0.5mm下干涉之結果 45
表9材料在厚度1.0mm下干涉之結果 45
表10材料在不同條件下干涉之結果(單體濃度不變) 46
表11材料5-4(IE0.01)在不同厚度下干涉之結果 49
表12材料5-5(IE0.01)在不同厚度下干涉之結果 53
表13材料在不同單體濃度及厚度下干涉之結果(光起始劑濃度不變) 53
表14材料5-6(IE0.01)在厚度0.5mm下不同入射角度之最高繞射效率 58
參考文獻 References
[1] S. H. Lin, Y. N. Hsiao, and K. Y. Hsu, "Preparation and characterization of Irgacure 784 doped photopolymers for holographic data storage at 532 nm," Journal of Optics a-Pure and Applied Optics, vol. 11, pp. 1435-1437, 2009.
[2] S. H. Lin, K. Y. Hsu, W. Z. Chen, and W. T. Whang, "Phenanthrenequinone-doped poly(methyl methacrylate) photopolymer bulk for volume holographic data storage," Optics Letters, vol. 25, pp. 451-453, 2000.
[3] S.-K. Juang, "Fabrication of Photopolymerizable Diffraction Elements by Irgacure 784/EGPEA and Optical Property Measurement," Master Thesis, National Sun Yat-sen University, 2014.
[4] W.-L. Huang, "Fabrication of Photopolymerizable Diffraction Elements by Irgacure 784/MA and Optical Property Measurements," Master Thesis, National Sun Yat-sen University, 2015.
[5] H.-Y Tsai, "Fabrication of Photopolymerizable Diffraction Elements by Irgacure 784/EGPEA and Optical Characterization Analysis, " Master Thesis, National Sun Yat-sen University, 2016.
[6] D. Gabor, "A new microscopic principle," Nature, vol. 161, pp. 777-778, 1948.
[7] E. N. Leith and Upatniek.J, "Reconstructed Wavefronts and Communication Theory," Journal of the Optical Society of America, vol. 52, pp. 1123-1130, 1962.
[8] Y. N. Denisyuk, "Imaging Properties of Intensity Traveling Waves and Possible Fields of Their Application," Optica Applicata, vol. 10, pp. 465-469, 1980.
[9] M. P. Givens, "Introduction to Holography," American Journal of Physics, vol. 35, pp. 1056-1064, 1967.
[10] H. Kogelnik, "Coupled Wave Theory for Thick Hologram Gratings," Bell System Technical Journal, vol. 48, pp. 2909-2974, 1969.
[11] S. Lee, Y. C. Jeong, Y. Heo, S. Il Kim, Y. S. Choi, and J. K. Park, "Holographic photopolymers of organic/inorganic hybrid interpenetrating networks for reduced volume shrinkage," Journal of Materials Chemistry, vol. 19, pp. 1105-1114, 2009.
[12] G. J. Steckman, V. Shelkovnikov, V. Berezhnaya, T. Gerasimova, I. Solomatine, and D. Psaltis, "Holographic recording in a photopolymer by optically induced detachment of chromophores," Optics Letters, vol. 25, pp. 607-609, 2000.
[13] M. L. Calvo, P. Cheben, O. Martinez-Matos, F. del Monte, and J. A. Rodrigo, "Experimental detection of the optical Pendellosung effect," Physcial Review Letters, vol. 97, pp. 3602-3608, 2006.
[14] T. A. Shankoff, "Phase holograms in dichromated gelatin," Applied Optics, vol. 7, pp. 2101-2105, 1968.
[15] J. O. White, M. Croningolomb, B. Fischer, and A. Yariv, "Coherent Oscillation by Self-Induced Gratings in the Photorefractive Crystal Batio3," Applied Physics Letters, vol. 40, pp. 450-452, 1982.
[16] W. R. Graver, J. W. Gladden, and J. W. Eastes, "Phase holograms formed by silver halide (sensitized) gelatin processing," Applied Optics, vol. 19, pp. 1529-1536, 1980.
[17] P. Cheben and M. L. Calvo, "A photopolymerizable glass with diffraction efficiency near 100% for holographic storage," Applied Physics Letters, vol. 78, pp. 1490-1492, 2001.
[18] M. R. Gleeson and J. T. Sheridan, "Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part I. Modeling," Journal of the Optical Society of America B-Optical Physics, vol. 26, pp. 1736-1745, 2009.
[19] S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, "Optical characterization of photopolymers materials: theoretical and experimental examination of primary radical generation," Applied Physics B-Lasers and Optics, vol. 100, pp. 559-569, 2010.
[20] M. L. Calvo and P. Cheben, "Photopolymerizable sol-gel nanocomposites for holographic recording," Journal of Optics a-Pure and Applied Optics, vol,11, pp. 4009-4021, 2009.
[21] P. Cheben, T. Belenguer, A. Nunez, F. delMonte, and D. Levy, "Holographic diffraction gratings recording in organically modified silica gels," Optics Letters, vol. 21, pp. 1857-1859, 1996.
[22] G. Ramos, A. Alvarez-Herrero, T. Belenguer, F. del Monte, and D. Levy, "Shrinkage control in a photopolymerizable hybrid solgel material for holographic recording," Applied Optics, vol. 43, pp. 4018-4024, 2004.
[23] H. J. Oh, J. H. Kim, and E. Y. Kim, "Holographic Recording on Photopolymers Containing Pyrene for Enhanced Fluorescence Intensity," Macromolecules, vol. 41, pp. 7160-7165, 2008.
[24] D. Sabol, M. R. Gleeson, S. Liu, and J. T. Sheridan, "Photoinitiation study of Irgacure 784 in an epoxy resin photopolymer," Journal of Applied Physics, 2010.
[25] L. F. J. Schneider, C. S. C. Pfeifer, S. Consani, S. A. Prahl, and J. L. Ferracane, "Influence of photoinitiator type on the rate of polymerization, degree of conversion, hardness and yellowing of dental resin composites," Dental Materials, vol. 24, pp. 1169-1177, 2008.
[26] S. Jeong and J. Moon, "Fabrication of inorganic-organic hybrid films for optical waveguide," Journal of Non-Crystalline Solids, vol. 351, pp. 3530-3535, 2005.
[27] M. Feuillade, C. Croutxe-Barghorn, L. Mager, C. Carre, and A. Fort, "Photopatterning of hybrid sol-gel glasses: generation of volume phase gratings under visible light," Chemical Physics Letters, vol. 398, pp. 151-156, 2004.
[28] Konstantin Shcherbin, "High photorefractive gain at counterpropagating
geometry in CdTe:Ge at 1.064 μm and 1.55 μm," Optical Society of America, 2009.
[29] W. Zhang, S. Bian, SI. Kim, and MG. Kuzyk, "High-efficiency holographic volume index gratings in DR1-dye-doped poly(methyl methacrylate)" Optic Letters, vol. 27, pp. 1105-1107, 2002.
[30] U. V. Mahilny, D. N. Marmysh, A. I. Stankevich, and A. L. Tolstik, "Holographic volume gratings in a glass-like polymer material," Optical Society of America, vol. 353, pp. 353-356, 2005.
[31] N. Kim, E. S. Hwang, and C. W. Shin, "Analysis of optical properties with photopolymers for holographic application,"Journal of the Optical Society of Korea, vol. 10, pp. 1-10, 2006.
[32] Yuan Luo, Paul J. Gelsinger, Jennifer K. Barton, George Barbastathis, and Raymond K. Kostuk, "Spectral-spatial depth sectioning of biological samples using silicon oxide nano-particles doped PQ-PMMA," The Optical Society, 2009.
[33] Yu-Fang Chen, June-Hua Lin, Shiuan Huei Lin, Ken Y. Hsu, and Wha-Tzong Whang, "PQ:DMNA/PMMA photopolymer having amazing volume holographic recording at wavelength of insignificant absorption, " Optical Society of America, vol. 38, pp. 2056-2058, 2013.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code