Responsive image
博碩士論文 etd-0725100-103853 詳細資訊
Title page for etd-0725100-103853
論文名稱
Title
應用液動壓拋光法於工件表面粗度移除效率之實驗分析與探討
An experimental study on removing efficiency of surface roughness for hydrodynamic polishing process
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
108
研究生
Author
指導教授
Advisor
召集委員
Convenor

口試委員
Advisory Committee
口試日期
Date of Exam
2000-06-30
繳交日期
Date of Submission
2000-07-25
關鍵字
Keywords
粗度移除、液動壓拋光法
hydrodynamic polishing process, removing efficiency of surface roughness
統計
Statistics
本論文已被瀏覽 5617 次,被下載 1647
The thesis/dissertation has been browsed 5617 times, has been downloaded 1647 times.
中文摘要
摘要

本研究旨在利用實驗的方法探討液動壓拋光法應用於工件表面粗度移除時,粗度移除效率的問題。本研究將利用實驗的方法觀察不同加工深度下,工件表面粗度變化的情形,並掌握加工過程中影響工件表面粗度移除效率與粗度移除極限值的因素,並建立一套合理數學模型加以解釋粗度移除過程中的因果關係。

經由實驗所得的結果可知,工件表面粗度在加工過程中,粗度的變化有一定的趨勢,會隨加工深度而迅速下降,最後到達飽和。在液動壓拋光法半接觸潤滑的加工條件下,工件表面粗度的振幅與波長均會影響拋光過程中粗度移除的效率,並且由實驗可以發現,刀具轉速對粗度移除的過程與結果影響不大。

由實驗分析與數學模式的建立本研究發現,粗度移除效率與刀具表面粗度、工件表面粗度振幅與波長、工件表面波峰與波谷的表面能有關。工件表面粗度的振幅越大,粗度移除效率越高;工件表面的粗度波長越小,粗度移除效率越大,在加工過程中工件表面粗度無法完全被移除,有其加工的極限,而不同波長的粗度其可移除的極限值各有不同,波長越小的表面粗度,其經由加工最後可達的極限值越小,反之則越大;刀具表面粗度越小,粗度移除效率越高。

在未來的應用方面,希望能藉由掌握影響粗度移除效率與粗度移除極限值的因素,提昇工件表面粗度移除效率與粗度移除極限值的大小。
Abstract
Abstract

The removing efficiency of surface roughness for the hydrodynamic polishing process under semi-contact lubricating condition was investigated in this thesis. The experimental relationships between surface roughness and polishing were first examined. From the relationships, the potential influential factors of the removing efficiency and the magnitude of surface roughness were identified. Finally, a mathematical model that was related to the removing efficiency and the magnitude of surface roughness was proposed.
Based on the experimental study, it was shown that the surface roughness would be rapidly reduced at the beginning by polishing process and then hardly improved afterward. This trend implied that surface roughness would not be completely removed during the polishing process. It was proposed that the amplitude and wavelength of surface roughness would affect the removing efficiency of surface roughness. Further, the removing efficiency was not sensitive to the tool velocity.
From the mathematical model, several points were concluded. First, the removing efficiency was positively proportional to the amplitude of surface roughness. Second, the removing efficiency was inversely to the amplitude of surface roughness. Third, the removing efficiency was inverse proportional to a waviness of tool surface. Fourth, the removing efficiency was not sensitive to tool velocity. Finally, there existed an achievable minimum surface roughness for a surface with specific wavelength. The magnitude of a minimum surface roughness was shown to be proportional to the wavelength of work surface.
目次 Table of Contents
目錄

第一章 緒論……………………………………1
1.1前言 …………………………………………1
1.2研究動機 ……………………………………1
1.3參考文獻………………………………………2
1.4液動壓拋光法簡介……………………………3
1.5研究目的與內容介紹…………………………5

第二章 實驗規劃與結果………………………7
2.1實驗規劃 ……………………………………7
2.2實驗設備……………………………………10
2.2.1實驗系統簡介……………………………10
2.2.2實驗設備及量測儀器……………………12
2.3實驗結果……………………………………13
2.4結論…………………………………………15

第三章 實驗規劃分析…………………………7
3.1工件表面粗度改善指標……………………17
3.2實驗結果趨勢的模擬………………………18
3.3粗度移除的飽和深度………………………20
3.4工件表面粗度移除效率……………………21
3.5工件表面粗度移除的極限值………………24
3.6結論…………………………………………25

第四章 理論分析……………………………27
4.1非接觸潤滑區之加工率……………………27
4.2粗度移除效率指標…………………………29
4.3影響粗度移除效率指標的因素……………32
4.4結論…………………………………………35

第五章 結論…………………………………37
參考文獻…………………………………………39
參考文獻 References
參考文獻

【1】R. Komannduri, et al , “Technological Advances in Fine Abrasive Process,” Annals of the CIRP , vol.46 , No.1 , (1997) , pp 545-596.
【2】歐陽謂城譯, 精密模具之超精度加工, 全華科技圖書公司, 1992, No. 2249.
【3】S.F. Soraes, D.R. Baselt, J.P. Black, K.C. Joungling, and Sowell, “Float polishing process and analysis of floating-polished quartz,’ Applied Optics, Vol.33, No.1, January(1994), pp85-95.
【4】T. Kasai, F. Matumoto ,and A. Kobayashi, “Newly developed fully automatic polishing machines for obtainable super-smooth surfaces of compound semiconductor wafers,” Annals of CIRP, Vol.37, No.1, (1988), pp537-540.
【5】Y. Mori, K. Yamauchi, and K. Endo, “Elastic emission machining,” Int. J. Jpn. Soc. Precis. Eng., Vol.9, No.3, July(1987), pp123-128.
【6】Y.T. Su, S.Y. Wang, J.S. Hsiau, “On machining rate of hydrodynamic polishing process,” Wear, Vol.188, (1995), pp77-87.
【7】K. Saito, T. Miyoshi, and Y. Sasaki, “Automation of polishing process for a cavity surface on dies and molds by using an expert system,” Annals of the CIRP, Vol.42, No.1, (1993), pp553-556.
【8】Zhaowei Zhong, V.C. Venkatesh, “Semi-ductile grinding and polishing of ophthalmic aspherics and spherics,” Annals of the CIRP, Vol.44, No.1, (1995), pp339-342.
【9】L. De Chiffre, H. N. Hansen, and A. Bronstein, “ Investigation on the surface Topography in polishing using atomic force microscopy,” Annals of the CIRP, Vol.45, No.1, (1996), pp523-528.
【10】V. C. Venkatesh, Zhaowei Zhong, and Erning Wihardjo, ”Studies on polishing of glass moulds after lapping with hard and soft pellets,” Journal of Materials Processing Technology, Vol.62, (1996), pp415-420.
【11】N. S. Ong, V. C. Venkatesh, “Semi-ductile grinding and polishing of pyrex glass,” Journal of Materials Processing Technology, Vol.83, (1998), pp261-266.
【12】Yutaka Hasegawa, Sasuke Miyazima, “Polishing rate for (100) and (110) surfaces,” Physica A, No.233, (1996), pp663-671.
【13】R. E. Parks, C. J. Evans, “Rapid post-polishing of diamond-turned optics,” Journal of precision engineering, Vol.16, No.3, (1994), pp223-227.
【14】B. J. Hamrock, Fundamentals of fluid film lubrication, International edition, Singapore, (1994).
【15】章少衡,液動壓拋光法之加工參數模式,國立中山大學, (1994)
【16】Y. T. Su, C. C. Horng, Y. D. Hwang, W. K. Guo, “ Effects of surface irregularities on machining rate of a hydrodynamic polishing polishing process,” Wear, Vol.199, (1996), pp89-99.
【17】S. Y. Wang, Y. T. Su, “An investigation on machinability of different materials by hydrodynamic polishing process,” Wear, Vol.211, (1997), pp185-191.
【18】Y. T. Su, T. C. Hung, Y. Y. Chang, “on machining rate of hydro-dynamic polishing process under semi-contact lubrication condition,” Wear, Vol.220, (1998), pp22-33.
【19】Y. T. Su, Y. C. Kao, “An experimental study on machining rate distribution of hydrodynamic polishing process,” Wear, Vol.224, (1999), pp95-105.
【20】Y. T. Su, C. C. Horng, S. Y. Wang, and S. H. Jang, “Ultraprecision machining by the hydrodynamic polishing process,” Int. J. Mach. Manufact. , Vol.36, No.2, (1996), pp275-291.
【21】Y. T. Su, C. C. Horng, J. Y. Shen and J. S. Hsiau, “A process planning strategy for removing an arbitrary profile by hydrodynamic polishing process,” Int. J. Mach. Manufact. , Vol.36, No.11, (1996), pp1227-1245.
【22】沈家億,應用液動壓拋光法於形狀誤差補償之加工策略研究,國立中山大學碩士論文, (1995).
【23】丁基賢,應用動壓拋光法於小波長形狀誤差補償之探討, 國立中山大學碩士論文, (1998).



電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code