Responsive image
博碩士論文 etd-0725103-160149 詳細資訊
Title page for etd-0725103-160149
論文名稱
Title
金屬表面摩擦帶電機制之研究
Studies on the Tribo-electrification Mechanisms between the Metal Surfaces
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
174
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2003-07-07
繳交日期
Date of Submission
2003-07-25
關鍵字
Keywords
摩擦帶電、磨耗、金屬、材料轉移
metal, wear, tribo-electrification, material transfer
統計
Statistics
本論文已被瀏覽 5687 次,被下載 1876
The thesis/dissertation has been browsed 5687 times, has been downloaded 1876 times.
中文摘要
隨著微系統和奈米科技的發展,微元件的尺寸精度及品質受摩擦帶電的影響將更加敏感,即使是μV級的電力對奈米加工過程也有影響。因而引起本研究探討金屬表面間摩擦帶電的機制與特性之動機。本研究使用往復摩擦帶電試驗機及量測系統,以鉑(Pt)、鐵(Fe)、鉬(Mo)、鈦(Ti) 、鎢(W)及鉛(Pb)、鋅(Zn)、鋁(Al)、銀(Ag)、金(Au)、銅(Cu)等十一種純金屬作為試片材料,在乾摩擦且嚴重磨耗之條件下,探討摩擦帶電的行為。並且使用掃瞄式電子顯微鏡(SEM)及能量釋放光譜儀(EDS)觀察磨耗表面與磨耗顆粒的特徵,進而提出金屬表面之摩擦帶電機制。
關於同種純金屬配對之研究得知;對於Pt/Pt、Fe/Fe、Mo/Mo、Ti/Ti及W/W等五種硬金屬,提出由峰端破壞所引起的摩擦帶電機制之模型,亦即硬金屬主要的磨耗機制為峰端破壞而產生小磨耗顆粒,當材料轉移從上試片至下試片時,上試片之摩擦帶電為正極性,反之亦然。對於Pb/Pb、Zn/Zn、Al/Al、Ag/Ag、Au/Au及Cu/Cu等六種軟金屬,提出由接合部成長所引起的摩擦帶電機制之模型,亦即軟金屬主要的磨耗機制為顆粒聚集且接合部成長而產生大磨耗顆粒,磨耗損失量始終小於下試片,故上試片的摩擦帶電電位維持負極性。並且,藉由改變垂直負荷條件探討摩擦帶電的轉換機制,因而建立可預測同種純金屬配對之摩擦帶電極性的型態圖。亦即,隨著垂直負荷之增加,摩擦帶電之極性的變化依序為:正負極交互變化、轉換區、負極性。而磨耗顆粒之生成機制的變化依序為:微小峰端破壞、轉換區、磨耗顆粒聚集且接合部成長。更進一步,建立可預測平均摩擦帶電電位的方程式,結果顯示平均摩擦帶電電位線性正比於材料固有電阻值及相對磨耗率,但反比於真接觸面積。
關於Pb/Fe、Ag/Fe、Cu/Fe、Zn/Fe、及Al/Fe等異種純金屬配對之研究得知;異種金屬配對之總摩擦帶電電位Vt可被區分成:(a)來自材料轉移的電位Vw。Vw幾乎與往復速率無關,而與垂直負荷之(1+n)次方呈正比關係,n對於鉛、銀、銅、鋅及鋁等金屬而言在 -0.5 ~ -0.9之範圍。(b)來自摩擦熱的電位Vf。Vf與往復速率呈正比關係,而與垂直負荷之平方根約呈正比關係。(c)來自殘熱的電位Vr。Vr與往復速率呈正比關係,而與垂直負荷之平方根約呈正比關係。再者,藉由Vf與Vr可換算成溫昇,而將接觸界面之溫昇區分成:(a)來自摩擦熱之溫昇Tf 。並建立Tf之計算式,結果顯示Tf為摩擦係數、垂直負荷及速度之函數。(b)來自殘熱之溫昇Tr 。Tr與往復速率呈正比關係,而與垂直負荷之平方根約呈正比關係。最後,提出一個異種金屬配對之摩擦帶電機制的模型,來說明不互溶與互溶之金屬配對的摩擦帶電現象。
Abstract
With the development of MEMS and nano-technology, effects of tribo-electrification on the size accuracy and quality of micro-element will be more sensitive. The electrification in the order of mV is also important in the nano-machining process. Therefore, the tribo-electrification mechanisms and characteristics between the metal surfaces are investigated in this study. The experiments are conducted on a reciprocating friction tester with a measuring system, and the tribo-electrification behavior is studied for eleven pure metals, namely, Platinum (Pt), Ferrous (Fe), Molybdenum (Mo), Titanium (Ti), Tungsten (W) and Lead (Pb), Zinc (Zn), Aluminum (Al), Silver (Ag), Aurum (Au), Copper (Cu), in dry severe wear process. According to the SEM and EDS observations on the wear particles and the worn surfaces, the tribo-electrification mechanisms between the metal surfaces are proposed.
Concerning the study of self-mated pure metal pairs; a model of the tribo-electrification mechanism by asperity removal for five hard metal pairs of Pt/Pt, Fe/Fe, Mo/Mo, Ti/Ti, and W/W is proposed. In this model, the wear for the hard self-mated metals is mainly caused by the asperity removal with small wear particle. When the material transfers from pin specimen to plate specimen, the polarity of tribo-electrification for pin specimen becomes positive, and vice versa. Another model of the tribo-electrification mechanism by junction growth for six soft metal pairs of Pb/Pb, Zn/Zn, Al/Al, Ag/Ag, Au/Au and Cu/Cu is proposed. In this model, the wear mechanism of the soft self-mated metals is the flake-like wear particles that are formed by the particle aggregation with junction growth. The polarity of tribo-electrification for the upper specimen keeps negative due to the wear loss of the upper specimen always less than the plate specimen. Furthermore, the transition mechanisms of tribo-electrification are investigated with changing normal load, hence a map has been established to predict the polarity of tribo-electrification for self-mated metal pairs. That is, with increasing normal load, the polarity of tribo-electrification varies from the random, through tending to negative, to negative, and the formation mechanism of wear particle from the micro-asperity removal, through the transition, to the particle aggregation with junction growth. Moreover, an equation is proposed to predict the average magnitude of tribo-electrification. Results show that the average magnitude of electrification voltage is linearly proportional to the electric resistivity and the relative wear rate, but inversely to the real contact area.
Concerning the study of dissimilar metal pairs of Pb/Fe, Ag/Fe, Cu/Fe, Zn/Fe and Al/Fe; the total voltage of tribo-electrification Vt for dissimilar metal pairs consists of three components: (a) tribo-electrification by material transfer Vw, Vw is independent of the reciprocating speed, and is proportional to the (1+n) power of normal load, where n is in the range from –0.5 to –0.9 for lead, silver, copper, zinc, and aluminum. (b) tribo-electrification by friction heat Vf, Vf is linearly proportional to the reciprocating speed, and is proportional to the square root of normal load. (c) tribo-electrification by residual heat Vr, Vr is linearly proportional to the reciprocating speed, and is proportional to the square root of normal load. Moreover, Temperature rise Tt between the contact surfaces can be calculated by Vf and Vr. Hence, Tt consists of two components: (a) temperature rise by friction heat Tf, an equation is proposed to predict Tf. Results show that Tf is a function of friction coefficient, normal load and speed. (b) temperature rise by residual heat Tr, Tr is linearly proportional to the reciprocating speed, and is proportional to the square root of normal load. Finally, a model of tribo-electrification mechanism for dissimilar metal pairs is proposed to describe the tribo-electrification phenomenon for sliding pairs with low to high mutual solubility.
目次 Table of Contents
謝誌 i
總目錄 ii
圖目錄 vi
表目錄 xi
符號說明 xii
論文摘要(中文) xv
論文摘要(英文) xvii
第一章 緒論
1.1 研究動機 1
1.2 摩擦帶電對產業界之重要性 2
1.3 文獻回顧 3
1.3.1 潤滑條件下之摩擦帶電研究 3
1.3.2 乾摩擦條件下之摩擦帶電研究 7
1.3.3 金屬表面之化學反應生成物的影響 9
1.4 本論文之研究方向 9
1.5 本論文之架構 11
參考文獻 13
第二章 同種純硬金屬配對之摩擦帶電機制
2.1 前言 20
2.2 實驗設備與實驗程序 22
2.2.1 主要實驗設備 22
2.2.2 試片材料和幾何形狀 23
2.2.3 實驗程序 24
2.3 實驗結果與討論 24
2.3.1 摩擦帶電及摩擦係數之變化 24
2.3.2 磨耗損失 27
2.3.3磨耗面及磨耗顆粒之電子顯微鏡照片觀察 27
2.3.4硬金屬摩擦帶電之機制 28
2.4 結論 31
參考文獻 32
第三章 同種純軟金屬配對之摩擦帶電機制
3.1 前言 47
3.2 實驗設備與實驗程序 48
3.3 實驗結果與討論 49
3.3.1 摩擦帶電及摩擦係數之變化 49
3.3.2 磨耗損失 50
3.3.3 磨耗面及磨耗顆粒之電子顯微鏡照片觀察 51
3.3.4 軟金屬摩擦帶電之機制 52
3.3.5 軟及硬金屬之摩擦帶電機制的比較 54
3.4 結論 56
參考文獻 58
第四章 同種純金屬配對之摩擦帶電轉換機制
4.1 前言 72
4.2 實驗設備與實驗程序 74
4.3 實驗結果 74
4.3.1 摩擦帶電電位 74
4.3.2 平均摩擦係數 76
4.3.3 磨耗損失 77
4.3.4 磨耗顆粒之電子顯微鏡照片觀察 78
4.4 討論 80
4.4.1 摩擦帶電之機制 80
4.4.2 摩擦帶電極性之型態圖 83
4.5 結論 85
參考文獻 87
第五章 在不同滑動速度下異種純金屬配對之摩擦帶電機制
5.1 前言 103
5.2 實驗設備與實驗程序 105
5.3 實驗結果 106
5.3.1 摩擦帶電及摩擦係數之變化 106
5.3.2 磨耗量分析 109
5.3.3磨耗面及磨耗顆粒之電子顯微鏡照片觀察及成分分析 110
5.4 討論 111
5.4.1 摩擦循環之分析 111
5.4.2 摩擦帶電成因之分析 114
5.4.3 摩擦接觸界面溫昇之分析 115
5.4.4 異種金屬配對之摩擦帶電機制 116
5.5 結論 118
參考文獻 120
第六章 在不同垂直負荷下異種純金屬配對之摩擦帶電機制
6.1 前言 140
6.2 實驗設備與實驗程序 141
6.3 實驗結果 142
6.3.1 摩擦帶電及摩擦係數之變化 142
6.3.2 磨耗量分析 145
6.3.3 磨耗面及磨耗顆粒之電子顯微鏡照片觀察及成分分析 146
6.4 討論 147
6.4.1 摩擦循環之分析 147
6.4.2 摩擦帶電成因之分析 149
6.4.3 摩擦接觸界面溫昇之分析 150
6.5 結論 153
參考文獻 154
第七章 總論與展望
7.1 總論 169
7.2 展望 171
作者簡介 173
著作目錄 174
參考文獻 References
(一)
【1】 二澤正行,靜電氣對策手冊,歐姆出版社,1989. (日文)
【2】 DOD-HDBK-263, Electrostatic discharges control Handbook for electrical and electronic parts, assemblies and equipment.
【3】 W. R. Harper : Contact and Frictional Electrification, Oxford University Press., London, (1967) 44-51, 73-75.
【4】 日本潤滑學會編,潤滑便覽,養賢堂 (1987) 246.
【5】 T. R. Beck, D. W. Mahaffey & J. H. Olsen : Trans. ASME, J. Basic Eng. 92 (1970) 782.
【6】 Y. Yamamoto, and F. Hirano, “Electrical behavious of phosphate esters”, Wear, 50 (1978) 349-355.
【7】 L. Goldblatt, “Self-generated voltages and their relationship to wear under boundary lubricated conditions”, Fundamentals of Tribology, edited by N. P. suh and N. saka, MIT Press, (1978) 981.
【8】 遠藤吉郎、福田嘉雄、高宮脩武, “潤滑摩耗的行為與微小電壓的效果”,日本機械學會論文集 [第一部], 37 (1971) 670-676.
【9】 Y. Yamamoto, and F. Hirano, “Scuffing resistance of phosphate ester (2): effect of applied voltage”, Wear, 66 (1981) 77-86.
【10】 T. Katafuchi, and N. Takano, “Electrical characteristics between lubricated frictional surfaces (1): measurement of voltage-current characteristics between friction surfaces”, J. Jpn. Soc. Lubr. Eng., (in Japanese), 25, 6 (1980) 395-399.
【11】 T. Katafuchi, and N. Takano, “Electrical characteristics between lubricated frictional surfaces (2): the effects of viscosity and degree of refinement of lubricating oils on the voltage-current characteristrics”, J. Jpn. Soc. Lubr. Eng., (in Japanese), 25, 6 (1980) 400-404.
【12】 T. Katafuchi, and N. Takano, “Electrical characteristics between lubricated frictional surfaces (3): the effects of load sliding speed and oil temperature on the voltage-current characteristics”, J. Jpn. Soc. Lubr. Eng.,(in Japanese), 25, 7 (1980) 444-449.
【13】 T. Katafuchi, and N. Takano, “Electrical characteristics between lubricated frictional surfaces (4): the effects of atmosphere and EP-additives on the electrical rectification”, J. Jpn. Soc. Lubr. Eng.,(in Japanese), 27, 2 (1982) 129-134.
【14】 T. Katafuchi, and N. Takano, “Electrical characteristics between lubricated frictional surfaces (5): the effects of oiliness agents on the voltage-current characteristrics”, J. Jpn. Soc. Lubr. Eng.,(in Japanese), 28, 7 (1983) 524-528.
【15】 T. Katafuchi, “Effects of electric current on wear under lubricated conditions (1): electric current-wear characteristics”, J. Jpn. Soc. Lubr. Eng., (in Japanese), 30, 12 (1985) 883-886.
【16】 T. Katafuchi, “Effects of electric current on wear under lubricated conditions (2): effects of addition of additives on current-wear characteristics”, J. Jpn. Soc. Lubr. Eng., (in Japanese), 30, 12 (1985) 887-893.
【17】 T. Katafuchi, “Electrical characteristics of lubricating film between frictional surfaces “ J. Jpn. Soc. Lubr. Eng., (in Japanese), 36, 6 (1991) 423-428.
【18】 A. Takeuchi, M. Satou, and H. Aoki, “ Effect of applied voltage on friction characteristics under mixed lubrication conditions”, J. Jpn. Soc. Lubr. Eng., (in Japanese), 32, 9 (1987) 673-678.
【19】 A. Takeuchi, M. Satou, and H. Aoki, “ Effect of electric current on advance of running-in”, J. Jpn. Soc. Lubr. Eng., (in Japanese), 35, 12 (1990) 878-883.
【20】 Simon C. Tung, Simon S. wang, “In-Situ Electro-Charging for Friction and Wear Resistant Film Formation”, STLE Trans., 34, 4 (1991) 479-488.
【21】 Y. Yamanoto, J. Yagi, H. Higaki, “Effect of externally applied electric field of friction and wear characteristics”, JSME International Journal. Ser. 3 :Vibration, Control Engineering and Engineering for Industry, 35, 4 (1992) 641-646.
【22】 李榮宗,邱源成, “抑制潤滑損傷之通電方法研究”,國科會研究計畫成果報告, NSC-82-0401-E-110-051(1993).
【23】 李榮宗,邱源成,蔣金霓,”外加電場對鋼材潤滑磨耗之影響”,中國機械工程學會第十二屆學術研討會, (1995) 65-71.
【24】 A. Yano, S. Watanabe, S. Matsumoto, T. Omura and K. Saki, : “A process explanation of orifice choking caused by calcium-detergent in lubricating oil”,日本磨潤學會期刊, 43, 6 (1998) 500-507.
【25】 A. Sasaki and T. Yamamoto, “Free redicals and oil auto-oxidation due to spark discharges of static electricity”, Lubr. Eng., Sept, (1999) 14-21.
【26】 A. Sasaki and T. Yamamoto, “Generation of static electricity during oil filtration”, Lubr. Eng., Sept, (1999) 24-27.
【27】 黃宗正等六人, “變壓器油油流帶電度檢測設備之研製”,台電工程月刊,第624期, (2000) 12-28.
【28】 K. Nakayama, Tribophysical phenomena and tribochemical reaction, J. Jpn. of Tribologists., 42, 9 (1997) 712-717.
【29】 B. D. Terris, J. E. Stern, D. Ruggr, and H. J. Mamin, Contact electrification using force microscopy”, Physical Review Letters, 63, 24 (1989) 2669-2672.
【30】 S. Sasaki, Effects of tribo-electrification on wear behavior of ceramics, J. of Mechanical Engineering Laboratory, 44, 4 (1990) 140-147.
【31】 K. Nakayama, and H. Hashimoto, Triboemission of charged particles and photons from wearing ceramic surfaces in various gases, STLE, 35, 4 (1992) 643-650.
【32】 K. Nakayama, and H. Hashimoto, Triboemission of charged particles and photons from wearing ceramic surfaces in various hydrocarbon gases, Wear, 185 (1995) 183-188.
【33】 K. Nakayama, and H. Hashimoto, Effect of surrounding gas pressure on triboemission of charged particles and photons from wearing ceramic surfaces, STLE, 38, 1 (1995) 35-42.
【34】 K. Nakayama, and H. Hashimoto, Triboemission, tribochemical reaction, and friction and wear in ceramics under various n-butane gas pressures, Tribology International, 29, 5 (1996) 385-393.
【35】 K. Nakayama, N. Suzuki, and H. Hashimoto, Triboemission of charged photons from solid surfaces during friction damage, J. of Physics D: Applied Physics., 25 (1992) 303-308.
【36】 K. Nakayama, and H. Hashimoto, Triboemission from various materials in atmosphere, Wear, 147 (1991) 335-343.
【37】 K. Nakayama, Triboemission of charged particles from various solids under boundary lubrication conditions, Wear, 178 (1994) 61-67.
【38】 J. W. Peterson, Contact charging between a borosilicate glass and nickel, J. of Applied Physics, 25, 4 (1954) 501-505.
【39】 J. W. Peterson, Contact charging between nonconductors and metal, J. of Applied Physics, 25, 7 (1954) 907-915.
【40】 P. E. Wagner, Electrostatic charge separation at metal-insulator contacts, J. of Applied Physics, 27, 11 (1956) 1300-1310.
【41】 J. K. Lancaster, Proc. Roy. Soc. Lond. 273A (1963) 466-483.
【42】 I. M. Hutchings, Tribology: Friction and wear of engineering materials, CRC Press, (1992) 205-210.

(二)
【1】 B. D. Terris, J. E. Stern, D. Ruggr, and H. J. Mamin, Contact electrification using force microscopy”, Physical Review Letters, 63, 24 (1989) 2669-2672.
【2】 S. Sasaki, Effects of tribo-electrification on wear behavior of ceramics, J. of Mechanical Engineering Laboratory, 44, 4 (1990) 140-147.
【3】 K. Nakayama, and H. Hashimoto, Triboemission of charged particles and photons from wearing ceramic surfaces in various gases, STLE, 35, 4 (1992) 643-650.
【4】 K. Nakayama, and H. Hashimoto, Triboemission of charged particles and photons from wearing ceramic surfaces in various hydrocarbon gases, Wear, 185 (1995) 183-188.
【5】 K. Nakayama, and H. Hashimoto, Effect of surrounding gas pressure on triboemission of charged particles and photons from wearing ceramic surfaces, STLE, 38, 1 (1995) 35-42.
【6】 K. Nakayama, and H. Hashimoto, Triboemission, tribochemical reaction, and friction and wear in ceramics under various n-butane gas pressures, Tribology International, 29, 5 (1996) 385-393.
【7】 K. Nakayama, N. Suzuki, and H. Hashimoto, Triboemission of charged photons from solid surfaces during friction damage, J. of Physics D: Applied Physics., 25 (1992) 303-308.
【8】 K. Nakayama, and H. Hashimoto, Triboemission from various materials in atmosphere, Wear, 147 (1991) 335-343.
【9】 K. Nakayama, Triboemission of charged particles from various solids under boundary lubrication conditions, Wear, 178 (1994) 61-67.

【10】 R. G. Cunningham, Frictional electrification of belts of insulating materials, J. of Applied Physics, 35 (1964) 2332-2337.
【11】 K. Ohara, T. Tonouchi, and S. Uchiyama, Frictional electrification of thin films deposited by the Largmuir-Blodgett method, J. of Physics D: Applied physics., 23 (1990) 1092-1096.
【12】 K. Ohara, and S. Uchiyama, Frictional electrification of fatty accd LB films of which the uppermost layer was deposited on Y-type films by the horizontal lifting method, J. of Physics D: Applied Physics., 25 (1992) 94-99.
【13】 J. W. Peterson, Contact charging between a borosilicate glass and nickel, J. of Applied Physics, 25, 4 (1954) 501-505.
【14】 J. W. Peterson, Contact charging between nonconductors and metal, J. of Applied Physics, 25, 7 (1954) 907-915.
【15】 P. E. Wagner, Electrostatic charge separation at metal-insulator contacts, J. of Applied Physics, 27, 11 (1956) 1300-1310.
【16】 W. R. Harper, Contact and frictional electrification, Oxford University Press., London (1967) 44-51, 73-75, 223-225.
【17】 B. Bhushan, Principles and applications of tribology, Wiley – Interscience, (1999) 222-227, 431-433.
【18】 E. Rabinowicz, Friction and wear of materials, Wiley, New York, (1995) 62, 82-88, 286-288.
【19】 I. M. Hutchings, Tribology: Friction and wear of engineering materials, CRC Press, (1992) 36, 82-94.
【20】 Y. C. Chiou, and K. Kato, Effect of normal stiffness in loading system on wear of carbon steel, part 2: dynamic normal load and effective sliding distance, ASME Journal of Tribology, 108 (1986) 321-325.
【21】 Y. C. Chiou, K. Kato, and H. Abé, The effect of normal damping in the loading system on the wear of low carbon steel, Wear, 114 (1987) 73-84.
【22】 K. Kato, Basic studies of micro-mechanisms in wear-in-situ SEM observations-, the international conference on wear of materials denver, Colorado, April, (1989) 9-13.
【23】 Y. C. Chiou, and K. Kato, Wear mode of micro-cutting in dry sliding friction between steel pairs (part 1), J. JSLE, 32 (1987) 41-48. (in Japanese)
【24】 P. J. Blau, Friction and wear transitions of materials - Break-in, Run-in, Wear-in”, Noyes Publications, (1989) 385-390.
【25】 M. Kerridge, Metal transfer and the wear process, Proc. Phys. Soc.,London, Sect. B, 68 (1955) 400-407.
【26】 T. Kayaba, and K. Kato, The adhesive transfer of the slip-tongue and the wedge, ASLE Transactions, 24, 2 (1981) 164-174.

(三)
【1】 T. Kayaba, and K. Kato, The adhesive transfer of the slip-tongue and the wedge, ASLE Transactions, 24, 2 (1981) 164-174.
【2】 I. M. Hutchings, Tribology: Friction and wear of engineering materials, CRC Press, (1992) 205-210.
【3】 H. Mishina, H. Makita, T. Sasada and S. Norose, Various modes of the origin and growth process of wear particles in pure metal-metal rubbing, J. Jpn. Soc. Lubr. Eng., 24, 7 (1979) 466-472 (in Japanese).
【4】 H. Mishina, T. Sasada, S. Norose and H. Makita, Formation of flake-like wear particles caused by press-slide flattening of adhered fragments, J. Jpn. Soc. Lubr. Eng., 24, 9 (1979) 585-591 (in Japanese).
【5】 D. Landheer and J. H. Zaat, The mechanism of metal transfer in sliding friction, Wear 27 (1974) 129-145.
【6】 D. A. Rigney, Fundamentals of friction and wear of materials, ASM, (1980) 8-10.
【7】 D. A. Rigney, L. H. Chen, M. G. S. Naylor and A. R. Rosenfield, Wear processes in sliding systems, Wear 100 (1984) 195-219.
【8】 D. A. Rigney, Sliding wear of metals, Ann. Rev. Mater. Sci., 18 (1988) 141-163.
【9】 E. Rabinowicz, Friction and wear of materials, second edition, Wiley – Interscience, (1995) 28-62, 170-188, 286.

(四)
【1】 W. R. Harper, Contact and frictional electrification, Oxford University Press, London (1967) 60-61, 73-75, 223-233.
【2】 J. F. Archard and W. Hirst, The wear of metals under unlubricated conditions, Proc. Roy. Soc., London, Ser. A, 236 (1956) 397-410.
【3】 S. C. Lim and M. F. Ashby, Wear-mechanism maps, Acta metall. 35, 1 (1987) 1-24.
【4】 S. C. Lim and M. F. Ashby, Wear-rate transitions and their relationship to wear mechanisms, Acta metall. 35, 6 (1987) 1343-1348.
【5】 T. Kayaba and K. Kato, Experimental analysis of junction growth with a junction model, Wear, 51 (1978) 105-116.
【6】 T. Kayaba and K. Kato, Theoretical analysis of junction growth, Technology Reports, Tohoku Univ., 43, 1 (1978) 1-10.
【7】 E. Rabinowicz, Friction and wear of materials, 2nd edition, Wiley – Interscience, (1995) 149-155, 170-186.
【8】 I. M. Hutchings, Tribology: Friction and wear of engineering materials, CRC Press, (1992) 82-98.
【9】 Y. C. Chiou, Study of wear particle deposition by an improved rotary ferrographic analyzer, Wear, 146 (1991) 137-147.
【10】 T. Kayaba, K. Kato and T. Akagaki, Ferrographic study of wear (Part1), JSLE, 29 (1984) 745-752 (in Japanese).
【11】 F. P. Bowden and D. Tabor, The friction and lubrication of solids, Clarendon Press, Oxford (1954) 19-20.

【12】 D. Tabor, Junction growth in metallic friction: the role of combined stresses and surface contamination, Proc. R. Soc., London, Ser. A, 251 (1959) 378-393.
【13】 K. L. Johnson, Contact mechanics, Cambridge University Press, (1985) 234-240.

(五)
【1】 J. C. Jaeger, Moving sources of heat and the temperature at sliding contacts, J. R. Soc. N. S. W., 56 (1942) 203-224.
【2】 M. J. Furey, Surface temperatures in sliding contact, ASLE, Trans. 7 (1964) 133-146.
【3】 C. Dayson, Surface temperatures at unlubricated sliding contacts, ASLE, Trans. 10 (1967) 169-174.
【4】 J. R. Barber, Distribution of heat between sliding surfaces, Journal Mechanical Engineering Science, 9, 5 (1967) 351-354.
【5】 S. W. Earles, M. G. Hayler and D. G. Powell, A comparison of surface temperature theories and experimental results for high speed dry sliding, ASME-ASLE Lubrication Conference, Cincinnati, 14 (1970) 135-143.
【6】 D. G. Powell and S. W. Earles, An assessment of surface temperature predictions in the high speed sliding of unlubricated SAE 1113 steel surfaces, ASME-ASLE Lubrication Conference, Pittsburgh, 15, 2 (1971) 103-112.
【7】 E. S. Sproles and D. J. Duquette, Interface temperature measurements in the fretting of a medium carbon steel, Wear, 47 (1978) 387-396.
【8】 M. Kawamoto and K. Okabayashi, Study of dry sliding wear of cast iron as a function of surface temperature, Wear, 58 (1980) 59-95.
【9】 E. Rabinowicz, The temperature rise at sliding electrical contacts, Wear, 78 (1982) 29-37.
【10】 I. M. Hutchings, Tribology: Friction and wear of engineering materials, CRC Press, (1992) 205-207.
【11】 E. Rabinowicz, in Peterson M B and Winer W O (Eds.), Wear Control Handbook, ASME, (1980) 475-506.
【12】 W. R. Harper, Contact and frictional electrification, Oxford University Press, London (1967) 223-233.
【13】 E. Rabinowicz, Friction and wear of materials, 2nd edition, Wiley – Interscience, (1995) 38-39, 84-88.

(六)
【1】 W. R. Harper, Contact and frictional electrification, Oxford University Press, London (1967) 223-233.
【2】 J. C. Jaeger, Moving sources of heat and the temperature at sliding contacts, J. R. Soc. N. S. W., 56 (1942) 203-224.
【3】 J. F. Archard, The temperature of rubbing surfaces, Wear, 2 (1959) 438-455.
【4】 C. Dayson, Surface temperatures at unlubricated sliding contacts, ASLE, Trans. 10 (1967) 169-174.
【5】 D. G. Powell and S. W. Earles, Wear of unlubricated steel surfaces in sliding contact, ASLE Trans. 11 (1968) 101-108.
【6】 S. W. Earles and D. G. Powell, Surface temperature and its relation to periodic changes in sliding conditions between unlubricated steel surfaces, ASLE Trans. 11 (1968) 109-120.
【7】 T. L. Ho and M. B. Peterson, Wear formulation for aircraft brake material sliding against steel, Wear, 43 (1977) 199-210.
【8】 M. Kawamoto and K. Okabayashi, Study of dry sliding wear of cast iron as a function of surface temperature, Wear, 58 (1980) 59-95.
【9】 H. M. Ghasemi, M. J. Furey and C. Kajdas, Surface temperatures and fretting corrosion of steel under conditions of fretting contact, Wear, 162-164 (1993) 357-369.
【10】 F. P. Bowden and P. H. Thomas, The surface temperature of sliding solids, Proc. Roy. Soc. A, 223, 1 (1954) 29-40.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code