Responsive image
博碩士論文 etd-0724117-170557 詳細資訊
Title page for etd-0724117-170557
論文名稱
Title
不同電極圖形應用於固態微型諧振器之研究
The study of solidly mounted resonator using various electrode shapes
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
94
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-20
繳交日期
Date of Submission
2017-09-03
關鍵字
Keywords
二氧化矽、固態微型諧振器、布拉格反射器、氧化鋅、鉬
Bragg reflector, ZnO, SiO2, Mo, solidly mounted resonators
統計
Statistics
本論文已被瀏覽 5811 次,被下載 37
The thesis/dissertation has been browsed 5811 times, has been downloaded 37 times.
中文摘要
本研究主要以氧化鋅薄膜作為壓電層以製作固態微型諧振器,並採用鉬(Mo)及二氧化矽(SiO2)做為布拉格反射層材料。另一方面,製作四種不同電極圖形分別為橢圓形、不規則五邊形、圓形及方形,以應用於一至四對布拉格反射器上,探討不同電極圖形及不同對數布拉格反射器對於SMR元件頻率響應之影響。在薄膜特性分析中,藉由調變濺鍍壓力及濺鍍功率以獲得高C軸優選取向之氧化鋅薄膜。
由SMR元件頻率響應量測分析結果,顯示方形電極圖形配以四對布拉格反射器之SMR元件,在2.3 GHz處有明顯諧振現象,也顯示本實驗中所製作之鉬、二氧化矽及氧化鋅薄膜適合製作SMR元件。然而,結果亦顯示於主要諧振更高頻處也有一諧振頻率響應,為了探討此一諧振響應原因,本論文將製作完成元件,進行SEM剖面分析,並與文獻相互驗證,發現乃因布拉格反射器厚度之均勻度對於SMR元件之頻率響應所產生之影響。
Abstract
In this study, zinc oxide (ZnO) film was used to fabricate the solid mounted resonator (SMR) devices. The Bragg reflectors where achieved by mult-layered Mo and SiO2 with one to four pairs. Various electrode patterns like ellipse, irregular, pentagonal, circular and square were designed and fabricated respectively. The effects of different electrode patterns and different layers of Bragg reflector on the frequency response of SMR devices were investigated. The c-axis preferred orientation of ZnO thin films were obtained by adjusting the sputter pressure and power.
From the results of frequency response analysis of SMR devices, the devices which had four pairs Bragg reflectors and square shaped electrode pattern had a significant resonance at 2.3 GHz. The results showed that the obtained Mo, SiO2 and ZnO thin films were suitable for the fabrication of SMR devices. However beyond the main resonance, there existed a resonant frequency response at higher frequency. In order to find out the reason, the devices were analyzed by SEM cross section of SMR devices and confirmed mutually with the literatures. According to the experiment at results, the uniformity of thickness of Bragg reflector will influence the frequency response of SMR devices.
目次 Table of Contents
中文審定書 i
英文審定書 ii
誌謝 iii
摘要 iv
Abstract v
目錄 vi
圖目錄 ix
表目錄 viii
第一章 前言 1
1.1 研究動機 1
1.2 薄膜體聲波諧振器之簡介 2
1.3 研究內容 5
第二章 理論分析 7
2.1 壓電現象 7
2.2 壓電效應 8
2.3 薄膜特性分析 10
2.3.1 鉬 (Molybdenum, Mo)結構與特性 10
2.3.2 二氧化矽(Silicon dioxide, SiO2)結構與特性 10
2.3.3 鉑(Platinum, Pt)結構與特性 10
2.3.4 氧化鋅(Zinc Oxide, ZnO)結構與特性 11
2.4 反應性射頻磁控濺鍍原理 14
2.4.1 輝光放電 14
2.4.2 磁控濺射 15
2.4.3 射頻濺射 17
2.4.4 反應性濺鍍 18
2.4.5 薄膜沉積機制 19
2.5 SMR 理論 21
2.5.1 SMR 的特點 22
2.5.2 SMR 的基本設計 22
第三章 實驗與步驟 26
3.1 實驗流程 26
3.2 基板清洗 27
3.3 直流濺鍍系統與薄膜的沉積 29
3.4 反應性射頻磁控濺鍍與壓電薄膜的沉積 35
3.5 黃光微影製程 37
3.6 SMR 的製作流程 40
3.6.1 反射層的製作 40
3.6.2 壓電層的製作 40
3.7 薄膜的特性分析 43
3.7.1 X光繞射(X-Ray Diffraction,XRD)分析 43
3.7.2 掃描式電子顯微鏡(Scanning electron microscopy, SEM)分析 45
3.7.3原子力顯微鏡(Atomic Force Microscopy,AFM)分析 46
3.8元件設定參數 49
3.9元件電性量測 49
第四章 結果與討論 50
4.1 布拉格反射層 50
4.1.1 鉬薄膜最佳濺鍍參數 51
4.1.2 二氧化矽薄膜最佳濺鍍參數 52
4.2 壓電層的探討 52
4.2.1 濺鍍壓力 53
4.2.2 濺鍍功率 57
4.3 SMR 元件頻率響應量測 61
4.4 SMR 第二諧振探討 68
第五章 結論 70
參考文獻 72
參考文獻 References
[1] 林丁丙、郭閔森,“近場通訊發展概況”, 國立台北科技大學電子工程,2014。
[2] Etienne Ntagwirumugara, T. Gryba, “Analysis of Frequency Response of IDT/ZnO/Si SAW Filter Using the Coupling of Modes Model”, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 54, no. 10, 2007.
[3] T. K. Wan, “Performance Characterization of thin AlN films deposited on Mo Electrode for Thin-Film Bulk Acoustic-Wave Resonators”, Japanese Journal of Applied Physics, vol. 43, pp. 5510-5515, 2004.
[4] R. C. Ruby, P. Brandley, Y. Oshmyansky and A. Chien, “Thin Film Bulk Acoustic Resonators for Wireless Applications”, IEEE Ultrasonics Symposium, vol. 22, pp. 813-821, 2001.
[5] 電子工程專輯網,”微波與射頻”,EE Time Taiwan,2014年6月。
[6] P. B. Kirby, M. D. G. Potter, C. P. Williams and M. Y. Lim, “Thin Film Piezoelectric Property Considerations for Surface Acoustic Wave and Thin Film Bulk Acoustic Resonators”, Journal of the European Ceramic Society, vol. 23, pp. 2689-2692, 2003.
[7] C. L. Huang, K. W. Tay and L. Wu, “Fabrication and Performance Analysis of Film Bulk Acoustic Wave Resonators”, Materials Letters, vol. 59, pp. 1012-1016, 2005.
[8] R. Jakkaraju, G. Henn, C. Shearer, M. Harris, N. Rimmer and P. Rich, “Integrated Approach to Electrode and AlN Depositions for Bulk Acoustic Wave (BAW) Devices”, Microelectronic Engineering, vol. 70, pp. 566-570, 2003.
[9] S. H. Lee and J. K. Lee, “Growth of Highly c-axis Textured AlN Films on Mo Electrodes for Film Bulk Acoustic Wave Resonators”, Journal of Vacuum Science & Technology A, vol. 21, pp. 1-5, 2003.
[10] K. Nakamura, Y. Ohashi and H. Shimizu, “UHF bulk acoustic wave filtes utilizing thin ZnO/ SiO diaphragms on silicon”, Japanese Journal of Applied Physics, vol. 25, pp. 371-375, 1986.
[11] K. W. Tay, C. L. Huang, L. Wu and M. S. Lin, “Performance Characterization of Thin AlN Films Deposited on Mo Electrode for Thin-Film Bulk Acoustic Wave Resonators”, Japanese Journal of Applied Physics, vol. 43, pp. 5510-5515, 2004.
[12] T. Mattil, A. Oja, H. Seppa, O. Jaakkola, J. Kiihamaki, H. Kattelus, M. Koskenvuori, P. Rantakari and I. Tittonen, “Micromechanical Bulk Acoustic Wave Resonator”, IEEE International Ultrasonics Symposium , vol. 1, pp. 945-948, 2002.
[13] R. Lanz, P. Carazzetti and P. Muralt, “Surface Micromachined BAW Resonators Based on AlN”, IEEE International Ultrasonics Symposium, vol. 1, pp. 981-983, 2002.
[14] M. Hara and M. Esashi, “RF MEMS and MEMS Packaging”, International Symposium on Acoustic Wave Devices for Future Mobile Communication Systems, vol. 1, pp. 115-122, 2004.
[15] H. H. Kim, B. K. Ju, Y. H. Lee, S. H. Lee, J. K. Lee and S. W. Kim, “A Noble Suspended Type Thin Film Resonator (STFR) Using the SOI Technology”, Sensors and Actuators A, vol. 89, pp. 255-258, 2001.
[16] S. H. Kim and J. H. Kim, “Bragg Reflector Thin Film Resonator Using Aluminium Nitride Deposition by RF Sputtering”, IEEE Microwave Conference, Asia-pacific, pp.1535-1538, 2000.
[17] S. Razafimandimby, “A Tunable Bandpass BAW-Filter for a WCDMA Transceiver”, European Solid-State Circuits Conference, vol. 32, pp. 142-145, 2006.
[18] K. M. Lakin, K. T. McCarron and R. E. Rose, “Solidly Mounted Resonators and Filters”, IEEE International Ultrasonics Symposium, vol.2, pp. 905-908, 1995.
[19] M. Clement, E. Iborra, J. Olivares, N. Rimmer, S. Giraud and S. Bila, “DCS Tx filters using AlN resonators with iridium electrodes”, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 57, pp. 518-524, 2010 .
[20] H. Kobayashi, Y. Ishida, K. Ishikawa, A. Doi and K. Nakamura, “Fabrication of Piezoelectric Thin Film Resonators with Acoustic Quarter-Wave Multilayers”, Japanese Journal of Applied Physics, vol. 41, pp. 3455–3457, 2002.
[21] K. Nakamura and H. Kanbara, “Theoretical Analysis of A Piezoelectric Thin Film Resonator With Acoustic Quarter-Wave Multilayers”, IEEE International Frequency Control Symposium, pp. 876-881, 1998.
[22] H. Kanbara, H. Kobayashi and K. Nakamura, “Analysis of Piezoelectric Thin Film Resonators with Acoustic Quarter-Wave Multilayers”, Japanese Journal of Applied Physics, vol. 39, pp. 3049-3053, 2000.
[23] D. H. Kim, M. Yim, D. Hai, J. S. Park and G. Yoon, “Improved Resonance Characteristics by Thermal Annealing of W/SiO2 Multi-Layers in Film Bulk Acoustic Wave Resonator Devices”, Japanese Journal of Applied Physics, vol. 43, pp. 1545-1550, 2004.
[24] S. H. Park, B. C. Seo, H. D. Park and G. Yoon, “Film Bulk Acoustic Resonator Fabrication for Radio Frequency Filter Applications”, Japanese Journal of Applied Physics , vol. 39, pp. 4115-4119, 2000.
[25] R. S. Naik, J. J. Lutsky and R. Reif, “Measurements of the Bulk, C-Axis Electromechanical Coupling Constant as a Function of A1N Film Quality”, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 47, pp. 292-296, 2000.
[26] K. M. Lakin, “Thin Film Resonator Technology”, IEEE International Frequency Control Symposium, vol. 52, pp. 707-716, 2005.
[27] K. M. Lakin, “A review of thin-film resonator technology”, IEEE Microwave Magazine, vol.4, pp. 61-67, 2003.
[28] R. Lanz, M. A. Dubois and P. Muralt, “Solidly Mounted BAW Filters for the 6 to 8 GHz Range Based on AlN Thin Films”, IEEE International Ultrasonics Symposium, vol. 1, pp. 843-846, 2001.
[29] H. P. Loebl, C. Metzmacher, D. N. Peligrad, R. Mauczok, M. Klee, W. Brand, R. F. Milsom, P. Lok, F. V. Straten, A. Tuinhout and J. W. LobeekC, “Solidly Mounted Bulk Acoustic Wave Filters for the GHZ Frequency Range”, IEEE International Ultrasonics Symposium, vol. 1, pp. 919-923, 2002.
[30] S. H. Kim, J. H. Kim, H. D. Park and G. Yoon, “AlN-Based Film Bulk Acoustic Resonator Devices with W/SiO2 Multilayers Reflector for RF Bandpass Filter Application”, Journal of Vacuum Science &Technology B, vol. 19, pp. 1164-1169, 2001.
[31] L. Mang, E. Hickernell, R. Pennell and T. Hickernell, “Thin-film resonator ladder filter”, IEEE International Microwave Symposium, vol. 2, pp. 887-890, 1995.
[32] M. A. Dubois, P. Muralt, H. Matsumoto and V. Plessky, “Solidly Mounted Resonator Based on Aluminum Nitride Thin Film”, IEEE International Ultrasonics Symposium, vol. 1, pp. 909-912, 1998.
[33] W. E. Newell, “Face-Mounted Piezoelectric Resonators”, Proceedings of the IEEE, vol. 53, pp. 575-581, 1965.
[34] K. M. Lakin, “Development of Miniature Filters for Wireless Applications”, IEEE Transactions on Microwave Theory and Techniques, vol. 43, pp. 2933-2939, 1995.
[35] A. Link , E. Schmidhammert, H. Heinzet, M. Mayert, B. Badert and R. Weigel , “Appropriate Methods to Suppress Spurious FBAR Modes in Volume Production,” IEEE MTT-S Digest, pp.1759-1762, 2006
[36] 廖俊銘,無線網路通訊 2.4 GHz 技術應用,2001.10。
[37] 吳朗,“電子陶瓷:壓電陶瓷”,全欣資訊,pp.7, 1994.
[38] J. B. Lee, J. P. Jung, M. H. Lee and J. S. Park, “Effects of Bottom Electrodes on the Orientation of AlN Films and the Frequency Responses of Resonators in AlN Based FBARs”, Journal of Thin Solid Films, vol. 447, pp. 610-614, 2004.
[39] M. Akiyama, K. Nagao, N. Ueno and H. Tateyama, “Influence of Metal Electrodes on Crystal Orientation of Aluminum Nitride Thin Films”, Journal of Vacuum Science and Technology, vol. 74, pp. 699-703, 2004
[40] H. L. Hartnagel, A. K. Jain and C. Jagadish, “Semiconducting TransparentThin Film,’’published by Institute of Physics Publication,1995.
[41] S. J.Pearton , D.P.Norton , K.Ip ,Y.W.Heo , T.Steiner, Superlattics and Microstructures 34(2003)3-32
[42] Q. X. Su, P. Kirby, E. Komuro, M. Imura, Q. Zhang and R. Whatmore, “Thin Film Bulk Acoustic Resonators and Filters Using ZnO and Lead Zirconium Titanate Thin Films”, IEEE Transactions on microwave theory and techniques, vol.49, no.4, pp.769-778, April 2001.
[43] K. Sakurai, M. Kanehiro, K. Nakahara, T. Tanabe and S. Fujita, “Effects of oxygen plasma condition on MBE growth of ZnO”, J. Crystal Growth, vol.209, pp.522-525, 2000.
[44] X. H. Li, A. P. Huang, M. K. Zhu, Sh. L. Xu, J. Chen, H. Wang, B. Wang, B.Wang and H. Yan, “Influence of substrate temperature on the orientation andoptical properties of sputtered ZnO films”, Mater. Lett., vol.75, pp.4655-4659, 2003.
[45] W. Water and S. Y. Chu, “Physical and structural properties of ZnO sputtered films”, Mater. Lett., vol.55, pp.67-72, 2002.
[46] Y. Nakanishi, A. Miyake, H. Kominami, T. Aoki, Y. Hatanaka and G. Shimaoka,“Preparation of ZnO thin films for high-resolution field emission display by electron beam evaporation”, Appl. Surf. Sci., vol.142, pp.233-236, 1999.
[47] 施敏著,張俊彥譯,”半導體元件之物理與技術”,儒林,pp.425, 1990.
[48] R. W. Berry, P. M. Hall and M. T. Harris, “Thin film technology”, Van Nostrand Princeton, pp. 74-87, 1968.
[49] J. L. Vossen and W. Kern, “Thin Film Process”, Academic Press, pp. 134-136, 1991.
[50] E. Janczak-Bienk, H. Jensen and G. Sørensen, “The influence of the reactive gas flow on the properties of AIN sputter-deposited films,” Materials Science and Engineering: A, vol. 140, pp. 696-701, 1991.
[51] I. Petrov, P. B. Barna, L. Hultman and J. E. Greene, “Microstructural evolution during film growth”, Journal of Vacuum Science and Technology, vol. 21, pp. 117-128, 2003.
[52] K. M. Lakin, K. T. McCarron, and R. E. Rose, “Solidly Mounted Resonators and Filters”, 1995 IEEE Ultrasonic Symposium, pp. 905-908.
[53] S. Pinkett, W. Hunt, B. Barber and P. Gammel, “Broadband Characterization of ZnO-Based Solidly Mounted Resonators”, 2002 IEEE International Freq. Con. Symp., pp. 15-19.
[54] 劉彥宏,“以雙壓電層研製固態微型諧振器”,國立中山大學電機工程研究所碩士論文,2015。
[55] V. M. Ristic, ”Principles of Acoustic Devices”, 新智,(1984) 3.
[56] 李其紘,“原子力顯微鏡基本介紹”,國立中央大學物理系
[57] Lin, R. C., Chen, Y. C. & Kao, K. S. “Two-step sputtered ZnO piezoelectric films for film bulk acoustic resonators.” Appl. Phys. A 89, 475-479 (2007).
[58] 姜嘉銘,“以雙模態氧化鋅薄膜體聲波共振器作為液態感測器之研究”,國立中山大學電機工程研究所碩士論文,2011。
[59] 徐茂協,“以 Mo/SiO2 為布拉格反射層製作固態微型諧振器與濾波器之研究”,國立中山大學電機工程研究所碩士論文,2006。
[60] M. DeMiguel-Ramos, T. Mirea, J. Olivares, M. Clement, J. Sangrador, and E. Iborra*“Assessment of the Acoustic Shear Velocity in SiO2 and Mo layers for Acoustic Reflectors.”IEEE 36-39,2014
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code