Responsive image
博碩士論文 etd-0725103-095936 詳細資訊
Title page for etd-0725103-095936
論文名稱
Title
潤滑金屬表面電蝕機制之基礎研究
Fundamental Studies on Electrical Pitting Mechanism of Lubricated Metal Surface
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
153
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2003-07-17
繳交日期
Date of Submission
2003-07-25
關鍵字
Keywords
二硫化鉬、軸電壓、電蝕、門檻電壓、軸電流
threshold voltage, shaft current, shaft voltage, electrical pitting, MoS2
統計
Statistics
本論文已被瀏覽 5661 次,被下載 5107
The thesis/dissertation has been browsed 5661 times, has been downloaded 5107 times.
中文摘要
摘 要
一般的轉動機械中的軸承常因軸電壓和軸電流的作用導致電弧效應而發生電蝕,使電機機造成損壞。由於在實際運轉中無法即時以微觀來觀察電蝕發生機制,所以尚不能充分抑制電蝕損傷。因此,本研究使用次微米級精度的靜態電蝕試驗機,實驗探討在交流供應電壓與電流、油膜厚度和添加劑的實驗參數下探討常用軸承材料的潤滑之表面電蝕發生的門檻條件,並且使用掃瞄式電子顯微鏡(SEM)和能量釋放光譜儀(EDS)觀察電蝕表面的機制。
從純油潤滑的鋼配對之實驗結果建立由門檻電壓和油膜厚度的關係所構成之電蝕型態圖可分為電蝕區、過渡區及非電蝕區,在電蝕區中,於一定的電流作用下,界面電壓和界面功率及界面阻抗均隨著油膜厚度增大而微增;但於一定的油膜厚度作用下,界面電壓、界面功率隨著電流增大而增大,而界面阻抗卻隨著電流增大而變小。又,電蝕面積與界面功率有三次曲線的關係。
從純油潤滑的巴氏合金與鋼配對之實驗結果建立由門檻電壓與油膜厚度以及材料熔點的關係所構成的電蝕型態圖區分為電蝕區和非電蝕區。巴氏合金表面的電蝕型態受界面功率和油膜厚度的影響很顯著,亦即在較小油膜厚度下,電蝕表面呈現多孔狀凹坑,尤其是在高供應電流下,在凹坑的周圍形成凸起。在凸起的表面殘留試驗前的拋光痕跡,並且在巴氏合金和鋼兩試片材料之間,由於熔融的錫接觸到鋼球而發生大量的相互轉移層。但在較大油膜厚度下巴氏合金和鋼兩試片材料僅發生少量的相互轉移層。又,軸承表面的電蝕面積主要發生在電弧放電的初期,並隨著電弧放電時間的增加而少許增加,於最後達到飽和值。
從含有導電性二硫化鉬(MoS2)添加劑的潤滑油下,巴氏合金與鋼配對中的實驗結果得知,由門檻電壓和油膜厚度及顆粒濃度所組成之含電蝕和非電蝕等兩個區域的電蝕型態圖,電蝕區域隨著MoS2濃度及供應電流之增加而擴大。又,電蝕面積與界面功率的比值(Ap/P)在油膜厚度6mm以下時隨著油膜厚度和MoS2濃度的增加而增加,在油膜厚度6mm增至10mm以上時,則隨著油膜厚度和MoS2濃度的增加而急速增為近10倍。這是由於熔融凸起直接連結兩試片,使界面功率主要消耗於凸起和界面材料的加熱。從上述結果,提出在添加導電性MoS2粉末之潤滑油條件下電蝕表面凸起的成長模式。
Abstract
Abstract
The electrical pitting often occurs at the bearing of the ro-tating machinery due to the actions of the shaft voltage and the shaft current resulting in the arcing effect on the lubricated surface and causing the bearing failure. Since the mechanism of the electrical pitting cannot be microscopically observed in process, it is difficult to prevent the bearing damage. Hence, this study uses a static electrical pitting tester with sub -micrometer accuracy to experimentally investigate the effects of supply voltage, supply current, oil film thickness, and ad-ditive on the threshold condition of electrical pitting under the conventional bearing material pairs. Moreover, according to the SEM micrograph and EDS analysis, the mechanism of the pitted surfaces is investigated.
According to the experimental results and the surface ob-servations of steel/steel pair using a paraffin base oil, three electrical pitting regimes are found under the influences of shaft voltage and oil film thickness, namely, pitting, transition, and no-pitting regimes. In the electrical pitting regime, the interface voltage, interface impedance, and interface power increases slightly with increasing oil film thickness at a certain supply current. However, the interface voltage and interface power increases with increasing supply current, and the inter-face impedance decreases with increasing supply current at a certain film thickness. Furthermore, the pitting area versus the interface power relationship is a cubic function.
According to the experimental results and the surface ob-servations of babbitt alloy/steel pair using a paraffin base oil, two electrical pitting regimes are found under the influences of shaft voltage, oil film thickness, and melting point of material, namely, pitting and no-pitting regimes. The mechanism of electrical pitting on the babbitt alloy surface is significantly influenced by the interface power and the oil film thickness. At the smaller oil film thickness, the eroded surface of babbitt alloy exhibits a concave crater with a few micro-porosity in the vicinity of center region with a plateau on its surrounding, especially at high supply current. The polished track can be observed at the plateau. A large amount of tin element trans-fers to the steel ball surface because the molten tin contacts the ball. At the higher oil film thickness, only a little amount of metal element transfers to each other. The major pitting area of the babbitt alloy is caused at the initial stage of the arc dis-charge. With increasing arc discharge time, the pitting area increases slightly, and finally reaches a saturated value.
According to the experimental results and the surface ob-servations of babbitt alloy/steel pair using an additive of MoS2 in a paraffin base oil, two electrical pitting regimes are found under the influences of shaft voltage, oil film thickness, and particle concentration of additive, namely, pitting and no-pitting regimes. The area of pitting regime increases with increasing additive concentration and supply current. Fur-thermore, the ratio of pitting area to the interface power in-creases with increasing additive concentration and supply current at the oil film thickness smaller than 6 mm. However, this ratio increases rapidly to about 10 times with increasing additive concentration and supply current as the oil film thickness increases from 6 mm to 10 mm. This results from the molten plateau that directly connects two specimens, and the interface power is mainly consumed at the heating of the pla-teau and the interfacial materials. According to the above re-sults, the growth model of the plateau on the pitting surface is proposed at the lubricated condition using an additive of MoS2 in paraffin base oil.
目次 Table of Contents
總 目 錄

總目錄 i
圖目錄 v
表目錄 x
符號說明 xi
論文摘要(中文) xii
論文摘要(英文) xiv
第一章 緒論 1
1-1 研究動機 1
1-2 軸電壓與軸電流之來源 3
1-3 放電現象之發生與種類 9
1-4 文獻回顧 11
1-4-1 軸電壓、軸電流形成之原因 11
1-4-2 軸電流對軸承電蝕損傷之影響 12
1-4-3 電蝕機制之探討 15
1-4-4 二硫化鉬電蝕潤滑特性之探討 16
1-4-5 電流變流體機制與放電加工機制之探討 17
1-5 論文之研究方向與架構 20
第二章 交流電場下之潤滑表面電蝕機制與形成準則 22
2-1 前言 22
2-2 實驗設備及實驗程序 24
2-2-1 次微米級精度靜態電蝕試驗機 24
2-2-2 實驗訊號量測設備 27
2-2-3 資料收集分析系統 27
2-2-4 實驗時間控制之計時回路 27
2-2-5 次微米級精度的油膜厚度控制系統 29
2-2-6 試片之幾何形狀與尺寸 31
2-2-7 試片處理方法 32
2-2-8 潤滑油性質 32
2-2-9 實驗條件 32
2-2-10 實驗步驟 33
2-3 結果與討論 38
2-3-1 界面電壓與界面阻抗 41
2-3-2 界面功率 47
2-3-3 電蝕孔形成機制 52
2-3-4 電蝕凹坑和電蝕面積 54
2-3-5 門檻電壓 62
2-4 結 論 67
第三章 交流電場下巴氏合金與鋼配對之潤滑表面電蝕機制 68
3-1 前言 68
3-2 實驗條件與方法 70
3-2-1 試片之幾何形狀與尺寸 70
3-2-2 試片處理方法 71
3-2-3 潤滑油性質 71
3-2-4 實驗條件 71
3-3 結果與討論 72
3-3-1 潤滑表面之電氣行為 72
3-3-2 電蝕孔形成機制 82
3-3-3 門檻電壓 95
3-3-4 電弧放電過程之界面狀態 98
3-4 結 論 102
第四章 添加劑對巴氏合金與鋼配對之潤滑表面電蝕機制之影響 103
4-1 前言 103
4-2 實驗條件與方法 105
4-2-1 試片之尺寸及處理方法 105
4-2-2 潤滑油性質 105
4-2-3 二硫化鉬顆粒之處理 105
4-2-4 二硫化鉬之特性 106
4-2-5 實驗條件與方法 108
4-2-6 數位訊號處理 110
4-3 結果與討論 112
4-3-1 界面電壓和電阻的變化 112
4-3-2 電蝕形成的門檻條件 117
4-3-3 電蝕表面的觀察 123
4-3-4 凸起的形成機制 128
4-3-5 電蝕的形成機制 135
4-4 結論 138
第五章 總論與展望 139
5-1 總論 139
5-2 展望 142
參考文獻 143
著作目錄 151
作者簡介 153
參考文獻 References
參考文獻

1. J. M. Erdman, ”Bearing currents and their relationship to PWM drives”, IEEE Transaction on power electronics, 12,2 (1997) 243-252
2. H. Prashad, “Theoretical analysis of capacitive effect of roller bearings on repeated starts and stops of a machine operating under the influence of shaft voltages”, ASME Journal of Tribology, 114 (1992) 818-822
3. M.J. Costell, “Shaft Voltage and Rotating Machinery,” IEEE Trans. on Industry Applications 29,2, (1993) 419 -426.
4. R. Ong, J.H. Dymond, R.D. Findlay, B. Szabados, “Shaft current in AC induction machine-- An online monitoring system and prediction rule”, IEEE Trasaction on industry appl. 37,4, (2001) 1189 -1196
5. J. Boyd and H.N. Kaufman, “The causes and the control of electrical currents in bearings”, Lubrication Engineering, January (1959) 28-35.
6. Isidor Kerszenbaum, “Shaft current in electric machines fed by solid- state drives”, IEEE conference (1992) 71-79
7. J.M. Meek and and J.D. Craggs”, Electrical breakdown of gases”, Oxford: Oxford University Press, (1953)
8. H.N. Kaufman and J. Boyd, “The conduction of current in bearings”, ASLE Transactions, 2 (1959) 67-77.
9. P.S.Y. Chu, and A. Cameron, “Flow of electric current through lubricated contacts”, ASLE Trans., 10 (1967) 226 -234.
10. S. Anderson, “Passage of electric current through rolling bearings”, The Ball Bearing Journal, 153, (1968) 6-12.
11. C. Ammann, K. Rechert, R. Joho, Z. Posedel, ”Shaft volt-age in generators with static excitation system--problems and solution”, IEEE Transactions on Energy Coversion, 3,2 (1988) 409-420
12. H. Prashad, “The effect of current leakage on electroadhe-sion forces in rolling friction and magnetic flux density distribution on the surface of rolling element bearings”, Trans. ASME J. Trib., 110 (1988) 448-455.
13. M. Zawadzki, “Case history of shaft currents on a 1500 HP motor on PWM supply”, IEEE conference, (1999) 242 -247
14. H. Prashad, “Investigation of damaged rolling-element bearings and deterioration of lubricants under the influence of electric fields”, Wear, 176 (1994) 151-161.
15. J.A. Lawson, ”Motor bearing fluting”, IEEE Industry Technical conference (1993) 32-35
16. H. E. Boyanton, G. Hodges, ” Bearing fluting on AC motors, DC motors and rolls on paper machine”, IEEE Industry Applications Magazine,8 5 (2002) 53-57
17. H. Prashad,” Investigations of corrugated pattern on the surfaces of roller bearings operated under the influence of electrical fields”, Lubrication Engineering, 44,8, (1988) 710-718.
18. D.F. Busse, J.M. Erdman, R.J. Kerkman, “An evaluation of the electrostatic shielded induction motor: A solution for motor shaft voltage buildup and bearing current”, IEEE trasaction on Industry Application, 33,6 (1997) 1563-1570
19. D. Busse, J. Erdman, R.J. Kerkman, D. Schlegel, G. Skib-inski, ”System electrical parameters and their effects on bearing currents, IEEE Trans. on Industry Application, 33, 2 (1997) 577-584.
20. D.F. Busse, J.M. Erdman, R.J. Kerkman, “The effect of PWM voltage source inverters on mechanical performance of rolling bearing”, IEEE Trans. on Industry Application, 33, 2 (1996) 250-259.
21. R.W. Jones, D.E. Seaver, ” Investigation and results of eddy currents on DC motor bearings”, IEEE Industry Technical conference (1990) 146-150
22. H. Prashad and T.S.R. Murthy, “Behavior of greases in statically-bounded conditions and when used in non -insulated anti-friction bearings under the influence of electrical fields”, Lubrication Engineering, 44 (1988) 239- 246.
23. J. M. Erdman, R.J. Kerkman, D.W. Schlegel. and G.L. Skibinski, “Effect of PWM inverters on AC motor bearing currents and shaft voltage, IEEE Transactions on Industry Applications, 32,2 (l996) 250-259.
24. H. Prashad, “Diagnosis of failure of rolling-element bear-ings of alternators--a study”, Wear, 198 (1996) 46-51.
25. A. Kohno, H. Ohyabh, and N. Soda, “Effect of discontact arc on wear of materials for current collection (part 1)”, J. Jpn. Soc. Lubr. Eng, 27 (4) (1982) 283-287.
26. A. Kohno, H. Ohyabh, and N. Soda, “Effect of discontact arc on wear of materials for current collection (part 2)”, J. Jpn. Soc. Lubr. Eng, 27 (7) (1982) 527-532.
27. A. Kohno, M. Itoh, and N. Soda, “Effect of discontact arc on wear of materials for current collection (part 3)”, J. Jpn. Soc. Lubr. Eng, 29 (6) (1984) 458-462.
28. H. Prashad, “Theoretical analysis of the effects of instan-taneous charge leakage on roller tracks of roller bearings lubricated with high resistivity lubricants under the influ-ence of electric current”, Trans. ASME J. Trib., 112 (1990) 37-43.
29. H. Prashad, “Theoretical evaluation of reduction in the life of hydrodynamic journal bearings operating under the in-fluence of different levels of shaft voltages”, STLE Trib. Trans., 34 (1991) 623-627.
30. H. Prashad, “Theoretical evaluation of capacitance, ca-pacitive reactance, resistance and their effects on per-formance of hydrodynamic journal bearings”, Trans. ASME J. Trib., 113 (1991) 762-767.
31. S. Komatsuzaki, T. Uematsu and R. Itoh, “A study of an-tielectrowear properties of lubricating greases from the viewpoint of grease composition”, J. JSLE, 28, (1) (1983) 54-60, J. JSLE, International Ed., 5 (1984) 169-174.
32. S. Komatsuzaki, T. Uematsu and F. Nakano, “Bearing damage by electrical wear and its effect on deterioration of lubricating greases”, ASLE, Lubr. Eng., 43 (1987) 25-30.
33. A. Kohno, H. Ooyabu, and N. Soda, “Effect of electric current on wear of materials for current collection”, J. Jpn. Soc. Lubr. Eng., 26 (8) (1981) 562-567 (in Japanese)
34. B.J. Wang, N. Saka and E. Rabinowicz, “Static-gap, sin-gle-spark erosion of Ag-CdO and pure metal electrodes”, Wear, 157 (1992) 31-49.
35. B.J. Wang, N. Saka and E. Rabinowicz, “Static-gap arc erosion of Ag-CdO electrodes”, IEEE Trans. Components, Hybrids, Manufacture Technol., 14 (2) (1991) 374-385.
36. H. Prashad, “Effect of operating parameters on the thresh-old voltages and impedance response of non-insulated rolling element bearings under the action of electrical cur-rents”, Wear, 117 (1987) 223-240.
37. H. Prashad, “Theoretical evaluation of impedance, capaci-tance and charge accumulation on roller bearings operated under electrical fields”, Wear, 125 (1988) 223-239.
38. 森正美、河野彰夫、三科博司、金釜雲嚴、大竹政雄, “境界狀態下之通電發熱現象”,日本Ььユп①Щ 學會Ььユп①Щ 會議予稿集(北九州1996-10)
39. H. Prashad, K.N. Rao, “Analysis of capacitive effect and life estimation of hydrodynamic journal bearings on re-peated starts and stops of a machine operating under the influence of shaft voltages”, STLE Trib. Trans. 37 (1994) 641-645.
40. H. Ito, M. Tomaru and T. Suzuki, “Physical and chemical aspects of grease deterioration in sealed ball bearings”, ASME-ASLE Joint Tribology Conf., San Antonio, TX, October (1987) 5-8.
41. D.F. Wilcock, “Bearing wear caused by electric current”, Electrical Manufacturing, February (1949) 108-111.
42. A.J. Stock, “Evaluation of solid lubricant dispersion on a four ball tester”, Lubr. Eng., 22, (1966) 146-152.
43. R.G. Rosenberg and W.E. Campbell, “The effect of me-chanically dispersed solid powders on wear prevention by white Oil at high load and low speed”, Lubri. Eng., 24, (1968) 92-98.
44. J. Gansheimer and R. Holinski, “Molybdenum disulfide in oils and grease under boundary conditions”, Trans. ASME, J. Lub. Tech., 95, (1973) 242-248.
45. R. Holinski, “Lubrication mechanism of solid lubrication oils”, ASLE Trans., 18, (1975) 263-269.
46. W.J. Bartz, “Solid lubricant additives-effects of concentra-tion and other additives on anti-wear performance”, Wear, 17, (1971) 421-432.
47. W.J. Bartz and J. Oppelt, “Lubricating effectiveness of oil-soluble additives and molybdenum disulfide dispersed in mineral oil”, Lubr. Eng., 36, (1980) 579-585.
48. W.J. Bartz,” Some Investigations on the Influence of parti-cle size on the lubricating effectiveness of molybdenum disulfide”, ASLE Trans., 5, (1972) 207-215.
49. J. Gansheimer and R. Holinky, “A study of solid lubricants in oil and greases under boundary condition”, Wear, 20, (1972) 439-449.
50. W.J. Bartz and K. Muller, “Investigation of the lubricating effectiveness of molybdenum disulfide”, Wear, 20, (1972) 371-379.
51. D.J. Kingenberg, Frank van Swol, and C.F. Zukoski,” Dy-namic simulation of electrorheological suspensions”, J. Chem. Phys. 91(12) 15, (1989) 7888-7895
52. S. Morishita, ”Active control of tribology using elec-tro-rheological fluid”, Japan J. of Tribology, 38, 8 (1993) 1011-1017
53. C.W. Wu, H. Conrad, ” Electrical properties of electrorheo -logical particle clusters”, Material science and engineering A255 (1998) 66-69
54. H. Conrad, ”Properties and design of electrorheological suspensions”, MRS Bulletin , 23,8 (1998) 35-42
55. Y.M. Quan, Y. H. Liu, ”Powder-suspension dielectric fluid for EDM”, Journal of Materials Processing Technology, 52 (1995) 44-54
56. Y.S. Wong, L.C. Lim, ”Near-mirror-finish phenomenon in EDM using powder-mixed dielectric”, Journal of Materials Processing Technology, 79 (1998) 30-40
57. H.M. Chow, B.H. Yan, F.Y. Huang, J.C. Hung, ”Study of added power in kerosene for the micro-slit machining of titanium alloy using electro-discharge machining”, Journal of Materials Processing Technology, 101 (2000) 95-103
58. J.R. Hughes, ”Bearing wear caused by electric current”, Electrical manuf., (1949) 108-111
59. W.F. Kuo, Y.C. Chiou, and R.T. Lee, “A study on lubrica-tion mechanism and wear scar in sliding circular contacts”, Wear, 201 (1996) 217- 226
60. N. John, D. Richard, “Applied Linear Statistical Models”, Irwin, Inc. 1985, 2nd edition, 96-97
61. O.EI Beqqali, I. Zorkani, Rogemond, H. Chermette, R. Ben Chaabane, M. Gamoudi, G. Guillaud, ”Electrical properties of molybdenum disulfide MoS2 Experimental study and density functional calculation results”, Synthetic Metals, 90 (1997) 165-172
62. D.G. Teer, J. Hampshire, V. Fox, V. Bellido-Gonzalez, ”The tribological of MoS2/metal composite coatings deposited by closed field magnetron sputtering”, Surface and Coatings Technology, 94-95 (1997) 572-577
63. V.C. Fox , N. Renevier, D.G. Teer , J. Hampshire , V. Ri-gato, ”The structure of tribologically improved MoS2-metal composite coatings and their industrial applications”, Sur-face and Coatings Technology, 116-119 (1999) 492-497
64. F.J. Clauss, ”Solid lubricants and self-lubricating solids”, New York: Academic Press, (1972)
65. J.L. Streator and D.B. Bogy, “Accounting for transducer dynamics in the measurement of friction”, ASME J. of Tri-bology, 114 (1992) 86-94
66. C.S. Yust, “Fast fourier transform analysis of computer- acquired friction data”, Tribology Trans., 37, 1 (1994) 201 -205
67. R. Pinteon and J. Schoukens, “Real-time integration and differentiation of analog signals by means of digital filter-ing”, IEEE Trans. on Instrumentation and Measurement 39, 6 (1990) 923-927
68. W.D. Stanley, ”Digital signal processing”, Prentice-Hall Company, Reston, Virginia, (1975) 277-305
69. Y.C. Chiou, "Study of wear particle deposition by an im-proved rotary ferrographic analyzer", Wear, 146 (1991) 137-147
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code