Responsive image
博碩士論文 etd-0725103-133605 詳細資訊
Title page for etd-0725103-133605
論文名稱
Title
多層氮化鎵/氮化銦鎵量子井光學特性之研究
Study on the Optical Properties for InGaN/GaN Multilayer Quantum Well Structures
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
113
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2003-06-27
繳交日期
Date of Submission
2003-07-25
關鍵字
Keywords
相分離、缺陷結構、銦偏析、氮化鎵/氮化銦鎵
In-Rich, Defect Structure, GaN/GaInN, Phase Saperation
統計
Statistics
本論文已被瀏覽 5699 次,被下載 0
The thesis/dissertation has been browsed 5699 times, has been downloaded 0 times.
中文摘要
本篇論文主要是探討藍光發光二極體(LED)在不同層數的量子井下,其顯微結構對發光效率影響之研究。在本文中,學生分別對單層量子井、五層量子井、十層量子井、及三十層的量子井作一個分析與比較說明,發現不同層數的量子井將形成不同的相分離(Phase Separation)與應變(Strain)現象,而這些現象都將影響薄膜的發光效率品質,故本論文將主要集中在:(1.)不同量子井層數的相分離現象,產生不同的富銦(In-rich)效應與(2.)不同的應變(Strain)現象產生不同的差排(Dislocation)效應等兩者對發光二極體之發光效能影響作詳細的探討。依實驗結果發現隨著銦含量增加,差排與V-型缺陷將愈容易形成,且在高銦含量之下,富銦相團族結構密度明顯的增多並且擴散到氮化鎵層內,使得原先的量子井結構被破壞,如此亦將使其發光性質改變。另發現在成長較厚的氮化銦鎵量子井中,將產生囤積較大的應變能,薄膜中為了要釋放這些應變能,於是將會產生較大的缺陷結構,這些具有較高缺陷密度的薄膜,經過光學量測後發現其發光強度明顯降低。而對於成長不同層數薄膜時,我們可由原子力電子顯微鏡量測中發現;當量子井層數愈高時,其表面的粗糙度將愈明顯。由此可知當成長愈高的量子井厚度時,其對發光性質之影響將愈大。在本論文的研究結果中發現當薄膜成長中之量子井層數介於5層~10層之間時,將會有較好的光學性質。

Abstract
The thesis mainly probes into the effects that the structure below multi quantum layer as regards the efficiency of luminescence of blue light LED in the different number layers and make further comparison. In the article, the students separately make analysis and comparison to the single quantum well , five multi quantum wells , ten multi quantum wells and thirty multi quantum wells. And discovered that different number layers of quantum well will occur different Phase Separation and Strain in the film. So the article mainly focuses on : (1.)Phase Separation in various of quantum well, it occurs different In-rich reaction and (2.)Different Strain levels which occurs different dislocation reaction. The two mechanisms will be discussed in detail with the effects of luminescence reaction of LED.

According to the results of experiment, We found that it is easier to form V-shape defects and dislocation with the increasing indium content. Under the high indium content, the density of In-rich will increase obviously and spread to the GaN barrier, then the original structure of quantum well will be destroyed and descend the efficacy of luminescence. In the thicker GaInN quantum well, it will induce larger energy of strain inside the film, So the defect density will increase due to release the strain energy. It was also discovered the intensity of luminescence descend after measuring by PL. When grow different number layers , it was discovered that higher quantum layer will produce the roughness surfaces when using AFM . So the higher quantum layers will make greater influence in the efficacy of luminescence. By experiment, we found that the five to ten quantim wells will have the better photo characteristic.


目次 Table of Contents
中文摘要…………………………………………………………Ⅰ
英文摘要…………………………………………………………Ⅲ
誌謝………………………………………………………………Ⅴ
目錄………………………………………………………………Ⅶ
圖錄………………………………………………………………ⅩⅠ

第一章 前言
1.1發光二極體發展概況…………………………………………1
1.1.1發光二極體的優點…………………………………………2
1.1.2發光二極體之注入機構……………………………………3
1.2氮化鎵藍光二極體發展現況…………………………………3
1.2.1藍光發光二極體研製動機…………………………………5
1.2.2氮化鎵材料概述……………………………………………6
1.2.3氮化鎵系列的N型與P型摻雜………………………………7
1.2.4雙異質接面結構可提高發光效率…………………………8
1.3研究動機………………………………………………………8

第二章 氮化銦鎵量子井結構特性
2.1相分離現象……………………………………………………12
2.1.1增幅分解反應………………………………………………12
2.1.2銦偏析現象…………………………………………………15
2.2量子井結構差排現象…………………………………………16
2.3溫度效應對量子井結構的影響………………………………20
2.4銦含量效應……………………………………………………22
2.5壓電效應對氮化鎵量子井結構的影響………………………23
2.6量子侷限效應…………………………………………………26

第三章 實驗設備與檢測方法
3.1實驗樣品製程…………………………………………………39
3.1.1化學氣相沉積法(MOCVD)………………….………………39
3.1.2分子束磊晶製程(MBE)…………………………..……….41
3.2高解析穿透式電鏡試樣製作………………………..………42
3.3實驗設備…………………………………………......……43
3.3.1 X光繞設分析儀…………………………………......…43
3.3.2掃描式電子顯微鏡…………………........……………47
3.3.3原子力電子顯微鏡…………………………………………48
3.3.4高解析穿透式電子顯微鏡…………………………………49
3.3.5螢光激光量測器………………………..…………………52
3.4實驗架構………………………………………………………53

第四章 結果與討論
4.1銦偏析現象……………………………………………………62
4.1.1量子井層數效應…………………………………....……62
4.1.1.1 實驗樣品結構……………………………………….…62
4.1.1.2 不同量子井層數的變化之結果與討論….....………63
4.1.2銦含量效應……………….………………….....………65
4.1.2.1實驗樣品結構…………………................……65
4.1.2.2 不同銦含量的變化之結果與討論……….……………66
4.1.3量子井厚度效應……………………………………………67
4.1.3.1 實驗樣品結構………………………………….………67
4.1.3.2 不同量子井厚度的變化之結果與討論……….………67
4.2缺陷結構現象…………………......………………………68
4.2.1穿透式電子顯微鏡分析........………………........69
4.2.1.1 實驗樣品結構……………………………….…………69
4.2.1.2 穿透式電子顯微鏡分析之結果與討論…….…………69
4.2.2原子力電子顯微鏡分析……………………………………70
4.2.2.1 實驗樣品結構………………………………….....…70
4.2.2.2 原子力電子顯微鏡分析之結果與討論…….…………70
第五章 結論……………………………………………..………93
參考文獻……………………………………………….....……95
參考文獻 References
[1] Yen-Sheng Lin, Kung-Jen Ma, C.C. Yang, Thomas E. Weirich, J.Crystal Growth Vol.242, pp.35-24, 2002.
[2] 林彥勝, ” The Material Characteristic Study of InGaN/GaN Multiple Quantum Wells ” 博士論文.
[3] D. Bimberg, M. Grundmann, N.N. Ledentsov, “Quantum Dot Heterostructres”, Wiley, Chichester, NY, 1999.
[4] K. Tachibana, T. Someya, Y. Arakawa, Appl. Phys. Lett. Vol.74, pp.383, 1999.
[5] H.D. Li, T. Wang, N. Jiang, Y.H. Liu, J. Bai, S. Sakai, J. Crystal Growth Vol.247, pp.28-34, 2003.
[6] Y. Narukawa, Y. Kawakami, M. Funato, S. Fujita, S. Nakamura, Appl. Phys. Lett. Vol.70, pp.981, 1997.
[7] L.T. Romano, B.S. Krusor, M.D. McCluskey, D.P. Bour, K. Nauka, Appl. Phys. Lett. Vol.73, pp.1757, 1998.
[8] Seong-Eun Park, Byungsung O, Cheul-Ro Lee, J. Crystal Growth Vol.249, pp.455-460, 2003
[9] A. Shikanai, T. Azuhata, T. Sota, S. Chichibu, A. Kuramata, K. Horino, S. Nakamura, J. Appl. Phys. Vol.81 pp.417, 1997.
[10] Sung-Nam Lee, Tan Sakong, Wonseok Lee, Hosun Paek, Moonsuk Seon, In-Hwan Lee, Okhyun Nam, Yongjo Park, J. Crystal Growth Vol.250, pp.256-261, 2003.
[11] S.Kelle, S.F. Chichibu, M.S. Minsky, E. Hu, U.K. Mishra, S.P. DenBaars, J. Crystal Growth Vol.195, pp. 285, 1998.
[12] K. Uchida, T. Tang, S. Goto, T.Mishima, A. Niwa, J. Gotoh, Appl. Phys. Lett. Vol.74, pp.1153, 1999.
[13] F.B. Naranjo, S. Fernandez, M.A. Sanchez-Garcia, F. Calle, E. CAlleja, A. Trampert, K.H. Ploog Materials Scaence and Engineering ,B93 pp.131-134, 2002.
[14] L.P.D Schenk, M. Leroux, P. de Mierry, J. Appl. Phys. Vol.88, pp.1525, 2000.
[15] Yen-Sheng Lin, Kung-Jen Ma, Yi-Yin Chung, Shih-Wei Feng, Yung-Chen Cheng, En-Chiang Lin, C.C Yang, Cheng-Ta Kuo, Jian-Shihn Tsang, J. Crystal Growth Vol.252, pp.107-112, 2003.
[16] C.C. Chua, C.M. Lee, T.E. Nee, J.I. Chyi, Appl. Phys. Lett. Vol.76, pp.3902, 2000.
[17] “GaN and Related Materials”, edited by S. J. Pearton, 1997.
[18] B. Pecz, M.A. di Forte-poisson, L. Toth, G. Radnoczu, G. Huhn, V. Papaioannou, and J. Stoemenos, Material Science and Engineering B, B50 pp.93, 1997.
[19] “Electronic Thin Film Science For Electronic Engineers and Materials Scientists”, edited by K. N. Tu, J. W. Mayer, and L. C. Feldman, 1992.
[20] “D. Hull, Introduction to Dislocation”, 2nd Edition. Pergamon Press, Oxford, 1975.
[21] J.W. Matthews, Epitaxial Growth, Academic, New York 1975.
[22] H. F. Matare, “Defect Electronics in Semiconductors”, Wiley-Interscience, New York 1971.
[23] K. Watanabe, N. Nakanishi and T. Yamazaki, J. R. Yang and S. Y. Huang, K. Inoke, J. T. Hsu and R. C. Tu, M. Shiojiri, Appl. Phys. Lett. Vol.82, pp.5, 2003.
[24] T. Yamazaki, K. Watanabe, Y. Kikuchi, M. Kawasaki, I. Hashimoto, and M. Shiojiri,Phys. Rev. B 61,13833 ,2000.
[25] D. Muller and J. Grazul, J. Electron Microsc. Vol.50, pp.219, 2001.
[26] S. L. Chuang, “Physics of Optoelectronic Device”, Wiley, New York 1995.
[27] Sarid, D., “Scanning Force Microscopy” ,New York: Oxford University Press, pp.643,1991.
[28] 汪建民主編, “材料分析”, 中國材料科學學會, 1998.
[29] U. Woggon, “Optical Properties of Semiconductor Quantum Dots”, Springer, Berlin, 1997.
[30] Y.S. Lin, K.J. Ma, C. Hsu, C.C. Liao, S.W. Feng, C.C. Yang, C.C. Chuo, C.M. Lee, J.I. Chyi, Appl. Phys. Lett. Vol.77, pp.2998, 2000.
[31] K. Tachibana, T. Someya, Y. Arakawa, Appl. Lett. Vol.72, pp.366, 1998.
[32] J.W. Caln, Acta Metall. Vol.10, pp.179, 1962.
[33] Y.Arakawa, T. Someya, K. Tachibana, Phys. Sratus Solidi B Vol.224, pp.1, 2001.
[34] M.S. Miller, Jpn. J. Appl. Phys. Vol.36, pp.4123, 1997.
[35] H. Hirayama, K. Matsunaga, M. Asada, Y. Suematsu, Electron. Lett. Vol.30, pp.142, 1994.
[36] I.H. Ho, G.B. Stringfellow, Appl. Phys. Lett. Vol.69, pp.2701, 1996.
[37] G.S. Solomon, J.A. Tressa, A.F. Marshall, J.S. Harris, Phys. Rev. Lett. Vol.30, pp.142, 1994.
[38] E.W.S. Caetano, et al, Physica E Vol.13, pp.1106, 2002.
[39] Y.C. Yeo, T.C. Chong, M.F. Li, J. Appl. Phys. Vol.83, pp.1429,1998.
[40] S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, Jpn. J. Appl. Phys. Vol.34, pp.L797, 1995.
[41] I. Akasaki, H. Amano, Jpn. J. Appl. Phys. Vol.36, pp.5393, 1997.
[42] W.C. Lai, S.J. Chang, M. Yokoyama, J.K. Sheu, J.F. Chen, IEEE Photon. Technol. Lett. Vol.13, pp.559, 2001.
[43] S. Nakamura, Science Vol.281, pp.956, 1998.
[44] K.P. O`Donnell, R.W. Martin, P.G. Middleton, Phys. Rev. Lett. Vol.82, pp.237, 1999.
[45] K. Tachibana, T. Someya, Y. Arakawa, Appl. Phys. Lett. Vol.74, pp.383, 1999.
[46] S. Tanaka, S. Iwai, Y. Aoyagi, Appl. Phys. Lett. Vol.69, pp.4096, 1996.
[47] X.Q. Shen, S. Tanaka, S. Iwai, Y.Aoyagi, Appl. Phys. Lett. Vol.72, pp.344, 1998.
[48] J. Zhang, M. Hao, P. Li, J. Chua, Appl. Phys. Lett. Vol.80, pp.485, 2002.
[49] J. Bai, T. Wang, and S. Sakai, Jpn. J. Appl. Phys. Rev. Lett. Vol.63, pp.430, 1989.
[50] F. Scholz. et al., Mater. Res. Soc. Symp. Proc. 499, 3, 1997.
[51] T. Takeuchi, H. Amano, and R. Bhat, Phys Rev. Lett. Vol.39, pp.411, 2000.
[52] S. Chichibu, T. Sota, K. Wada, and S. Nakamura, J. Vac. Sci. Technol. B Vol.16, pp.2204, 1998.
[53] L.P.D. Schenk, M. Leroux, P. de Mierry, J. Appl. Phys. Vol.88, pp.1525, 2000.
[54] O. Ambacher, J. Phys. D: Appl. Phys. Vol.31, pp.2653, 1998.
[55] R.W. Martin, P.G. Middlenton, K.P. O`Donnell, W. Van der Stricht, Appl. Phys. Lett.Vol.74, pp.263, 1999.
[56] Ig-Hyeon Kim, Hyeong-Soo Park, Yong-Jo park, Taeil Kim, Appl. Phys. Lett. Vol.73, pp.1634, 1998.
[57] C.C.Chuo, C.M. Lee, T.E. Nee, J.I. Chyi, Appl. Phys. Lett. Vol.76, pp.3902, 2000.
[58] E. Berkowicz, D. Gershoni, G. Bahir, E. Lakin, D. Shilo, Phys. Rev. B Vol.61,10994, 2000.
[59] L.T. Romano, M.D. McCluskey, B.S. Krusor, D.P. Bour, C. Chua, S. Brennan, K.M. Yu, J. Crystal Growth Vol.33 pp.189-190, 1998.
[60] C.K. Choi, Y.M. Kwon, B.D. Little, G.H. Gainer, J.J. Song, Y.C. Chang, Phys. Rev. B. Vol.64, 245339, 2000.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.191.211.66
論文開放下載的時間是 校外不公開

Your IP address is 18.191.211.66
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code