Responsive image
博碩士論文 etd-0724117-214852 詳細資訊
Title page for etd-0724117-214852
論文名稱
Title
以紊流模型模擬分析擺動機翼之動態失速現象
Numerical Simulation and Analysis of Dynamic Stall on a Pitching Airfoil with Turbulence Models
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
55
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-25
繳交日期
Date of Submission
2017-08-24
關鍵字
Keywords
前端渦旋、層流分離氣泡、雷諾數、紊流模型、動態失速
LEV, LSB, Reynolds number, Dynamic stall, Turbulence models
統計
Statistics
本論文已被瀏覽 5734 次,被下載 1310
The thesis/dissertation has been browsed 5734 times, has been downloaded 1310 times.
中文摘要
動態失速為一複雜之流體動力現象,伴隨著層流分離氣泡(laminar separation bubble,LSB)、前端渦旋(leading edge vortex,LEV)、二次渦旋的產生以及渦旋剝離。本研究主要目的是在探討與分析流體流過擺動機翼所產生的動態失速現象,採用RANS(Reynolds-average Navier-Stokes)之SST k-ω紊流模型以及Transition SST紊流模型,並運用動網格技術模擬不同實驗,結果以正向力係數對攻角作圖呈現,並和現有實驗數據做比較,發現到在較高的雷諾數下,因為紊邊界層主導的關係,SST k-ω紊流模型的模擬結果與實驗較為相符,而Transition SST紊流模型在LEV成長以及失速的時間點皆較實驗延遲;在較低的雷諾數下,Transition SST紊流模型則較SST k-ω貼近於實驗。然而,在低無因次頻率(reduced frequency)下,兩紊流模型在失速後,正向力係數皆會產生實驗上看不到的震盪。另外,本研究藉由流線及壓力分佈分析動態失速現象並且解釋正向力係數變化的趨勢,從結果中可以發現到在低雷諾數流場下,機翼前端有較明顯的LSB產生,並且隨攻角增加而向前端收縮,最後吸引力崩解轉變成LEV,而Transition SST紊流模型因為對於有過渡現象產生的LSB掌握度較高,因此模擬結果與實驗也較為符合。
Abstract
The objective of this study is to discuss and analyze the flow structure around a pitching airfoil in the flow field through simulations. The SST k-ω and Transition SST turbulence models combined with dynamic mesh are used to simulate different experiments with different reduced frequencies. The comparisons between simulations and experimental data are presented by the normal force coefficient. Furthermore, the phenomena of dynamic stalls are analyzed by the streamline and the pressure distribution. Under the higher Reynolds numbers, because of the domination of the turbulent boundary layer, the results of SST k-ω model are in good agreement with the experimental data, and the growth of leading edge vortex (LEV) and the onset of the stall postpone in the results of Transition SST model. Under the lower Reynolds numbers, laminar separation bubble (LSB) forms at the leading edge of airfoil to induce transition phenomenon, which is the reason why the Transition SST model performs better than the SST k-ω model.
目次 Table of Contents
論文審定書 i
誌謝 ii
中文摘要 iii
Abstract iv
目錄 v
圖次 vii
表次 viii
符號說明 ix
第一章 緒論 1
1.1 研究背景及動機 1
1.2. 文獻回顧 2
1.2.1 動態失速 2
1.2.2 紊流模型 7
第二章 研究方法 9
2.1 數值方法與紊流模型 9
2.1.1 SST k-ω model 10
2.1.2 Transition SST model 12
2.2 計算相關設定 15
2.2.1 機翼擺動模式 15
2.2.2 網格設定 15
2.2.3 邊界條件 17
第三章 結果與討論 18
3.1 數值結果與實驗之驗證 18
3.1.1 平板測試 19
3.1.2 Case 1 20
3.1.3 Case 2 22
3.1.4 Case 3 24
3.1.5 Case 4 25
3.2 動態失速現象驗證及分析 27
3.2.1 Case 4 kf =0.1流場分析 27
第四章 結論與建議 35
參考文獻 37
參考文獻 References
[1] Wang, S., Ingham, D. B., Ma, L., Pourkashanian, M., Tao, Z., 2010. Numerical Investigations on Dynamic Stall of Low Reynolds Number Flow Around Oscillating Airfoils. Computers & Fluids, 39(9), 1529-1541.
[2] Ferreira, C. S., van Kuik, G., van Bussel, G., Scarano, F., 2009. Visualization by PIV of Dynamic Stall on a Vertical Axis Wind Turbine. Experiments in Fluids, 46(1), 97-108.
[3] Maxworthy, T., 1981. The Fluid Dynamics of Insect Flight. Annual Review of Fluid Mechanics, 13(1), 329-350.
[4] Shyy, W., Berg, M., Ljungqvist, D., 1999. Flapping and Flexible Wings for Biological and Micro Air Vehicles. Progress in aerospace sciences, 35(5), 455-505.
[5] Ham, N. D., Garelick M. S., 1968. Dynamic Stall Considerations in Helicopter Rotors. Journal of the American Helicopter Society, 13(20), 49-55.
[6] Liiva, J., Davenport, F. J., 1969. Dynamic Stall of Airfoil Sections for High-Speed Rotors. Journal of the American Helicopter Society, 14(2), 26-33.
[7] Johnson, W., 1969. The Effect of Dynamic Stall on the Response and Air Loading of Helicopter Rotor Blades. Journal of the American Helicopter Society, 14(2), 68-79.
[8] Harris, F. D., Tarzanin, F. J., Fisher, R. K., 1970. Rotor High-Speed Performance; Theory vs. Test. Journal of the American Helicopter Society, 15(3), 35-44.
[9] Ham, N. D., 1968. Aerodynamic Loading on a Two-Dimensional Airfoil during Dynamic Stall. AIAA Journal, 6(10), 1927-1934.
[10] Johnson, W., Ham, N. D., 1972. On the Mechanism of Dynamic Stall. Journal of the American Helicopter Society, 17(4), 36-45.
[11] Martin, J. M., 1974. An Experimental Analysis of Dynamic Stall on an
Oscillating Airfoil. Journal of the American Helicopter Society, 19, 26-32.
[12] McCroskey, W. J., Carr, L.W., McAlister, K. W., 1976. Dynamic Stall On Advanced Airfoil Sections. AIAA Journal, 14(1), 57-63.
[13] Scruggs, R. M., Nash, J. F., Singleton, R. E., 1974. Analysis of Flow Reversal Delay for a Pitching Airfoil. AIAA paper 74-183.
[14] Sears, W. R., Telionis, D. P., 1975. Boundary-Layer Separation in Unsteady Flow. SIAM Journal on Applied Mathematics, 28(1), 215-235.
[15] McCroskey, W. J., 1981. The Phenomenon of Dynamic Stall. NASA Technical Memorandum 81264.
[16] Carr, L. W., 1988. Progress in Analysis and Prediction of Dynamic Stall. Journal of Aircraft, 25(1), 6-17.
[17] Liiva, J., Davenport, F. J., Gray, L. and Walton, I. C., 1968. Two Dimensional Tests of Airfoils Oscillating Near Stall. USAAL TR-68-13.
[18] Carr, L. W., McAlister, K. W., McCroskey, W. J., 1977. Analysis of the Development of Dynamic Stall Based on Oscillating Airfoil Experiments. NASA Technical Note D-8382.
[19] McAlister, K. W., Carr, L. W., McCroskey, W. J., 1978. Dynamic Stall Experiments on the NACA 0012 Airfoil. NASA Technical Paper 1100.
[20] Helin, H. E., Walker, J. M., 1985. Interrelated Effects of Pitch Rate and Pivot Point. AIAA Paper 85-0130.
[21] Strickland, J. H., Graham, G. M., 1987. Force Coefficients for a NACA 0015 Airfoil Undergoing Constant Pitch Rate Motions. AIAA Journal, 24(4), 622-624.
[22] Acharya, M., Metwally, M. H., 1992. Unsteady Pressure Field and Vorticity Production over a Pitching Airfoil. AIAA Journal, 30(2), 403-411.
[23] Panda, J., Zaman, K. B. M. Q., 1994. Experimental Investigation of the Flow Field of an Oscillating Airfoil and Estimation of Lift from Wake Surveys. Journal of Fluid Mechanics, 265, 65-95.
[24] Leishman, J. G., 1990. Dynamic Stall Experiments on the NACA 23012 Aerofoil. Experiment in Fluid, 9(1-2), 49-58.
[25] Shih, C., Lourenco, L., Van Dommelen, L., Krothapalli, A., 1992. Unsteady Flow Past an Airfoil Pitching at a Constant Rate. AIAA Journal, 30(5), 1153-1161.
[26] Green, R. B., Galbraith, R. A. McD., 1995. Dynamic Recovery to Fully Attached Aerofoil Flow from Deep Stall. AIAA Journal, 33(8), 1433-1440.
[27] Wernert, P., Raffel, M., Kompenhans J., 1995. Investigation of the Unsteady Flow Velocity Field above an Airfoil Pitching under Deep Dynamic Stall Conditions. Experiments in Fluids, 19(2), 103–111.
[28] Wernert, P., Geissler, W., Raffel, M., Kompenhans, J., 1996. Experimental and Numerical Investigations of Dynamic Stall on a Pitching Airfoil. AIAA Journal, 34(5), 982–989.
[29] Berton, E., Favier, D., Maresca, C., Benyahia, A., 2002. Flow Field Visualizations around Oscillating Airfoils. LABM Laboratory, UMSR, Marseille, France.
[30] Lee, T., Basu, S., 1998. Measurement of Unsteady Boundary Layer Developed on an Oscillating Airfoil Using Multiple Hot-Film Sensors. Experiments in Fluids, 25, 108-117.
[31] Lee, T., Gerontakos, P., 2004. Investigation of Flow over an Oscillating Airfoil. Journal of Fluid Mechanics, 512, 313-341.
[32] Leu, T. S., Yu, J. M., Hu, C. C., Miau, J. J., Liang, S. Y., Li, J. Y., Cheng, J. C., Chen, S. J., 2012. Experimental Study of Free Stream Turbulence Effects on Dynamic Stall of Pitching Airfoil by Using Particle Image Velocimetry. Applied Mechanics and Materials, 225, 103-108.
[33] Sharma, D. M., Poddar, K., 2013. Investigation of Dynamic Stall Characteristics for Flow Past an Oscillating Airfoil at Various Reduced Frequencies by Simultaneous PIV and Surface Pressure Measurements. PIV13; 10th International Symposium on Particle Image Velocimetry, Delft, The Netherlands, July 1-3, 2013. Delft University of Technology, Faculty of Mechanical, Maritime and Materials Engineering, and Faculty of Aerospace Engineering.
[34] Zanotti, A., Gibertini, G., 2013. Experimental Investigation of The Dynamic Stall Phenomenon on a NACA 23012 Oscillating Airfoil. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 227(9), 1375-1388.
[35] Visbal, M. R., Shang, J. S., 1989. Investigation of Flow Structure around a Rapidly Pitching Airfoil. AIAA Journal, 27(8), 1044-1051.
[36] Visbal, M. R., 1990 Dynamic Stall of a Constant-Rate Pitching Airfoil. Journal of Aircraft, 27(5), 400-407.
[37] Visbal, M. R., Choudhuri, P. G., Knight, D. D., 1994. Two-Dimensional Unsteady Leading-Edge Separation on a Pitching Airfoil. AIAA Journal, 32(4), 673-681.
[38] Ono, K., 1985. Numerical Study on the Dynamic Stall Process of a NACA 0012 Airfoil. AIAA Paper 85-128.
[39] Spentzos, A., Barakos, G., Badcock, K., Richards, B., Wernert, P., Schreck, S., Raffel, M., 2005. Investigation of Three-Dimensional Dynamic Stall Using Computational Fluid Dynamics. AIAA Journal, 43(5) ,1023–1033.
[40] Wang, S., Ingham, D. B., Ma, L., Pourkashanian, M., Tao, Z., 2010. Numerical Investigations on Dynamic Stall of Low Reynolds Number Flow Around Oscillating Airfoils. Computers & Fluids, 39(9), 1529-1541.
[41] Wang, S., Tao, Z., Ma, L., Ingham, D. B., Pourkashanian, M., 2010. Numerical Investigations on Dynamic Stall Associated with Low Reynolds Number Flows Over Airfoils. IEEE. 5 2nd International Conference on Computer Engineering and Technology, V5-308–312.
[42] Wang, S., Ingham, D. B., Ma, L., Pourkashanian, M., Tao, Z., 2012. Turbulence Modeling of Deep Dynamic Stall at Relatively Low Reynolds Number. Journal of Fluids and Structures, 33, 191-209.
[43] Gharali, K., Johnson, D. A., 2013. Dynamic Stall Simulation of a Pitching Airfoil Under Unsteady Freestream Velocity. Journal of Fluids and Structures, 42, 228-244.
[44] Karbasian, H. R., Kim, K. C., 2016. Numerical Investigations on Flow Structure and Behavior of Vortices in the Dynamic Stall of an Oscillating Pitching Hydrofoil. Ocean Engineering, 127, 200-211.
[45] Visbal, M. R., 2014. Analysis of the Onset of Dynamic Stall Using High-Fidelity Large-Eddy Simulations. AIAA SciTech 52nd Aerospace Sciences Meeting National Harbor, Maryland.
[46] Horton, H. P., 1968. Laminar Separation Bubbles in Two and Three-Dimensional Incompressible Flow.
[47] Rinoie, K., Takemura, N., 2004. Oscillating Behavior of Laminar Separation Bubble Formed on an Aerofoil Near Stall. The aeronautical journal, 108(1081), 153-163.
[48] Baldwin, B., Lomax, H., 1978. Thin-Layer Approximation and Algebraic Model for Separated Turbulent Flows. In 16th Aerospace Sciences Meeting, 257.
[49] Spalart, P., Allmaras, S., 1992. A One-Equation Turbulence Model for Aerodynamic Flows. In 30th aerospace sciences meeting and exhibit , 439.
[50] Launder, B. E., Spalding, D. B., 1974. The Numerical Computation of Turbulent Flows. Computer methods in applied mechanics and engineering, 3(2), 269-289.
[51] Johnson, D. A., King, L. S., 1985. A Mathematically Simple Turbulence Closure Model for Attached and Separated Turbulent Boundary Layers. AIAA journal, 23(11), 1684-1692.
[52] Wilcox, D. C., 1993. Turbulence modeling for CFD. La Canada, CA: DCW industries.
[53] Menter, F. R., 1992. Influence of Freestream Values on k-ω Turbulence Model Predictions. AIAA journal, 30(6), 1657-1659.
[54] Menter, F. R., 1993. Zonal Two Equation k-ω Turbulence Models for Aerodynamic Flows. AIAA paper, 2906.
[55] Menter, F. R., 1994. Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications. AIAA journal, 32(8), 1598-1605.
[56] Menter, F., Ferreira, J. C., Esch, T., Konno, B., Germany, A. C., 2003. The SST Turbulence Model with Improved Wall Treatment for Heat Transfer Predictions in Gas Turbines. Proceedings of the International Gas Turbine Congress, Tokyo, 2-7.
[57] Menter, F. R., 2009. Review of the Shear-Stress Transport Turbulence Model Experience from an Industrial Perspective. International Journal of Computational Fluid Dynamics, 23(4), 305-316.
[58] Ahmad, K. A., Abdullah, M. Z., Watterson, J. K., 2010. Numerical Modelling of a Pitching Airfoil. Journal Mekanikal, 30, 37-47.
[59] Wang, S., Ma, L., Ingham, D. B., Pourkashanian, M., Tao, Z. 2010. Turbulence Modelling of Deep Dynamic Stall at Low Reynolds Number. In Proceedings of the World Congress on Engineering.
[60] Martinat, G., Braza, M., Hoarau, Y., Harran, G., 2008. Turbulence Modelling of the Flow Past a Pitching NACA0012 Airfoil at 105 and 106 Reynolds Numbers. Journal of Fluids and Structures, 24(8), 1294-1303.
[61] Menter, F. R., Langtry, R., Völker, S., 2006. Transition modelling for general purpose CFD codes. Flow, turbulence and combustion, 77(1), 277-303.
[62] Menter, F. R., Langtry, R. B., Likki, S. R., Suzen, Y. B., Huang, P. G., Völker, S., 2006. A Correlation-Based Transition Model Using Local Variables—Part I: Model Formulation. Journal of turbomachinery, 128(3), 413-422.
[63] Langtry, R. B., Menter, F. R., Likki, S. R., Suzen, Y. B., Huang, P. G., Völker, S., 2006. A Correlation-Based Transition Model Using Local Variables—Part II: Test Cases and Industrial Applications. Journal of Turbomachinery, 128(3), 423-434.
[64] Langtry, R. B., Menter, F. R., 2009. Correlation-Based Transition Modeling for Unstructured Parallelized Computational Fluid Dynamics Codes. AIAA journal, 47(12), 2894-2906.
[65] Hu, H. A., 2013. Numerical Simulation of Dynamic Stall on a Pitching Airfoil. Master thesis, National Sun Yat-sen University.
[66] Cheng, Y. E., 2014. Lagrangian-Based Investigation for Dynamic Stall. Master thesis, National Sun Yat-sen University.
[67] Chan, Y. S., 2015. Eulerian and Lagrangian Based Investigation for the Dynamic Stall Phenomenon over a Pitching Airfoil. Master thesis, National Sun Yat-sen University.
[68] Savill, A. M., 1992. A Synthesis of T3 Test Case Predictions. Numerical simulation of unsteady flows and transition to turbulence, 404-442.
[69] Langtry, R. B., 2006. A Correlation-Based Transition Model Using Local Variables for Unstructured Parallelized CFD Codes. Ph.D. Thesis.
[70] Tseng, C. C., Cheng, Y. E., 2015. Numerical Investigations of the Vortex Interactions for a Flow Over a Pitching Foil at Different Stages. Journal of Fluids and Structures, 58, 291-318.
[71] Tseng, C. C., Hu, H. A., 2015. Flow Dynamics of a Pitching Foil by Eulerian and Lagrangian Viewpoints. AIAA Journal, 54(2), 712-727.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code